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Abstract. Stable distributions have a wide sphere of application: probability the-
ory, physics, electronics, economics, sociology. Particularly important role they play
in financial mathematics, since the classical models of financial market, which are
based on the hypothesis of the normality, often become inadequate. However, the
practical implementation of stable models is a nontrivial task, because the proba-
bility density functions of a-stable distributions have no analytical representations
(with a few exceptions). In this work we exploit the parallel computing technologies
for acceleration of numerical solution of stable modelling problems. Specifically, we
are solving the stable law parameters estimation problem by the maximum likeli-
hood method. If we need to deal with a big number of long financial series, only the
means of parallel technologies can allow us to get results in a adequate time. We
have distinguished and defined several hierarchical levels of parallelism. We show
that coarse-grained Multi-Sets parallelization is very efficient on computer clusters.
Fine-grained Maximum Likelihood level is very efficient on shared memory ma-
chines with Symmetric multiprocessing and Hyper-threading technologies. Hybrid
application, which is utilizing both of those levels, has shown superior performance
compared to single level (MS) parallel application on cluster of Pentium 4 HT nodes.
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1. Introduction

Modelling of financial processes and their analysis is a very fast developing
branch of applied mathematics. Originally processes in economics and finance
were described by Gaussian models. However, at present normal models are
taken with more criticism, because it has been noticed out that they often
inadequately describe the behaviour of financial series. The reason is that the
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real data are usually characterized by skewness, kurtosis and heavy tails. Since
the classical Gaussian models eventually have lost their positions, new models
were proposed. Stable models attracted special attention [22].

Nowadays stable models have become an extremely powerful tool in math-
ematical modelling. Stable distributions are used in a wide sphere of applica-
tion: probability theory, physics, electronics, insurance, economics, computer
networking and sociology [4, 5, 23].

Particularly important role they play in financial mathematics. There are
several essential reasons why the models with a stable paradigm are applied
to model financial processes.

The first one is that stable random variables justify the generalized central
limit theorem, which states that stable distributions are the only asymptotic
distributions for adequately scaled and centered sums of independent identi-
cally distributed random variables [11].

The second one is that stable distributions are heavy-tailed. All but one
of stable distributions have infinite variance, which implies that observations
of large magnitude can be expected and may, in fact, dominate sums of these
random variables. It is not valid to treat these observations as outliers since
excluding them takes away much of the significance of the original data; in-
deed, it is precisely these observations that may be of greatest interest. This
led Mandelbrot [14, 15] to suggest the stable laws as possible models for the
distribution of income and speculative prices. Take for example the distribu-
tion of changes in stock market prices. Mandelbrot [15], Fama [10] and others
have shown that the probability of very large deviations is so great, that many
statistical techniques which depend for their validity on the asymptotic theory
of finite variance distributions are inapplicable. The sum of a large number
of these variables is often dominated by one of the summands - a theoreti-
cal property of infinite variance distributions. In such a case, a mathematical
model assuming such a distribution for the observations is very useful.

The third one is that stable distributions are asymmetric and leptokurtic.
Since stable distributions can accommodate the heavy tails and asymmetry,
they give a very good fit to empirical data. In particular, they are valuable
models for data sets covering extreme events, like market crashes or natural
catastrophes.

The fourth one is that stable distributions are a more flexible tool com-
pared to the normal distribution. The dependency of stable distributions on
four parameters makes them flexible to adapt empirical data for calibration
and model testing.

Following Rachev [6, 12] "the a-stable distribution offers a reasonable im-
provement if not the best choice among the alternative distributions that have
been proposed in the literature over the past four decades".

Figure 1 presents diagrams of Microsoft company stock prices and Mi-
crosoft company stock daily returns. Empirical data, as we can see, features
heavy tales and strong asymmetry: large observations are one sided. Chart
behaviour corresponds with stable paradigm well.

However, the probability density functions of a-stable distributions have
no analytical representations (with a few exceptions). This makes the prac-
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Figure 1. Empirical data: a) Microsoft company stock prices, b) Microsoft company
stock daily returns.

tical implementation of a-stable distributions in various applications a non-
trivial task and the whole a-stable modelling — computationally demanding.
Especially, when we need to handle long sets of data, which are common, for
example, in financial analysis, or a big number of such sets.

Parallel computing is successfully applied in many areas [§]. Our goal is to
apply it for the numerical solution of a-stable modelling problems. The objec-
tive of this paper is parallelization of the solution of the stable law parameters
estimation problem. We are defining several hierarchical levels of parallelism.
Several coarse- and fine-grained data-parallel algorithms are proposed. Their
performance is investigated on parallel computers with distributed and shared
memory.

2. Stable Distributions

The stable distribution can be most conveniently described by its character-
istic function

—o®[t|*{1 —ifsign (¢) tan T} +ipt, o #1,
log p(t) =
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where o € (0,2], 8 € [-1,1], 0 > 0, p € R. Here « is the characteristic
exponent (the index of stability), 3 is the skewness, p is the location parameter
and o is the scale parameter. A stable probability density function (PDF) is
symmetrical if and only if 5 = 0. When ¢ = 1 and p = 0 the distribution
is called standard stable. The general PDF of the stable distribution can be
standardized such that
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The canonical representation (2.1) has one serious disadvantage. The functions
©(t) have discontinuities at all points of the form a = 1, 5 # 0. Therefore for
numerical purposes it is advisable to use Nolan’s [18] parametrization

—o®[t|*(1 + iBsign (t) tan Z2 ((o]t])' =™ — 1)) +ipot, a#1,
log ¢o(t) = o ) ,
olt|(1 +ifBsign (t)= log(ot])) + ipot, o= 1.
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This parametrization is a variant of Zolotarev’s (M) parametrization [23],
with the characteristic function and hence the density and the distribution
function jointly continuous in all four parameters. The location parameters of
the two representations are related by

" p+ Botan I, o # 1,
0:
u—|—ﬂa%lna, a=1.

PDF of the two representations are related by
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here po(z, o, 8) is Nolan’s standard stable PDF

po(x,a, B) = l/ exp(—t®) cos(h(z, t; o, ) dt, (2.2)
™ Jo
where
xt+ Btan Z2(t —t%), o #1,
h(z,t; o, B) = Jren ) 7
u—i—ﬁo%lno, a=1.

3. PDF Calculation

Without analytical representation of PDF (with a few exceptions: Gaussian
distribution, Cauchy distribution, Lévy distributions) the practical implemen-
tation of stable models is a nontrivial task. There is a number of numerical
methods that have been found useful in practice (direct numerical integration
methods [9, 13, 19], Fast Fourier Transform method [16], polynomial-based ap-
proximation method [7], method of two quadratures [2]). However, the most
simple way to evaluate stable PDF (in the case of a > 1, as it is usually
assumed in financial mathematics) is to replace the improper integral in (2.2)
with an approximation

A
po(z, o, B) ~ 1 / exp(—t%) cos(zt + G(t — ) tan E) dt. (3.1)
™ Jo 2

Here A = —Inme, while the error of (3.1) is not greater than . Now we
evaluate the integral in (3.1) via Gauss-Kronrod quadratures with an accuracy
e. The total accuracy of the evaluation does not exceed 2z. We used this
approach for its simplicity, however the method of two quadratures [2] is
expected to be faster.

4. Estimation of Parameters of Stable Models

The most precise (and most time consuming) method of estimation of sta-
ble parameters is Maximum Likelihood (ML) method [3]. The parameters
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(o, B, p,0) can be estimated from the returns x1,xo,...,x, by maximizing
the log-likelihood function

L(a,ﬂ,u,a) ZZhlp(a:k,oz,,@,u,U). (41)
k=1

Empirical studies show that the log-likelihood target function has uniextremal
nature, often with very flat surface in the neighborhood of the extremum.
Figure 2 shows 3D cuts of the target function, obtained by fixing pairs of
parameters. The target function was calculated with the sample of returns of
size 5000 generated with the following parameters:

a=15 6=05 4=0, c=0.1. (4.2)
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Figure 2. 3D cuts of ML target function (4.1).

To optimize the log-likelihood function we use the Nelder-Mead simplex
method. Although this method is not the fastest, it does not require any
derivative (gradient, Hessian) calculation.

In Table 1 we show the results of ML optimization for the data sets of
increasing size. Each data set was generated with the same set of parame-
ters (4.2), which is a reference solution in our numerical experiments. The PDF
integral (3.1) is computed with the accuracy 10!, In the simplex method,
we take ¢ = 107°. Further increase of the accuracy does not affect the results.
Computations and time measurements were performed on Intel Pentium 4
processor with 3.2 GHz.
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Table 1. Results of ML optimization for the data sets of increasing size.

Set  Time Iter. & Aq Ié; Ag i Ay o A
size [s]

5-10% 14.74 158 1.6039 0.1039 0.8415 0.3415 0.0120 0.0120 0.1082 0.0082
10 2512 139 1.5241 0.0241 0.5950 0.0950 0.0082 0.0082 0.1044 0.0044
5-10° 156.37 167 1.4667 0.0333 0.5375 0.0375 0.0094 0.0094 0.1013 0.0013
10* 254.18 143 1.4961 0.0039 0.5171 0.0171 0.0021 0.0021 0.1012 0.0012
5-10* 1384.2 149 1.4900 0.0100 0.5200 0.0200 0.0026 0.0026 0.1000 0.0000
10°  2614.0 148 1.4975 0.0025 0.5204 0.0204 0.0017 0.0017 0.1000 0.0000

5. Parallelization

Numerical computations with computationally demanding ML-method com-
bined with nontrivial numerical calculation of stable PDF are very time con-
suming. Especially, when we need to handle long sets of data, which are com-
mon in financial analysis. Thus only parallel technologies allow us to get results
in an adequate time.

For this problem we distinguish the following levels of possible paralleliza-
tion (in hierarchical order):

e Multi-Sets (MS) level. Concurrent solution of big number of indepen-
dent ML optimization tasks for multiple sets of returns.

e Optimization level. Parallelization of optimization method.

¢ Maximum Likelihood (ML) level. Parallel computation of ML target
function (4.1) for long data sets.

e PDF level. Parallel computation of PDF integral (3.1).

In the current work we deal with MS and ML levels of parallelization.

In MS parallelization, first we uniformly distribute the data (sets of re-
turns) among available processors. Next, each processor consequently solves
the independent ML optimization tasks for each set of returns it has received.
And finally, we collect and proceed the obtained results.

In Table 2 we present results on the performance and scalability of MS
parallelization, which was done with MPI [17], for the numerical test with
100 sets of 1000 returns. Each set was generated using a unique seed with
parameters (4.2). The computations (as well as all others in this paper) were
performed on VGTU PC cluster http://vilkas.vgtu.lt. As can be expected,
the results show almost perfect parallelization. Practical problems, which can
be solved with this algorithm, deal with portfolios of stocks. We note, that
MS algorithm can be easily implemented using various parallel templates,
for example, Master-slaves templates [1]. It also suits well for computational
grids.

ML level represents fine-grained parallelism in our problem. For each call of
ML target function (4.1) summands can be distributed among processors and
computed in parallel. Table 3 shows the performance results of OpenMP [20]
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Table 2. Performance and scalability of Multi-Sets (MS) parallelization.

1 proc 2 proc 4 proc b5 proc 10 proc

Time, T} [s] 2547.9 1292.5 650.13 527.04 267.13
Speedup, S, 1 1.97 3.92 4.83 9.54
Efficiency, £, 100% 98.5% 98.0% 96.7%  95.4%

implementation. We have conducted the same numerical experiments as in
Section 4 with the generated data sets of increasing size. Calculations were
performed on SMP (Symmetric multiprocessing) node with two Pentium III
Tualatin 1.4 GHz processors and Pentium 4 node (Prescott 3.2 GHz) with
enabled Hyper-threading (1 physical processor is seen by operating system as
2 logical processors).

Table 3. Performance of ML parallelization with OpenMP.

Set Pentium III SMP Pentium 4 HT

size 1 proc 2 proc Efficiency 1 proc 2 proc Efficiency

10®°  63.44  31.09 102.0 % 25.12  16.61 75.62 %
10*  647.05 324.65 99.7 % 254.18  168.9 75.25 %
10°  6533.0 3253.8 1004 % 2614.0 1735.5 75.31 %

The results show that ML parallelization is very efficient on shared memory
machines. They also indicate that almost all computational work is done in the
calculation of the target function — all other operations in the optimization
method are relatively very cheap. Especially impressive are the results on
Pentium 4 node. We get 1.5 speedup on a single physical processor. This
proves that the use of Hyper-threading technology can bring real benefits to
some applications. We note that there is no degradation of the results when
the size of the set is changing in the reasonable range.

Next, we decided to utilize at once both levels of parallelism, namely,
Multi-Sets (MS) and Maximum Likelihood (ML). To obtain the parallel appli-
cation, we used hybrid programming [21] with MS parallelization implemented
with MPI and ML with OpenMP, accordingly. The code was tested on two
different SMP clusters (hybrid architecture). The first cluster is made from the
Pentium ITT SMP nodes, the second cluster uses Pentium 4 nodes with Hyper-
Threading technology enabled. For the details look at http://vilkas.vgtu.lt. In
both cases at each single node we can run two threads or processes which share
the node’s memory.

Table 4 presents the performance results of our hybrid application. We are
solving already described test problem with 100 sets of 1000 returns. Reference
times with 1 processor are 6400 seconds on Pentium III node and 2548 seconds
on Pentium 4 node. In the same table we present the results of application
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with MS parallelization only, solving the same problem on the same physical
resources, running 2 MPT processes per node.

Table 4. Performance of hybrid parallelization (MS+ML) vs MS parallelization.

cluster of Pentium III SMP nodes cluster of Pentium 4 HT nodes
Procs MS+ML MS MS+ML MS
gid T, S, E, T, S, E, T, S, E, T, S, K

1x2 3212 1.99 1.00 3250 1.97 0.99 1694 1.50 0.75 2286 1.11 0.56
2x2 1628 3.93 0.98 1633 3.92 098 859 297 0.74 1158 2.20 0.55
4x2 818 7.83 098 863 7.42 093 432 590 0.74 604 4.22 0.53
5x2 664 9.65 0.97 668 9.59 096 351 7.27 0.73 475 5.37 0.54
10x2 334 19.15 0.96 338 18.96 0.95 177 14.42 0.72 251 10.14 0.51

Comparison of those two applications on our clusters gives us interesting
observations. While on cluster with Pentium ITT SMP nodes the hybrid appli-
cation brings no substantial benefits in speedup, on cluster with Pentium 4
HT nodes we see real speedup gains using the hybrid approach. Obviously, the
use of additional ML parallelization level allows the scheduler to utilize the
resources of Pentium 4 processor better than simple spawning of additional
MPT process. The characteristics of Pentium IIT SMP nodes allow to organize
efficiently the data flow to processing units for both applications.

Note that the hybrid application distributes the workload in a more flexible
way. See the case 4x2 in Tab. 4, when 100 is not divisible by 8.

6. Conclusions

Stable modelling (and particularly stable optimization) is very complex and
computationally demanding problem (see Fig. 2 and Tab. 1), which can greatly
benefit from parallelization.

We have distinguished and defined several hierarchical levels of parallelism.
Tab. 2 shows that coarse-grained Multi-Sets parallelization is very efficient
on computer clusters. This level of parallelization should suit very well for
computational grids also.

Fine-grained ML level is very efficient on shared memory machines with
Symmetric multiprocessing and Hyper-threading technologies (Tab. 3). We
expect good performance on multicore processors also.

Finally, we have implemented hybrid application, which is utilizing both of
those levels of parallelism (MS+ML). On cluster of Pentium 4 HT nodes, this
application has shown superior performance compared to single level (MS)
parallel application (Tab. 4). It will be interesting to see, how effective hybrid
application will be on the clusters of nodes with multicore processors.
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