STRONGLY (V^{λ}, A, P) – SUMMABLE SEQUENCE SPACES DEFINED BY A MODULUS

TUNAY BILGIN and YILMAZ ALTUN

Department of Mathematics, University of 100. Yil

Van TURKEY

E-mail: tbilgin@yyu.edu.tr

Received April 5, 2007; revised October 10, 2007; published online December 15, 2007

Abstract. We introduce the strongly (V^{λ},A,p) – summable sequences and give the relation between the spaces of strongly (V^{λ},A,p) – summable sequences and strongly (V^{λ},A,p) – summable sequences with respect to a modulus function when $A=(a_{ik})$ is an infinite matrix of complex numbers and $p=(p_i)$ is a sequence of positive real numbers. Also we give natural relationship between strongly (V^{λ},A,p) – convergence with respect to a modulus function and strongly $S^{\lambda}(A)$ – statistical convergence.

Key words: De la Vallee-Poussin mean, modulus function, statistical convergence

1. Introduction

Let $\lambda = (\lambda_r)$ be a nondecreasing sequence of positive numbers tending to ∞ and $\lambda_{r+1} \leq \lambda_r + 1, \lambda_1 = 1$. The generalized de la Vallee-Poussin mean is defined by

$$t_r(x) = \lambda_r^{-1} \sum_{i \in I_r} x_i, \quad I_r = [r - \lambda_r + 1, r].$$

A sequence $x=(x_i)$ is said to be (V,λ) – summable to a number s if $t_r(x)\to s$ as $r\to\infty$ (Leindler [7]). If $\lambda_r=r$, then the (V,λ) – summability is reduced to (C,1) – summability. We write

$$[V, \lambda] = \{x = (x_i) : \lim_{r \to \infty} \lambda_r^{-1} \sum_{i \in I_r} |x_i - s| = 0 \text{ for some } s\}$$

for sets of sequences $x=(x_i)$ which are strongly (V,λ) – summable to s, that is $x_i \to s[V,\lambda]$.

Subsequently strongly (V, λ) – summable sequence spaces have been studied by various authors: (Bilgin [1], Güngör et al [5], Savas [14], and others). The notion of modulus function was introduced by Nakano [10]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

- (i) f(x) = 0 if and only if x = 0,
- (ii) $f(x+y) \le f(x) + f(y)$ for $x, y \ge 0$,
- (iii) f is increasing,
- (iv) f is continuous from the right at 0.

It follows that f must be continuous on $[0,\infty)$.

Bilgin [1], Kolk [6], Maddox [8, 9], Öztürk and Bilgin [11], Ruckle [12], and others used a modulus function for defining some new sequence spaces.

Let $A = (a_{ik})$ be an infinite matrix of complex numbers. We write $Ax = (A_i(x))$ if $A_i(x) = \sum_{k=1}^{\infty} a_{ik} x_k$ converges for each i.

Recently, the concept of strong (V, λ) – summability was generalized by Bilgin [1], as follows:

$$V^{\lambda}[A, f] = \{x = (x_i) : \lim_{r \to \infty} \lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|) = 0, \text{ for some } s\}.$$

In the present paper we introduce the strongly (V^{λ}, A, p) – summable sequences and give the relation between the spaces of strongly (V^{λ}, A, p) – summable sequences and strongly (V^{λ}, A, p) – summable sequences with respect to a modulus when $A = (a_{ik})$ is an infinite matrix of complex numbers and $p = (p_i)$ is a sequence of positive real numbers. Also we give natural relationship between strongly (V^{λ}, A, p) – convergence with respect to a modulus function and strongly $S^{\lambda}(A)$ – statistical convergence.

The following inequality will be used throughout the paper;

$$|a_i + b_i|^{p_i} \le T(|a_i|^{p_i} + |b_i|^{p_i}) \tag{1.1}$$

where a_i and b_i are complex numbers, $T = \max(1, 2^{H-1})$, and $H = supp_i < \infty$.

2. Strongly (V^{λ}, A, p) – Summable Sequences

Let $A = (a_{ik})$ be an infinite matrix of complex numbers, $p = (p_i)$ be a bounded sequence of positive real numbers $(0 < h = \inf p_i \le p_i \le supp_i = H < \infty)$, and f be a modulus. We define

$$\begin{split} V^{\lambda}[A,p,f] &= \{x: \lim_{r \to \infty} \lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|)^{p_i} = 0, \text{ for some } s\}, \\ V^{\lambda}_0[A,p,f] &= \{x: \lim_{r \to \infty} \lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x)|)^{p_i} = 0\}, \\ V^{\lambda}_{\infty}[A,p,f] &= \{x: \sup_r \lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x)|)^{p_i} < \infty\}. \end{split}$$

A sequence $x = (x_k)$ is said to be strongly (V^{λ}, A, p) – convergent to a number s with respect to a modulus if there is a complex number s such that $x \in V^{\lambda}[A, p, f]$. If x is strongly $((V^{\lambda}, A, p)$ – convergent to the value s with respect to a modulus f, then we write $x_i \to s(V^{\lambda}[A, p, f])$.

Throughout the paper μ will denote one of the notations 0, 1 or ∞ .

When f(x) = x, then we write the spaces $V_{\mu}^{\lambda}[A, p]$ in place of $V_{\mu}^{\lambda}[A, p, f]$. If $p_i = 1$ for all i, $V_{\mu}^{\lambda}[A, p, f]$ reduce to $V_{\mu}^{\lambda}[A, f]$. Hence $V_{\mu}^{\lambda}[A, p, f]$ is the same as the space $[A, V, \lambda, f]$ of Bilgin [1].

In this section we examine some topological properties of $V^{\lambda}[A, p, f]$ spaces and investigate some inclusion relations between these spaces.

Theorem 1. Let f be a modulus function and X denotes the anyone of the spaces $V^{\lambda}[A, p, f]$, $V_0^{\lambda}[A, p, f]$ or $V_{\infty}^{\lambda}[A, p, f]$. Then X is a linear space over the complex field C.

Proof. We give the proof only for $V_0^{\lambda}[A, p, f]$. Since the proof is analogous for the spaces $V^{\lambda}[A, p, f]$ and $V_{\infty}^{\lambda}[A, p, f]$, we omit the details.

Let $x, y \in V_0^{\lambda}[A, p, f]$, and $\alpha, \beta \in C$. Then there exist integers T_a and T_b such that $|a| \leq T_a$ and $|b| \leq T_b$. We therefore have

$$\lambda_r^{-1} \sum_{k \in I_r} f(\left| \sum_{k=1}^{\infty} a_{ik} (ax_k + by_k) \right|)^{p_k} \le \lambda_r^{-1} \sum_{k \in I_r} f(\left| \sum_{k=1}^{\infty} a_{ik} ax_k + \sum_{k=1}^{\infty} a_{ik} by_k \right|)^{p_k}$$

$$\le T\{\lambda_r^{-1} \sum_{k \in I_r} \left| T_a f(\left| \sum_{k=1}^{\infty} a_{ik} x_k \right|) + \lambda_r^{-1} \sum_{k \in I_r} T_b f(\left| \sum_{k=1}^{\infty} a_{ik} y_k \right|) \right|)^{p_k}$$

$$\le T\{\left| T_a \right|^H \lambda_r^{-1} \sum_{k \in I_r} f(\left| \sum_{k=1}^{\infty} a_{ik} x_k \right|)^{p_k} + \left| T_b \right|^H \lambda_r^{-1} \sum_{k \in I_r} f(\left| \sum_{k=1}^{\infty} a_{ik} y_k \right|)^{p_k}$$

as $r \to \infty$. This proves that $V_0^{\lambda}[A, p, f]$ is linear.

Theorem 2. If f be any modulus, then the inclusions $V_0^{\lambda}[A, p, f] \subset V_{\infty}^{\lambda}[A, p, f]$ hold.

Proof. The inclusion $V_0^{\lambda}[A,p,f] \subset V^{\lambda}[A,p,f]$ is obvious. Now let $x \in V^{\lambda}[A,p,f]$ such that $x_i \to s(V^{\lambda}[A,p,f])$. By using (1.1), we have

$$\begin{split} \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} f(|A_{i}(x)|)^{p_{i}} &= \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} f(|A_{i}(x) - s + s|)^{p_{i}} \\ &\leq T \{ \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} f(|A_{i}(x) - s|)^{p_{i}} + \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} f(|s|)^{p_{i}} \} \\ &\leq T \{ \sup_{r} \lambda_{r}^{-1} \sum_{i \in I_{r}} f(|A_{i}(x) - s|)^{p_{i}} + Max \{ f(|s|)^{h}, f(|s|)^{H} \} \} < \infty. \end{split}$$

Hence $x \in V_{\infty}^{\lambda}[A, p, f]$. This shows that the inclusion $V^{\lambda}[A, p, f] \subset V_{\infty}^{\lambda}[A, p, f]$ holds which completes the proof.

The proof of the following result is a consequence of Theorem 2

Corollary 1. $V_0^{\lambda}[A,p,f]$ and $V^{\lambda}[A,p,f]$ are nowhere dense subsets of $V_{\infty}^{\lambda}[A,p,f]$. Let X be a sequence space. Then X is called

Solid (or normal) if $(\alpha_i x_i) \in X$ whenever $(x_i) \in X$ for all sequences (α_i) of scalars with $|\alpha_i| \leq 1$; for all $i \in N$;

Monotone provided X contains the canonical preimages of all its stepspaces. If X is normal, then X is monotone.

Theorem 3. The sequence spaces $V_0^{\lambda}[A,p,f]$ and $V_{\infty}^{\lambda}[A,p,f]$ are solid and hence monotone.

Proof. Let $\alpha = (\alpha_i)$ be sequence of scalars such that $|\alpha_i| \leq 1$; for all $i \in N$. Since f is monotone, we get

$$\lambda_r^{-1} \sum_{i \in I_r} f(|A_i(\alpha x)|)^{p_i} \le \lambda_r^{-1} \sum_{i \in I_r} f(\sup |\alpha_i| |A_i(x)|)^{p_i} \le \lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x)|)^{p_i},$$

which leads us to the desired result.

Now we give relation between strongly (V^{λ}, A, p) – convergence and strongly (V^{λ}, A, p) – convergence with respect to a modulus.

Theorem 4. Let f be any modulus. Then $V_{\mu}^{\lambda}[A,p] \subseteq V_{\mu}^{\lambda}[A,p,f]$.

Proof. We consider only case $V_0^{\lambda}[A,p] \subseteq V_0^{\lambda}[A,p,f]$. Let $x \in V_0^{\lambda}[A,p]$ and $\varepsilon > 0$. We choose $0 < \delta < 1$ such that $f(u) < \varepsilon$ for every u with $0 \le u \le \delta$. We can write

$$\lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|)^{p_i} = \lambda_r^{-1} \sum_1 f(|A_i(x) - s|)^{p_i} + \lambda_r^{-1} \sum_2 f(|A_i(x) - s|)^{p_i}$$

$$\leq \max(\varepsilon^h, \varepsilon) + \max(1, (2f(1)\delta^{-1})^H) \lambda_r^{-1} \sum_2 f(|A_i(x) - s|)^{p_i}$$

where the summation $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_i = 1$ is over $|A_i(x) - s| > \delta$. Hence

$$\frac{1}{\lambda_r} \sum_{i \in I_r} f(|A_i(x) - s|)^{p_i} \le \max(\varepsilon^h, \varepsilon) + \max\left(1, \left(\frac{2f(1)}{\delta}\right)^H\right) \frac{1}{\lambda_r} \sum_{i \in I_r} |A_i(x) - s|^{p_i},$$

Therefore $x \in V_0^{\lambda}[A, p, f]$.

Theorem 5. Let f be any modulus. If $\lim_{t\to\infty}\frac{f(t)}{t}=\beta>0$, then $V_{\mu}^{\lambda}[A,p]=V_{\mu}^{\lambda}[A,p,f]$.

Proof. For any modulus function, the existence of a positive limit given with β was introduced by Maddox [9].

Let $\beta > 0$ and $x \in V_{\mu}^{\lambda}[A, p, f]$. Since $\beta > 0$, we have $f(t) \geq \beta t$ for all t > 0. From this inequality, it is easy to see that $x \in V_{\mu}^{\lambda}[A, p]$. By using Theorem 4 the proof is completed.

We consider that (p_k) and $q_k)$ are any bounded sequences of strictly positive real numbers. We are able to prove $V_\mu^\lambda[A,q,f]\subset V_\mu^\lambda[A,p,f]$ only under additional conditions.

Theorem 6. Let $0 < p_i \le q_i$ for all k and let (q_i/p_i) be bounded. Then $V_{\mu}^{\lambda}[A,q,f] \subset V_{\mu}^{\lambda}[A,p,f]$.

Proof. If we take $t_i = f(|A_i(x)|)^{q_i}$ for all i, then using the same technique employed in the proof of Theorem 2 of Öztürk and Bilgin [11], it is easy to prove the theorem.

Corollary 2. The following statements are valid:

- (i) if $0 < \inf p_i \le 1$ for all k, then $V_{\mu}^{\lambda}[A, f] \subset V_{\mu}^{\lambda}[A, p, f]$,
- (ii) if $1 \le p_i \le \sup p_i = H < \infty$, then $V_{\mu}^{\lambda}[A, p, f] \subset V_{\mu}^{\lambda}[A, f]$.

Proof. (i) follows from Theorem 6 with $q_i = 1$ for all i and (ii) follows from Theorem 6 with $p_i = 1$ for all i.

3. $S^{\lambda}(A)$ – Statistical Convergence

In this section, we introduce natural relationship between strongly (V^{λ}, A, p) – convergence with respect to a modulus function and strongly $S^{\lambda}(A)$ – statistical convergence. In [3], Fasth introduced the idea of statistical convergence. These idea was later studied by Connor [2], Freedman and Sember [4], Salat [13], Savas [14], Schoenberg [15] and the other authors independently.

A complex number sequence $x=(x_i)$ is said to be statistically convergent to the number l if for every $\varepsilon>0$, $\lim_{n\to\infty}|K(\varepsilon)/n|=0$, where $|K(\varepsilon)|$ denotes the number of elements in $K(\varepsilon)=\{i\in N:|x_i-l|\geq\varepsilon\}$. The set of statistically convergent sequences is denoted by S.

A sequence $x = (x_i)$ is said to be strongly $S^{\lambda}(A)$ - statistically convergent to s if any $\varepsilon > 0$, $\lim_{r \to \infty} \lambda_r^{-1} |KA(\varepsilon)| = 0$, where $|K(\varepsilon)|$ denotes the number of elements in $KA(\varepsilon) = \{i \in I_r : |A_i(x) - s| \ge \varepsilon\}$ The set of all strongly $S^{\lambda}(A)$ – statistically convergent sequences is denoted by $S^{\lambda}(A)$ (or $S(\lambda, A)$), Bilgin[1].

Now we give the relation between $S^{\lambda}(A)$ – statistical convergence and strongly (V^{λ}, A, p) – convergence with respect to a modulus.

Theorem 7. Let f be a modulus function. Then $V^{\lambda}[A, p, f] \subset S^{\lambda}(A)$.

Proof. Let $x \in V^{\lambda}[A, p, f]$. Then

$$\lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|)^{p_i} \ge \lambda_r^{-1} \sum_{1} f(|A_i(x) - s|)^{p_i} \ge \lambda_r^{-1} \sum_{1} f(\varepsilon)^{p_i}$$

$$\geq \frac{1}{\lambda_r} \sum_{1} \min\{f(\varepsilon)h, f(\varepsilon)^H\} \geq \frac{1}{\lambda_r} |\{i \in I_r : |A_i(x) - s| \geq \varepsilon\}| \min\{f(\varepsilon)^h, (\varepsilon)^H\},$$

where the summation $\sum_{i=1}^{n}$ is over $|A_i(x) - s| \ge \varepsilon$. Hence $x \in S^{\lambda}(A)$.

Theorem 8. Let f be a bounded modulus function. Then $V^{\lambda}[A, p, f] = S^{\lambda}(A)$.

Proof. By Theorem 7, it is sufficient to show that $S^{\lambda}(A) \subset V^{\lambda}[A, p, f]$. Let $x \in S^{\lambda}(A)$. Since f is bounded, so there exists an integer K > 0 such that $f(|A_i(x) - s|) \leq K$. Then for a given $\varepsilon > 0$; we have

$$\lambda_r^{-1} \sum_{i \in I_r} f(|A_i(x) - s|)^{p_i} = \lambda_r^{-1} \sum_{1} f(|A_i(x) - s|)^{p_i} + \lambda_r^{-1} \sum_{2} f(|A_i(x) - s|)^{p_i}$$

$$\leq K^H \lambda_r^{-1} |\{i \in I_r : |A_i(x) - s| \geq \varepsilon\}| + \max\{f(\varepsilon)^h, f(\varepsilon)^H\},$$

where the summation \sum_{1} is over $|A_{i}(x) - s| \ge \varepsilon$ and the summation \sum_{2} is over $|A_{i}(x) - s| < \varepsilon$. Taking the limit as $\varepsilon \to 0$ and $r \to \infty$, it follows that $x \in V^{\lambda}[A, p, f]$. This completes the proof. \blacksquare

References

- T. Bilgin. Some sequence spaces def

 ýned by a modulus. Int. Math. J., 3(3), 305-310, 2003.
- [2] J.S. Connor. The statistical and strong p-Cesaro convergence of sequences. Analysis, 8, 47-63, 1988.
- [3] H. Fasth. Sur la convergence statistique. Colloq. Math., 2, 241-244, 1951.
- [4] A.R. Freedman and J.J. Sember. Densities and summability. Pacific. J. Math., 95, 293–305, 1981.
- [5] M. Güngör, M. Et and Y. Altın. Strongly $(v_{\sigma}; \lambda; q)$ summable sequences defined by Orlicz functions. Appl. Math. Comput., 157, 561–571, 2004.
- [6] E. Kolk. On strong boundedness and summability with respect to a sequence moduli. Tartu Ül. Tojmetised 960, 1993.
- [7] L. Leindler. Über die verallgemeineret de la vallee-poussinsche summierbarkeit allgemeiner orthogonalreihen. Acta. Math. Acad. Sci. Hungar., 16, 375–387, 1965.
- [8] I.J. Maddox. Sequence spaces defined by a modulus. In: Math. Proc. Cambridge. Philos. Soc, volume 100, 161–166, 1986.
- [9] I.J. Maddox. Inclusion between FK spaces and Kuttner's theorem. Math. Proc. Cambridge. Philos. Soc. 101, 523-527, 1987.
- [10] H. Nakano. Concave modulars. J. Math. Soc. Japan, 5, 29-49, 1953.
- [11] E. Öztürk and T. Bilgin. Strongly summable sequence spaces defined by a modulus. *Indian J. Pure Appl. Math.*, **25**(6), 621–625, 1994.
- [12] W.H. Ruckle. FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math., 25, 973-978, 1973.
- [13] T. Salat. On statistically convergent sequences of real numbers. Math. Slovaca, 2, 139–150, 1980.
- [14] E. Savas. Some sequence spaces and statistical convergence. Int. J. Math. and Math. Sci., 29(5), 303-306, 2002.
- [15] I.J. Schoenberg. The integrability of certain functions and related summability methods. Amer. Math. Monthly, 66, 261–375, 1959.