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Abstract. The modelling of the heat conduction in electrical cables is a complex
mathematical problem. To get a quantitative description of the thermo-electrical
characteristics in the electrical cables, one requires a mathematical model for it. It
must involve the different physical phenomena occurring in the electrical cables, i.e.
heat conduction, convection and radiation effects, description of heat sources due to
current transitions. Since the space in mobile systems is limited and weight is always
reduced, wire conductor sizes must be kept as small as possible. Thus the main aim
is to determine optimal conductor cross-sections for long standing loads. In this pa-
per we develop and validate a set of mathematical models and numerical algorithms
for the heat transfer simulation in cable bundles. The numerical algorithms are tar-
geted to the two-dimensional transient heat transfer mathematical models. Finally,
a validation procedure for the coefficient validation of the differential equations is
carried out. Results of numerical experiments are presented.

Key words: heat conduction, finite volume method, optimization, mathematical
modelling, electrical cables

1. Introduction

In modern cars electrical and electronic equipment is of great importance.
With increasing number of devices using the electrical power, the amount of
wires and the wire sizes rises also. Since the space in mobile systems is limited
and weight is always reduced, wire conductor sizes must be kept as small as
possible. Thus the main aim is to determine optimal conductor cross-sections
for long standing loads.
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The number and weight of the electrical conductors in cars increased very
much during the last decades. Nowadays, an upper class car has already more
than 3 km of cables with a mass of more than 40 kg. This is, compared to the
whole mass of a car, more than a tolerable increase. One expects even, that
this trend will dramatically continue in the future. At present the wires for
the cable harness for mobile application are still selected according to design
rules and specifications, which were elaborated for stationary use and not nec-
essarily suited for mobile application. For this kind of application completely
different rules would be valid. In a passenger car, for instance, the cable length
does not exceed 8 m and in most cases it is even considerably shorter. Power
and voltage losses due to higher use of its capacities are not very important.
On the other hand, the way of placing the various cables or cable bundles in
car body structure, sometimes in foam, in special tubes or cable channels and
the temperature of the environment requires much more care of the thermal
situations. To be on the save side in most cases the wire cross sections are
therefore oversized.

The modelling of these processes is a complex mathematical problem. To
get a quantitative description of the thermo-electrical characteristics in the
electrical cables, one requires a mathematical model for it. It must involve
the different physical phenomena occurring in the electrical cables, i.e. heat
conduction, convection and radiation effects, description of heat sources due
to current transitions, etc. At the next stage the model is discretized and
numerical algorithms must be developed. Using the discrete model extensive
simulation experiments are done, and the results of the simulations have to
be verified by experiments. The final goal is optimization of the commercial
products with the main goal to minimize the subsequent weight and costs of
electro cables used in car industry.

For this reason, it is very important to develop accurate mathematical
models and fast numerical algorithms for heat transfer simulation in cable
bundles. Fundamentals of the theory heat distribution in cables are given
[19]. For further readings we refer to [14, 15, 26].

Numerical algorithms for solution of parabolic and elliptic problems with
discontinuous coefficients have been widely investigated in many papers. The
application of standard finite element (FE) method to solution of interface
problems is equivalent to arithmetic averaging of discontinuous coefficients,
the mixed FEM leads to the harmonic averaging if special quadrature formulae
are used (see, e.g. recent works [3, 13]).

Conservative finite-difference schemes for approximation of such problems
were derived by Tikhonov and Samarskii [24, 27]. They are robust and use
only general assumptions on the position of the interface. Recently new finite
difference schemes were proposed, which approximate with the second order of
accuracy not only the solution, but also the normal flux through the interface
(see [18, 22]).

Very promising seems the new approach when the finite difference method
is combined with techniques of the finite-volume. Such discretizations are ca-
pable to produce accurate approximations. They use a minimal discretization
stencil and preserve a local discrete conservation. Applications of such finite-
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volume schemes for solution of computational fluid dynamics (CFD) problems
and simulation of multiphase flows in porous media are given in [4, 12, 20].
New finite volume schemes, which has O(h?) local truncation error for the nor-
mal component of the flux in all grid points (including near-interface points)
are derived by Iliev in [16, 17]. They can be applied in situations, when the
interfaces are aligned with the finite volume surfaces or when arbitrary lo-
cated interfaces are orthogonal to a coordinate axis. It is important to note
that grid stencils for these schemes are minimal.

There are specialized commercial software tools, such as CableCad, AN-
SYS, which can be used for solution of heat conduction problems. For exam-
ple, ANSYS software is a coupled physics tool combining structural, thermal,
CFD, acoustic and electromagnetic simulation capabilities in a single engi-
neering software solution [25].

Our goal is to optimize the final product, thus we need to have a set
of differential and discrete models, simulating the heat conduction processes
with the different level of accuracy. The essential step of the whole solution
procedure is a systematic reduction of the full (and therefore, very complex
and computationally expensive models) to simplified models, which can be
used efficiently in solution of optimization step. During this step the direct
problem is solved for very large number of different sets of parameters.

The paper is organized as follows. Section 2 gives a brief description of the
model, describing the main processes of heat conduction in electrical cables.
A discrete scheme is proposed in Section 3. It is based on the finite volume
method and approximates the differential problem on the non-rectangular
region with a smooth boundary. A special attention is given to the approxi-
mation of the third-type boundary conditions. The stability and convergence
of the difference scheme is presented in Section 4. The fitting of the proposed
mathematical model to the experimental data is done in Section 5. The heat
conduction coefficient in the PVC is used as a free parameter and a formula,
based on the geometrical averaging is proposed for its estimation. Some final
conclusions are given in Section 6.

2. Problem Formulation

The main aim of the research is to develop and validate a set of mathemati-
cal models and numerical algorithms for the heat transfer simulation in cable
bundles. The numerical algorithms should be targeted to the two-dimensional
transient heat transfer mathematical models. Because of non-linear tempera-
ture dependence of the material coeflicients, fast iterative methods for solving
non-linear system of equations must be used. Finally, a validation procedure
for the coeflicient validation of the differential equations must be carried out,
this fitting procedure is based on experimental data.

Figure 1 shows the cross sectional view of a cable bundle and mechanisms
of heat transport. In domain D x (0,tr], where

D={X = (v1,72): af+x3<R*},
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Figure 1. Cross sectional view of a cable:

we solve the nonlinear non-stationary problem, which describes a distribution
of the temperature 7'(X,t) in electrical cable. All wires which makes up the
cable bundle need to fulfill electrical and thermal requirements. Thus, temper-
ature of a wire isolation, which is usually PVC, must not exceed a maximal
permissible value. The temperature rise is essentially caused by ohmic heating
of current-carrying parts. The main mechanisms of heat transfer are:

1. Conduction in solid bodies (conductors, PVC isolation);

2. Conduction in the air and PVC mixture;

3. Convection and radiation from the outer side of the bundle isolation to
the environment.

Because the heat transfer mechanism in the air between the wires of a bundle is
complicated and non-relevant, the model can be simplified. This non-relevance
can be explained by the fact that in a close vicinity to a wire, the main heat
transfer mechanism is heat conduction, while in a distance, the dominating
mechanism is the motion of molecules. Since all the wires in a bundle are
tightly pressed together, only heat conduction is relevant. This simplification
helps to increase the efficiency of the numerical algorithm.

The mathematical model consists of the parabolic differential equation
[19]:

2
(X)e(x, 1)L — > 0 (k(X)gT>+f(X, T), (X,t)€ Dx(0,tr], (2.1)

T
subject to the initial condition

T(X,00=T,, Xe&D=DUdD, (2.2)
and the nonlinear boundary conditions of the third kind

k(X, T)% +ap(T)(T(X,t) = T,) +eo(T* —T) =0, X €0D. (2.3)
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The following continuity conditions are specified at the points of discontinuity
of coefficients

8T}:O.

[T(z, )] =0, [k o

Here ¢(X,T) is the specific heat capacity:

381+0.177, 0<T <200°C, for copper,
© 1920 1.3T7+0.074T2, 0<T <100°C, for PVC,

p(X) is the density, k(X) is the heat conductivity coefficient:

8960, for copper, ) 401, for copper,
p = =
1350, for PVC, 0.17, for PVC.

The density of the energy source f(X,T) is defined as

F= (1) 1+ aytr—20),

here I is the density of the current, A is a area of the cross-section of the
cable, pg is the specific resistivity of the conductor, T, is the temperature of
the environment.

By using this mathematical model, we can investigate the dynamics of the
non-stationary solution. It can be noted that in many cases only a stationary
solution is required.

3. Finite Volume Algorithm

Robustness of numerical algorithms for approximation of the heat conduction
equation with discontinuous diffusion coefficients is very important for devel-
opment of methods to be used in simulation of various properties of electrical
cables. The differential problem is approximated by the discrete problem by
using the finite volume method which is applied on the vertex centered grids.
In [17] the discretization is done on cell centered grids. The vertex centered
grids are very convenient when the boundary conditions are of the first or third
kind. Finite difference schemes for linear elliptic boundary value problems of
the third kind are derived in [11]. They have investigated a supraconvergence
of such schemes in fractional order Sobolev spaces.

The main challenges of our paper arise due to the fact that the simula-
tion grid is general and it not aligned with the interfaces where the diffusion
coefficient is discontinuous and not coincides with the boundary of the com-
putational domain.

3.1. Discretization of the domain

In this section, we introduce a general grid Dy,. First, we define an auxil-
iary grid Dy = (2, N D, which is defined as intersection of the equidistant
rectangular grid (2;, with the computational domain D:
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2, ={Xij = (®13,225) 1 @1, =L1+1ihy, i=0,...,I, =z =Ry,
295 = La+jho, j=0,...,J, Z2y = Ra}.

For each node X;; € 5h Xi; we define a set of neighbours
N(Xij) ={Xn: Xit1j€ Dy, Xij+1 € Dy}

If some neighbour point do not exist, i.e. X;+1; & lNDh or X; j+1 ¢ lN)h, then
such a neighbour is denoted by NULL. _

The computational grid D;, = D, UdDj, is obtained after deletion from D},
those nodes X;;, for which both neighbours in some direction do not belong
to 5h, ie Xt & Dy, or Xij+1 & Dy, (see Figure 2). The set of neighbours
N(X;;) is also modified in a similar way.

. &= £s
Ba

i
I
I
I

i

L

U SE=mE=2
a) b)

Figure 2. Discretization: a) discrete grid D;, and examples of control volumes, b)
basic grid {2;, and the obtained discretization of the computational domain

For each X;; € Dy, a control volume is defined

eo(Xij) = {(w1,22) : 21170 <1 <214, T2y < @2 < Ty ji12),
e1(Xij) = {(z1,22) 1 w1 <21 < T i41/2, P25 S T2 < To )2},
ea(Xij) = {(w1,22) : 215 <1 < Ty q1/2, Tojo1/2 < w2 < Tl
e3(Xij) = {(w1,22) 1 2110 <1 < T1, P12 S X2 <o),

1, if ek(Xij) S D,
dijr = _
0, if ek(Xij) ¢ D.

For example, condition e; € D is satisfied, if all three vertexes X; i1, Xi j+1,
Xi+1,541 belong to Dj,. Let us denote the measure (or area) of e;; by
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1 3
Sij = Zhlh2 kz_o(sijk.

3.2. Finite volume scheme

In D;, we define discrete functions
Uy = U(x1i, w25,t"), Xij € Dy,
here t" = nT and 7 is the discrete time step.

Integrating the differential equation over the control volume e;; and ap-
proximating the obtained integrals with an individual quadrature for each
term, the differential problem is discretized by the conservative scheme

un Un 1
Sipijei (UL —L—— ZamJUk UL+ Sij fi(UL), Xij € D,
(3.1)

where (U)Us is the heat flux through a surface of the control volume

z]k
eijr = er(X; ) deﬁned as
h Usj — Ui_v;
Jijo(Vij)Uij 272 ( - kifl/ijl] + (1 = dij1)aa(Vig)(Ui; — Ta))
(3.2)
hy Uij+1 — Ui
t (’fi,j+1/2% + (1 = dija)ac(Vij)(Uij — Ta)),
h Uiir; — U
Jij1(Vij)Usj 272 (/ml/z,j% + (1 = dijo)ac (Vij)(Uij — Ta))
h U; iz1 — U;s
+ 71 (ki7j+l/2% + (1 = dij2)ac(Vij)(Uij — Ta))v

h Uiir; — Uy
Jij2(Vij) Ui 272 (kz‘ﬂ/za% + (1 = dij3)ac(Vij ) (Uij — Ta))

hy

h Usj — Ui_1
Jij3(Vij)Uij :72 ( - ’“z’—l/&jjle + (1 = bij2)ac(Vij)(Us; — Ta))

Uiy — Usy
=0l 4 (1= 8i1)ac (Vig) (Ui — Ta)),

hy Uij —U; j—1
+ 5 (—hmp

here a (V) is the nonlinear generalized coefficient of convection and radiation:
ac(V)=ap(V)+eo (VP + VT, + VT2 + T7).

The diffusion coeflicient is approximated by using the harmonic averaging
formula

+ (1 = dijo)-ac(Vij)(Uij — Ta)),

. _ 2k(Xam k(X)L 2k(X ) R(XGy)
VBT p (X)) ¥ R(XG) YT R(XG 1) + k(X))
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3.3. Predictor-corrector scheme

The derived finite difference scheme (3.1) defines a system of nonlinear equa-
tions. By using the predictor—corrector method we approximate it by the linear
finite-difference scheme of the same order of accuracy

e Predictor (VX;; € Dy,):

U —upt
Siipijcii (UL 1)73—Z<5”,€J”,c (U UR+Si;£:;(URY), (3.3)

e Corrector (VX;; € Dp):

n UZ Un ! n\rrn rrn
S’Lij]C’Lj(U ) Z&chh]k U U +S’Ljf’ij(Uij)7 (34)

The developed algorithm is presented in Figure 3.

Temperature (Vector Unew, Vector Uoiq, Vector R, Matrix A)

begin

(1) ReadData();

(2) GenerateGrid();

(3) AllocateMemory();

(4) t=0;

(5) InitSolution(Unew);

(3) while (t < T)do

(4) t=t+ 7

(5) Uoia = Unew;
// Predictor step (3.3)

(6) MakeSystem(Uoid, Unew, A, R);
// Solve system

(7 AUNnew =R
// Corrector step (3.4)

(8) MakeSystem(Uoid, Unew, A, R);
// Solve system

(9) A Unew =R ;

end do

end Temperature

Figure 3. Algorithm for the computation of temperature distribution in electric
cables

3.4. Solution of systems of linear equations
At steps (7) and (9) of the algorithm we solve systems of linear equations

AU =F,
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where A is a sparse non-symmetric matrix of size N x N with at most five
non-zero coefficients. Here N is equal to the number of points in the grid Dy,.

The monotonicity of the discrete solution is very important property of
the discrete algorithm. It can be observed that most spatial finite difference
approximations, used in computational experiments, yield M -matrices, this
guarantees the monotonicity of the solution (see, [21, 23] and references given
in these papers).

It is easy to check, that the matrix A, arising after the linearization of the
proposed finite volume scheme, satisfies the maximum principle [24]

N
a;; <0, i#7, aii+zaij>oa 1<i,j <N.
j=1

In numerical experiments we use the BiCGStab iterative method with the
Gauss-Seidel type preconditioner [8]. It is well known that estimating the rate
of convergence of iterations for a system with nonsymmetric matrix is a diffi-
cult task. There is no general theory how this rate depends on the spectrum
of the matrix even for a well-clustered spectrum (away from zero). Since the
non-symmetry of the matrix arises only due to the third-type boundary con-
ditions, we can expect to obtain the fast convergence rate of the BiCGStab
iterations.

4. Convergence Analysis

A general template for the convergence analysis of predictor-corrector type
finite—difference schemes is developed in [6, 7], see also references given in these
papers for more approaches. It was used to investigate nonlinear parabolic
problems under assumption that coefficients of the problem are continuous
functions.

Finite volume discretizations on 2D grids for linear elliptic problems with
discontinuous diffusion coefficients are derived and investigated in many pa-
pers, see [1, 2, 10, 21]. The new interesting finite volume approximations are
proposed in [17]. Not only the solution but also the fluxes are approximated
with the second order of accuracy in the uniform norm. The finite volume
schemes are derived under assumption that interfaces are aligned with the
finite volume surfaces or when arbitrary located interfaces are orthogonal to
a coordinate axis.

4.1. Analysis of a simplified 1D problem

In this section we consider a simplified elliptic problem with a discontinuous
diffusion coeflicient. Our main concern is to investigate the impact of the error
introduced by the perturbed boundary of the computational domain.

We consider the boundary value problem
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—klj—z(O) +a(u(0)-T)=0, z=0,
kld—u(l) +au(l)-T)=0, z=1,
dz
where
ki, 0<z<a, 0, 0<z<a,
k(x) = ks, a<ax<b, f@)=Lg(x)>0, a<z<b,
ki, b<ax<l1, 0, b<ax<l.

We introduce a standard uniform grid
wp = {331 xg =&, x; =x9+th,i=1,....N, xn 21—51},

where 0 < &; < h/2, j =0,1, i.e. the grid boundary is perturbed and approx-
imates the boundary of the domain with the accuracy O(h).

The finite volume method is used to approximate the differential problem.
First the balance equation is written over the finite volume (2;_1/2,%;41/2):

Wit12 — Wi L[tz .
+1/2h 1/2:¢i) gOl:E/ f(x)dx%fz, Z:17"'7N_1a

i—1/2

d
where W (z) = —k(az)d—u denotes the flux. Next, the flux is written in the form
x
du _ W(z)

dr k(=)

and integrated over the interval (x;, z;41):

T W (x) Titl
dx ~ W, —.
b k@) T / k()

We use a simple harmonic averaging of coefficient k(xz) over the volume

(i) T g 1 11\
(/wi m) N Aiy1/2 = 2(k_1 + kz‘+1) .

This formula is independent on the position of the discontinuity of k(z). In
1D case the exact averaging formula can be derived for a piecewise constant
diffusion coefficient:

—(Uipr — i) =

( 0 L 1— 6)*1

a; =\ )

+1/2 ki ki1

here the interface point & = x; + 6h, 0 < 0 < 1. We note that such an
approximation can be generalized to 2D case only when the interfaces of the
discontinuity of k(z) are aligned with the grid.

Thus we get a system of discrete equations for interior grid points

—(ai—1p2Us), = fi, i=1,2,...,N —1,
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here we use notation

Ui—Ui Ui = U
n ; Uw7z = n .

The boundary conditions are approximated by writing the balance equations
over control volumes (zo,%1/2) and (zy_1/2,7n) and using the boundary
conditions of the differential problem:

Uz,i =

h h
—a1/2Uz 0 +a(Uo = T) = §f07 an—12Uzn +a(Un = T) = §fN.
Denote by Z; = U; — u(z;) the grid function for the global discrete errors.

It satisfies the discrete problem

~ Mit1/2 — Ni-1/2

- (%—1/2250)00 = h

+i, i=1,2,...,N—1,

—a1/2Zz0+aZo = —11/2 + o, an—1/22z,N +QZN =NN_1/2 + UN,
where the local approximation errors are defined as

Ni+1/2 = Gi1/2Uzi — Wi+1/2 = O(h), ¢i=0O(h),

Vj =i +r, ¥, =0(h%), j=0,N.

Terms r; estimate the error due to the perturbed position of the discrete
boundary. For solutions sufficiently smooth in the neighbourhood of z = 0
and # = 1 we have that r; = O(h).

Let us define the following scalar products of grid functions:

N-—1 N
(U, V)= > wUiVi, (UV]=> hUV..
=1 =1

We compute a scalar product of the error equation at interior points with Z;,
use the boundary conditions to obtain the equality

(aZz, Zs| + o(Z5 + Z3%) = (0, Zz) + (1, Z) + Y0 Zo + N 2.

Then applying a simple embedding theorem (see [24]) the estimate of the
global error function in the uniform norm is obtained

max |Zi] < C(lgll + 161+ |40l +1d]) < Ch.

Thus the discrete solution converges to the solution of the differential problem
with the accuracy O(h).
4.2. Computational results

We have applied the numerical algorithm to simulate the heat conduction in
industrial electrical cables, when the bundle is composed of 27 wires. The
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radiuses of these wires varied between 0.34 and 1.421 mm and the current
from 0.4 till 23 A was applied on 12 wires. We have carried out computations
till the stationary state was reached. The number of grid points N x N was
increased from N = 100 till N = 400. We have investigated the distribution
of the maximal and minimal temperatures of the electrical cables. The results
are given in Table 1, here T},;, and T4, denote the minimal and maximal
temperatures reached in some wire of the bundle, respectively, and CPU is a
computational time.

Table 1. Computational results for different values of N

N  hi(s) Tmin  Tmae CPU (s)

100 30 83.43  88.98 11.6
200 30 83.53  89.09 125
300 20 82.94  88.47 456
400 20 82.60 88.15 1892

The results are consistent with the theoretical complexity estimates of the
algorithm (i.e. O(N?)). The second conclusion is that the algorithm is robust
and the discrete model gives accurate results starting from quite rough grids.

5. Identification of the Model

Mixed heat conductivity of air and PVC k can be computed by the following
simple relationship between the heat conductivity of air k4 , of PVC kjsn
and the filling factor of the bundle F:

k:kA(l_F)+klsolF7 (51)

where the filling factor F' of the bundle is computed from the relationship
between the total area of the wires d = Z?Zl d; and the inside area of a
bundle D

F=Yd/(0-5),
i=1

here S is the area of the outer isolation of the bundle.

Such a formula for the filling factor F' is heuristical. The improvement of
this formula can be done in two directions: first, the mechanism of the heat
transport in air includes not only the diffusion but also the convection and
radiation, thus some generalized conductivity coefficient k% > k4 should be
used; second, the filling coefficient averages the diffusion coefficients of PVC
and air with the weight proportional to the areas of these phases.

In numerical simulations two different heat conductivity coefficients of the
media between the wires were used. In the first case , assuming that the gaps
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between the wires are considerably small, the pure PVC isolation of the wire
had been taken into account. In the second case, filling factor F' and mixed
heat conductivity & of air and PVC had been determined and put into the
simulation program.

o

—— Simulation (k=0.1) 4

- Simulation (k=0.17) 4 110
| 4

120 —o—
—— Simulation (k=0.11) ‘

-~ Simulation (k=0.17)

Temperature in “"C
3
Temperature in “"C

2 3 4 5 6 7 8 2 3 4 5 6
Currentin A Currentin A

a) b)

o
—— Simulation (k=0.114)
- Simulation (k=0.17)

I

Temperature in °C

2 3 4 5 6 7 8
Currentin A

c)

Figure 4. Experimental and computer simulation results for electro-cables with
different numbers of wires n: a) n = 10, bundle filling factor F' = 0.58, heat conduc-
tivity of the material media between the wires in case F' is not considered k£ = 0.17
and k£ = 0.1, when F' is counted, b) n = 20, bundle filling factor ' = 0.6, heat
conductivity of the material media between the wires in case F' is not considered
k =0.17 and k = 0.11, when F is counted, c) n = 40, bundle filling factor F' = 0.7,
heat conductivity of the material media between the wires in case F' is not considered
k =0.17 and k£ = 0.14, when F' is counted,

From Fig. 4 a) and b) parts, one can see that after the consideration of
the filling factor F' and the mixed conductivity coefficient & the simulation
curve was pulled up towards the measurement curve. In Fig. 4 c¢), where the
bundle with 40 wires was simulated, a smaller influence of the different heat
conductivity coefficients is observed. This is due to the higher filling factor
F' of the bundle, which means that the influence of air in the bundle is less
compared to the first two cases.
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6. Conclusions

The paper discusses a robust finite volume approximation of the mathemati-
cal model describing the heat conduction in electrical cables. It defines a 2D
nonlinear parabolic problem. The discretization gives discrete systems of non-
linear equations, the matrix of a linearized problem satisfies the maximum
principle. It is proved for a simplified 1D problem that such a discretization
introduces O(h) order errors in approximation of discontinuous diffusion co-
efficients and due to perturbed position of the boundary.

The algorithm can be parallelized efficiently by using the domain (or data)
decomposition method and applying techniques developed in [5] for paral-
lelization of a solver for simulation of flows in porous media. Another pos-
sibility is to use a classical domain decomposition discretization (see [9] and
references given in this paper).

The simulation results give very good agreement with the measured ones
if the adjusted heat conductivity coefficient & for PVC is considered. For large
numbers of wires in the bundle (more than 40), one can avoid the consideration
of the factor F' (since F' =~ 1) and use the coefficient k& of PVC material. On
the other hand, if the size of wires within the bundle have large deviations
from each other, the quality of filling the bundle by the wires can be worse.
In such a situation, the factor F' and the mixed heat conductivity of air and
PVC must be used.
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