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Abstract. The moving-boundary methodology with Stefan- and Signorini-type
boundary conditions is used for the modelling of the thermal cutting of metals
by a plasma beam. We model the problem as a coupled system of equations, the
heat conduction equation with Signorini-type boundary conditions for calculating
the temperature distribution in the workpiece, Stefan-type boundary condition for
computing the unknown domain geometry and ODEs which account for the solid-
solid phase transformations occurring due to the heat treatment of the material. For
latter purpose a general model describing the kinetics of phase transformation is
used. Finally, a model for computing the heat flux density absorbed by the cutting
interface is derived using the data of emitted heat and radius of the plasma beam.
Key words: plasma cutting, solid phase transformation, moving boundaries,
Stefan-Signorini boundary condition, interface kinetics, mathematical modelling

1. Introduction

Thermal cutting of metals is one of the production steps frequently used in
heavy industry. It is of grate importance to achieve possibly high precision for
the geometry of a cutout. This can minimize the subsequent machining costs.
In this paper we deal with modelling of plasma cutting and present a model
that takes phase transformations into account. This extends the modelling
approach established in [22, 23].

The essential idea of cutting is to focus a lot of power onto a small area of
surface of the material producing intense surface heating. First the material
on the surface melts and then evaporates. As the vapour is puffed away or the
molten metal is removed by the high speed gas flow, so a hole develops in the
material. As the plasma cutting advances by melting, a characteristic feature
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is the greater degree of melting towards the top of the workpiece resulting in
top edge rounding and poor edge squareness. Top edge rounding is a slight
rounding of the metal along the top edge of the cut and is mostly effected
by material thickness. It is more apparent in thinner metals. The poor edge
squareness causes additional difficulties on the next step in the manufacturing
process (see Figure 1(b)). If the cut piece has to be welded, a high quality cut
with square edges is especially important for the integrity of the weld.

Investigations are needed for the prediction and control of the above men-
tioned phenomena concerning the plasma arc cutting process. To get a quan-
titative description of the process, one requires a mathematical model for
it. It must involve the different physical phenomena occurring in the work-
piece during the cut, i.e. heat conduction, convection and radiation effects,
mechanical deformations, phase transitions, etc. The model has then to be
numerically simulated, and the results of the simulations have to be verified
by experiments.

The modelling of this process is a complex mathematical problem. Sev-
eral papers in the literature were devoted to this issue. In his pioneering
work [25] on the mathematical theory of heat distribution during welding and
cutting, Rosenthal outlines the fundamentals of the theory and derives ana-
lytical solutions for linear two- and three-dimensional flow of heat in solids.
In their paper [13] Friedman and Jiang formulated the melting problem of a
one-dimensional slab as a Stefan problem with Signorini boundary conditions
at the moving boundary. Thereby they established existence and uniqueness
theorems for the solution of the problem as well as studied the regularity
and some geometric features of the free boundary. In [31] Bui An Ton con-
sidered the Stefan-Signorini problem with set-valued mappings in bounded
domains where he imposed intersecting fixed and free boundary conditions.
He proved the existence of a weak solution of Stefan-Signorini problem and
showed the continuity of the moving interface. For further readings we refer to
[14, 18, 19, 27, 28, 30]. Recently, a cutting model has been established by one
of the authors of present manuscript [22], which encounters the temperature
field analysis in the workpiece as well as the effects of cutting on the geom-
etry of the cut pieces. In the work the author presents a numerical scheme
for solving the cutting model using the adaptive finite elements method. The
convergence of the implemented numerical algorithm is obtained as well (see
[22]). In their later paper [23], the authors described models driven by two
industrial applications, thermal cutting of metals and dynamics of aggressive
reaction front in concrete-based materials, and illustrated the connection be-
tween these two models which is based on the presence of non-equilibrium
conditions across the moving interface.

In the models derived in [22, 23] the effects of solid-solid phase changes
were not taken into account. This is a very important issue, because due to the
temperature changes a solid-solid phase transformation occurs in the material
producing or absorbing some amount of heat energy. Therefore, in our present
study we extend the cutting model of [22] by taking this phenomenon into
account and using a kinetic model for the diffusional phase transformation in
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form of ordinary differential equations. These equations are then coupled with
the heat treatment problem.

The paper is organized as follows. Section 2 gives a brief description of the
cutting phenomenon and outlines the problem under consideration. The phe-
nomenon of phase transformation and some known models for its description
are discussed in section 3. A new model for the kinetics of phase transforma-
tion taking the history of the temperature variation into account is developed
in Section 4. Section 5 states an extended model for plasma cutting. A new
model for the calculation of absorbed heat flux density by the cutting front is
derived in section 6. We conclude with some remarks and outline for future
work in section 7.

2. Problem Description and Physical Modelling

There is a wide range of thermal cutting techniques available for the shaping
of materials. One example is the plasma cutting. The origin of the plasma-
arc process goes back to 1941. In an effort to improve the joining of light
metals for the production of aircraft, a new method of welding was born that
used an electric arc to melt the material and a shield of inert gas around the
electric arc to protect the molten metal from oxidation. Figure 1(a)! gives an
impression on some typical applications of plasma cutting.

Nom-sijuare
cut edges - -

Topedge .
rounding ™
k4

Figure 1. (a) An application of plasma cutting. (b) Some typical industrial prob-
lems.

Let consider a high-power plasma beam striking a small area of metal sur-
face assumed to be homogeneous and isotropic. The material parameters such
as density, heat capacity, conductivity, etc. of the workpiece are assumed to
be constant. Figure 2 provides a schematic illustration of the plasma cutting
process. The figure shows the plasma beam penetrating through the work-
piece, the advancing hole and different physical phenomena taking place in
the material.

! Pictures are taken from www.torchmate.com/automate/cncdemo.html and
www.rtgstore.com/art
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Figure 2. Schematic picture of thermal cutting.

The plasma beam is considered to be of cylindrical shape, and we assume
that the heat flux from the plasma beam is emitted only in the normal direc-
tion to the surface of the cylinder. The heat lost by radiation is ignored. The
plasma device moves at a constant velocity with respect to the workpiece and
we assume that the heat flux density emitted by the plasma beam is constant
and given. We do not consider the side effects caused by the smoke of the
vaporizing metal. By side effects we mean that, for example, the evaporated
material does not interfere with the incident plasma beam.

The first phenomenon we can observe is the absorption of the energy by
the material. The absorption takes place within a thickness usually much less
than a millimeter, so we can consider surface heating only. The temperature
of the material surface does not rise infinitely. Part of the heat input from the
plasma beam melts the metal resulting in solid-liquid phase change in the areas
close to the source. When the material melts, latent heat is absorbed without
any further rise in temperature. The second part of the heat is transferred
into the workpiece by conduction from hotter to colder metal resulting in rise
of the temperature in the material.

We consider a large piece of material, such that the heat exchange through
the surface to the surrounding can be neglected in regard to the heat flow in
the material itself. This assumption makes sense because the heat conductivity
of metals is much greater than the heat transmission through the surface.

Another physical process is due to the fact that the plasma beam pierces
through the workpiece with some constant velocity, while the high velocity gas
flow removes the molten material from the bottom of the cut, or the kerf. As
a result, the domain of interest changes in time resulting in a new unknown
quantity.

Last, but not least, the so called solid-solid phase transformation takes
place in the workpiece, which plays an important role in the modelling of the
process. Due to the temperature changes, the material transforms from one
solid phase to another producing or absorbing some amount of heat energy.
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Before we formulate the problem in mathematical terms, let us write a few
words about solid phase transitions and consider a modelling approach for
this phenomenon.

3. Phase Transformation

Solid-solid phase transformations appear in different materials due to tem-
perature changes. Typical example is the quenching of steel, where austenite
transforms to pearlite, ferrite, cementite, bainite or martensite depending on
alloy composition and cooling temperature range. This transformations lead
to additional deformations due to density difference of these phases. More-
over the mechanical properties of these materials are different. The rate of
cooling determines the relative proportions of these phases and therefore the
mechanical properties of a workpiece.

The formation of austenite during heating of a workpiece consumes heat
energy. The transformation of austenite to other phases emits heat energy.
Hence, this phenomenon should be taken into account for the determination
of the temperature in the workpiece.

In this paper we assume that only diffusional phase transformation takes
place. This is not restrictive if we consider a steel workpiece with a low marten-
sitic fraction in the initial state. In this case first the austenitic phase will form
in some regions due to heating by plasma. Then the cooling of material after
cutting is relatively slow and we may assume that the austenite transforms to
only one phase, say pearlite.

It is commonly accepted that the diffusion phase transformation processes
are controlled by nucleation and growth of nuclei, where impingements should
be taken into account. First equations based on the analysis of these two
effects were obtained in the pioneering papers for the isothermal case. The
result of Johnson and Mehl [16], derived originally for the pearlite formation
from austenite, reads as follows

p(t) =1 — e FNC (3.1)

where p(t) is the volume fraction transformed up to the moment ¢. N, is the
rate of nucleation and G is the rate of the radial growth, both supposed to be
constant throughout the reaction.

Criticizing the assumption of the rate of nucleation constance Avrami [3]
starts with the assertion that the new phase is nucleated by tiny germ nuclei
which exist already in the parent phase, whose effective number N depends
on the temperature and duration of the superheating, generally decreasing
with increase of either. Denoting by G the averaged rate of growth of the
linear dimension of a nucleus, Avrami gets the following kinetic equation for
the polyhedral growth

p(t)=1—e 7N, (3.2)

where o is a shape factor (equal to %’T for a sphere, e.g.). We would like to
emphasize that in these equations the parameters G and N, (or N) reflect
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two different effects, namely growth and nucleation respectively. However in
the isothermal case one can write

p(t) =1—e X
with K = ZN, instead of (3.1) or

p(t)=1- e_KtS, (3.3)

with K = 0G3N instead of (3.2). Later, paved by Avrami, who stated that
the power of ¢ in (3.3) varies from 3 to 4 (for the polyhedral growth), it led
to the generalized Johnson-Mehl-Avrami (JMA) equation

p(t) =p(1— e K (3-4)

which proved itself to be in a good agreement with most of isothermal exper-
iments. Here P is the equilibrium fraction reached at constant temperature
after an infinitely long time. The parameters K and n depend on temperature
and can be determined from the isothermal time-temperature transformation
diagram. We also refer to [6] and [7] for further details and explanations.

In practice it is impossible to reach the prescribed temperature instanta-
neously. If transformation starts already in the beginning of quenching and
goes fast, the equation (3.4) can not be used at least for the early stage of
reaction. To describe the incubation period at the start of transformation the
additivity rule was proposed by Scheil [26]. Later it was used for the entire
transformation in the non-isothermal case, see e.g. [15]. Let 7(p,6) be the
time needed to reach the p fraction in the isothermal transformation process
at temperature 6, then by the additive rule in a non-isothermal process 6(t)
the fraction p is reached at the moment ¢ such that

Fod
S
—1.
/T(p, 0)
0

For the experimental investigation of this rule we refer to the paper of Wever
and Krisement [32], for some theoretical investigation of its applicability see,
e.g., [12]. Some generalizations can be proposed. As it is known from experi-
ments that the rate of transformation varies essentially in course of reaction
even at constant temperature being much higher at the middle stage as at the
beginning or at the end. Hence different 7-s should be weighted for different
stages:

/t ds _1
) m(p,0)f(s,0)

where f is a nonnegative weighting function. See also [24] for other modifica-
tions.

In order to treat non-isothermal transformations the differential form of
the JMA equation
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d n

WD _ pnrin—le K (3.5)
dt

obtained from (3.4) taking time derivative is often used, or sometimes written

in an autonomous form:

Dot (-m(1-2)) Foon, (56)

where the factor (p — p) may be regarded as a retardation factor due to
impingements. Austin and Ricketts [2] have got a better agreement with ex-
periment with retardation factor (p— p)2. Trying to get some higher accuracy,
numerous generalizations of this equation, also combined with Scheil’s rule,
have been proposed. We refer to the papers [4, 11, 24] where different equa-
tions and iteration procedures of such type are discussed and compared on the
base of experiments (in the last two papers) performed on the 100Cr6 steel. It
seems that one can always find an appropriate modification of (3.5) or (3.6)
for a given steel which is in a good agreement with experiment for a certain
class of temperature variations, but another equation should be taken if tem-
perature changes in a different way, say, if the temperature rate is essentially
different. We believe that this imperfectness is caused by the fact that the
coefficient K appearing in (3.4) can not reflect both temperature dependent
processes of nucleation and growth, whereas variation of n brings not so much
improvement of the model. Indeed, in (3.1) and (3.2) the corresponding pa-
rameters appear as a product in K, hence instead of these two (of nucleation
and growth) we have only one parameter K.

The manufacturing processes in industry as for example plasma cutting of
metal are often non-isothermal and the temperature rate may vary drastically.
Some essentially new models for the phase evolution are needed which could
embrace a wide range of temperature variations. This is the motivation of the
investigations presented here. We believe that some parameters controlling the
nucleation and growth should be used explicitly. It is also recognized that the
history of temperature variation should be taken into account (see [11, 17, 20],
e.g.), since the transformed fraction does not depend on time and temperature
as their function. For example in [20, 21] a path dependent parameter § is
introduced and the product fraction is assumed to be a function of 3. In the
following we introduce a new approach for the phase transformation kinetics
modelling.

4. Kinetics of Phase Transformation

Let the temperature 6(t) be a given function of time. Let us consider V;, the
(micro-)volume of the nucleus of the product phase that has been appeared
at the time instant ¢y in a macrovolume V. We introduce a microparameter
7 = Vi, /V, which is the contribution to the volume fraction p of the new
transformed phase. After the overcoming of the energetic barrier this volume
Vi, will grow depending on time ¢ and current temperature 6(¢). In order to
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take into account the history of this process we assume that the value of 7 is
a functional of the temperature:

W(to,t) = Fg(fo,t).

The sum over all such microvolumes appeared up to the current moment ¢
yields the volume fraction

p(t) =Y w(to.t) (4.1)

to

of the product phase in the macrovolume V. We denote by IV the number of
nuclei in the volume V. We assume that the nucleation rate N depends on
time, temperature and current value of the fraction of the new phase

N =n(t,0(t),p).

Writing the sum in (4.1) as an integral over the moments of birth of each
nucleus we have the following expression for the volume fraction

t

p= /Fe(toat)ﬁ(toﬁ(to)vp) dto, (4.2)
0

where the integration is taken over the "birth" times t; of new nuclei. We
assume further that the growth of the microparameter m can be described by
the following differential equation

dm
— = G(to,t 0 4.3
dt ( 0,0, 7T, P, ) ( )
with the initial condition
7(tg) = 7, (4.4)

where G is some given function and 7° is the critical value of the micropa-
rameter 7 characterized by the critical radius of the appeared volume needed
to overcome the energy barrier. Let us differentiate (4.2) over the time

dp

t
% = 77077(ta G,p) =+ /G(t07 ta T, P, 0)77(th Hap) dtOv (45)
0

where we have used (4.3) and (4.4). The first term of the right side is the
contribution to the fraction rate of new critical volumes appearing at the
moment, ¢ with the rate (¢, 0(t), p(t)), whereas the second corresponds to the
growing process of already existing ones.

Assuming that G is linear with respect to =

G(th tvﬂ-ap7 0) = A(t’p7 e)ﬂ(t()vt) + B(t7pa 0)

and substituting it into equation (4.5) we obtain the following system of dif-
ferential equations describing the phase evolution
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d
o = n(.0.p) + Alt,p.O)p + B(t,p. )N,
(4.6)
ﬂ = (t 0 )
dt _77 yU,P)-

We emphasize that 7%, p, N and 1 have a clear physical meaning. Some con-
crete expressions for 7° and 7 can be deduced from some deeper physical
considerations or experiments. For example for the austenitisation in [17] the
nucleation rate was taken as Arrhenius term

n = Noe /1

with Ny as temperature independent rate, () 5 as the temperature independent
activation energy for nucleation and R as the gas constant. As for functions A
and B, some examples for these coefficients with corresponding explanations
are given in [8].

System (4.6) can be simplified in some particular cases applying some
further assumptions, see [8] for several examples leading to known models,
such as of Leblond, Johnson-Mehl-Avrami or isokinetic equation.

The phase transformation model (4.6) describes the kinetics of a phase
change in a point. It can be used for any kind of diffusional phase transfor-
mation. With help of this model the mathematical statement of the problem
is given in the next section.

5. Modified Cutting Model

Let {2 be an open and bounded domain in R™, n = 2,3, initially occupied
by the workpiece. The boundary 942 of the domain is assumed to be of class
C%' Let 0 < T < +oo be given, denote by 6(z,t) the temperature of the
workpiece and I the time interval (0,T'). The initial temperature distribution
of the workpiece is given by 6y (x), which is less than the melting temperature
at all points. For every t € I the domain {2 is assumed to consist of two non-
intersecting parts, namely 2 = (2,(t) U £2.(t), where £2;(t) and (2.(t) are the
domains occupied by the solid part of the workpiece and cut cavity at a time
instant t, respectively.

At any point x in (24(¢) the heating by plasma beam leads to the temper-
ature growth as long as the plasma beam comes closer to that point until the
temperature reaches its maximum value at a certain time instant. After this
the temperature at the point x decreases as the beam moves away from it.
Hence, we may assume that the temperature profile at any point = € 25(¢)
has the form of a graph illustrated in Figure 3. For simplicity, we assume
that there may exist only two solid phases in the workpiece, say austenite
and pearlite. Let 6, be the critical temperature such that over that value the
transformation from the first phase (pearlite) to the second one (austenite)
starts. Below the temperature 6, the second phase (ausentite) is unstable
and immediately transforms to perlite as the workpiece cools down. If the
line 6 = 6, crosses the temperature profile 6(x,t) at two points, denoted by
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71(x) and 72(x) respectively, see Figure 3, then the transformation of pearlite
to austenite starts at the moment 71(x) and lasts till 75(z). After the time
instant 7o(x), the austenite starts to transform back to pearlite. If the line
0 = 0, do not crosses the temperature profile or only touches it at one point,
then there will be no phase transformations at .

8(x.t)

L0 )
Figure 3. Typical temperature profile at a point z.

Now, equations (4.6) can be used to model the described solid-solid phase
changes. They are derived for a point, the space coordinates of which can be
taken as parameters in model equations (4.6). Let p(x, t) and a(z, ¢) denote the
volume fractions of pearlite and austenite at a point x and time ¢t. Certainly,
the condition p(z,t) + a(z,t) = 1 holds.

Consider an arbitrary point x € {2,(t). Obviously, no phase changes will
take place for ¢ € (0,71(z)). After ¢t = 7 (x) the transformation to austenite
is described by
Z—?(a}, t) = w1 (t,0(z,t),a) + Ai(t,a,0(z,t))a + Bi(t,a,0(z,t))Ng,
dN,

dt

with initial conditions a(x, 71 (x)) = 0 and Ng(z, 71 (x)) = 0, where A; and B
are given material functions. These equations should be solved on the time
interval (71(x), 72(z)). The obtained solution of the system provides us with
the initial condition for the backwards transformation to pearlite, which itself
may be described via similar model equations, which are valid in the time
interval (12(x),T):

(xvt) = nl(tv H(SC,t), a)7

d

(1) = T (t, 6(x, 1), p) + Aa(t,p, 6, 1))p + Balt, p,6(x, ) No,
dN

(1) = m(t, 0(z,1), p),

where Ay and Bs are given material functions. Accordingly, the initial condi-
tions are p(z, 72(x)) = 1 — a(x, 72 (z)) and Ny(x,m2(x)) = 0. These equations
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should be coupled with the heat equation, since functions entering the right-
hand sides are depending on the temperature distribution in the workpiece
and, visa versa, the temperature is influenced by heat energy emission or
consumption during phase transformations.

Now, let 024(t) be the boundary of the time dependent domain §2,(¢) at
time ¢ (free interface) and we assume that 02,(t) is a Lipschitz curve. By
v we denote the unit outward normal vector of the domain (2,(¢). Let jups
be the heat flux density (heat flux per unit surface) absorbed by the melting
interface due to the heat radiated by the plasma beam. In addition to the
terms defined above we use the following notation: p is the density of the
workpiece, ¢, is the specific heat, k is the heat conductivity of the material,
L., is the latent heat of melting, L,, L, are the latent heats of the solid-
solid phase transformation to austenite and to pearlite, respectively; 6,, is the
melting temperature, v > 0 is the velocity of the melting front.

Assuming that no heat exchange can happen between the workpiece and
the exterior through 9(2(¢), the modified mathematical model, governing the
cutting process with solid-solid phase changes, is the following:

Problem 1. [Modified Cutting Model] Find the function 6(z,t) € C3(£2, x I) N
C(§25 x I), representing the temperature of the body, the piecewise smooth
surface 0f2,(t) representing the free boundary of the solid domain (2,(¢) =
{z; 0(z,t) < 0,,} and continuous functions a(x,t) and p(z,t), representing
the volume fractions of austenite and perlite, such that

06 da dp

S =V (kV0) —pL, 7 —l—pr% x € (t), tel, (5.1)

Z—?(x, t) = w?m (t,0(x,t),a) + A1 (t,a,0(x,t))a + Bi(t,a,0(x,t))N, (5.2)
for x € 2,(t), te€ (r(zx),m=(x)),

dN,

W(x,t) =m(t,0(x,t),a), x € 2s(t), te€ (r(x),m(x)), (5.3)

%(x, t) = 7T3772(75a 9(557 t),p) + A2(tap7 9(% t))p + B2(t7pa 9(1'7 t))Nb (5'4)
for z € 2,(t), te (r(x),T),

dNy

W(x,t) = na(t, 0(x, 1), p), x € 2s(t), te€ (rx),T), (5.5)

with the following boundary conditions on 9¢2,(t):
0 <Om, Japs—kVEO-v>0, (5.6)
(0 = 01) (Jabs — VO -v) =0,
called the Signorini-type boundary conditions and
kVO v — pLyv -V = japs, (5.7)

named the Stefan-type boundary condition.
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As for the initial conditions, we set

0(x,0) = Oo(x) < Oy, x € 12, (5.8)
02,00) = 2,

a(z,m1(z)) =0, plx,n(z) =1-a(z,7m(2),

Ny(xz,m1(x)) =0, Np(z,72(x)) =0.

da dp
— and pL,—
. dt . p p dt . . .
tion by the phase transformation from pearlite to austenite (consumption,
hence with minus sign in (5.1)) and emission due to the inverse transforma-
tion from austenite to pearlite, respectively.

Remark 1. The terms pL, in (5.1) represent the heat consump-

Note, that Signorini boundary conditions (5.6) are non linear. At each fixed
instant ¢ there exist two regions: in one region we have heating phase, on the
other melting phase. Moreover, these regions are not prescribed, resulting in
a moving boundary problem. The molten material is immediately removed
by an assisting gas, thus, the heat flux applies to the free boundary directly.
When the temperature on the cutting front becomes less than the melting
temperature, the front stops moving. As a result, on the moving boundary,
either the temperature is less than the melting temperature or it is equal to
the melting temperature and the cutting front moves with a positive velocity.
So, for the cutting model we have alternative types of boundary conditions
on the unknown moving interface 02 (¢):

0 <Om, Jas—kVO-v=0, v=0

or
0 =0, Jas—kVO-v>0, v>0.

For more detailed explanation of the cutting model and Stefan-Signorini
boundary conditions we refer to [23]. We call the problem (5.1)—(5.8) the
modified thermal-cutting model and note that the developed mathematical
model is rather general and does not depend on the type of cutting. The main
difference between different cuttings is the amount of energy absorbed by the
workpiece, which depends on the thermo-physical properties of the material
as well as on the several parameters of the heat source.

In this model we are mainly concerned with the problem of heat transfer
and temperature distribution in the workpiece during the thermal plasma
cutting. The problem is solved, if at any moment the temperature of every
point of the workpiece and the geometry of the workpiece are identified.

The heat flux density j.»s and v are equal to zero on the part of boundary
where no heat input takes place. Therefore, on that part of the boundary
we have homogeneous Neumann conditions. The idea behind the Stefan-type
boundary condition is relatively simple; the total heat flux absorbed by the
interface is divided into two parts: one part is conducted and the other part is
used to melt the material. A model for calculating the heat flux density jups
absorbed by the cutting front is derived in the following section.
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6. Modelling of Absorbed Heat Flux Density

A feature common to most plasma and laser cutting processes is that they
occur as a result of removing the material by melting and/or vaporizing as
intense laser light or a high-temperature, partially ionized plasma gas stream
interacts with the material surface. The amount of heat generated by plasma
arc or laser beam plays a very important role in the kinetics of thermal cutting
processes. Let us first present some earlier studies on the matter.

In relation to the measurable quantities (current voltage and power)
Rosenthal [25] has made a study of the plasma arc and found that the energy
delivered to the workpiece @Q,, represents about 65% of the total energy Q
supplied by the arc. We express it in formula by

Q. =0.65Q: = 0.65 - const - V I,

where V' is the voltage drop in arc and I, is the current intensity. Rosenthal

discussed three types of moving heat sources: point source, line source and

plane source. For each type of heat source he gave the relation between the

temperature distribution and the heat @, delivered to the workpiece. For

example, in the case of a point source the relation obtained is the following
B Qw . e—)\vr

6 =0 = ok r

where £ =z —wvt, 1/2)\ = k/pc; and r is the radius of the plasma beam. Note,
that this relation is valid only below 0 = 6,,.

Arai et al. [1] described two categories of heat flux density measurements:
i) indirect, measurements made by calculating heat transfer rates, using fun-
damental theories together with measurements of temperature and thermo
physical properties, and ii) direct measurements using heat flux density sen-
sors placed in the thermal field.

In the model of Schulz et al. [27] the heat flux density absorbed at the
boundary is proportional to the laser beam intensity Z via the absorption
coefficient A,:

jabs = _ApIez -V,

where e, - v is the angle of incidence of the laser beam and j,ps is, as usual,
the heat flux density absorbed by the workpiece. The laser beam intensity 7
itself is characterized by the maximum intensity of the beam Z; and the beam
radius r:

— Vot
T=-1(t)f (% — ).
where vy is the speed of feeding (the speed of the moving laser) and f is a
given distribution (0 < f < 1).

Bunting et al. [5] developed a relationship between the power density in-
cident on a material and the cut speed in terms of the thermal properties of
the material. They used the technique of Rosenthal on moving heat sources
and got the relation
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Je  2k(0m —00) 1
h r2 Z(s)’

where j. is the heat flux density emitted from the surface of the heat source, h

is the thickness of the material and s = ;}—T with a being the heat diffusivity.

et
The value of Z(s) has been calculated by authors and could be expressed via

1 27 , 1/2
I(s) = / r'dr'/ exp(—sr’ cos p)Kos (r 22 sing + 1) do,
0 0

where K is the zeroth order modified Bessel function of the second kind and
the equation is written in cylindrical coordinates (', ¢) with dimensionless .

In studying the heat-affected zone during the laser cutting of stainless
steel, Sheng et al. [29] expressed the beam energy FEp(z,y) as a function of
spatial coordinates via the beam intensity Z(x,y) of Gaussian type

Ey(2,y) =/I(u,y)du —/Mem(— uz;yQ)dw

v mrv

where A is the absorptivity and P is the beam power.
In the following we describe a simple technique to calculate the heat flux
density on the absorbing surface. For calculations it is convenient to discuss

yA
R(x.y)
n ds'
)
ds'
Q R\

ds
/ dp XQ'
&

<V

Figure 4. Emitted and absorbed heat flux density.

the topic not in terms of point source, but in terms of incremental surface
elements. Therefore consider, as illustrated in Figure 4, a small emitting sur-
face of area (length) ds, where the point @ is located. Further, let us assume
that the cylindrical surface of the plasma beam is emitting heat in the radial
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direction, i.e. the heat flux density vector at any point of the beam surface
has the direction of the normal to the plasma surface at that point.?

We denote by j. the heat flux density (the quantity of heat flowing across
a unit area) emitted from the arbitrary point @ of the surface of the plasma
jet, by japs the heat flux density absorbed at the point P of the surface of
the workpiece due to the emission from ) and by r the radius of the plasma
beam. Assuming that the heat flux density j. at the point () and the radius r
of the beam are given, our aim is to calculate the heat flux density absorbed
at the point P of the workpiece surface (see Figure 4).

Let dg be the rate at which the energy leaves the incremental area ds.
Then the average flux j¢¥ leaving ds is defined as

_ da

4V = 6.1
Je' =0 (6.1)
and the flux due to the point ) on the beam surface is defined to be
, . dg
Je = dlslgo Ts (6.2)

The flux emitted from ds is then completely absorbed (assume the material
is a black body) by the surface of the material, more precisely, by the part of
the surface which we denote by ds’. Then analogously to (6.1), the average
heat flux density j%. absorbed by ds’ is

abs

dgq
Jabs = g

e

and owing to (6.2) we obtain

. . dq . Jeds
= lim — = lim .
Jabs ds'—0 ds’ ds'—0 ds’

(6.3)

For cylindrical heat source we have
ds = rdo,

where d¢ is the incremental angle between the lines connecting points P and
P’ with the center of the beam (see Figure 4).

Now let ds” be an element of the spherical surface which we obtain by
projecting ds’ normal to the direction PQ (the direction that the point P
makes with the emitting point Q). In terms of the drawings in Figure 4, the
flux at the point P due to the energy leaving the point () may be determined
in terms of energy falling on the element ds” of the circular surface (center
at origin, radius R) which passes through P. We then obtain for the surface
element ds”

ds" =ds' cosyp as d¢ — 0,

2 This assumption is made only for simplicity, the calculations can be also done for
other flux density distributions.
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where 1 is the angle between the normal of the workpiece surface at point P
and the line PQ. Thus, we acquire

dS//

r_
ds’ = cost)’

(6.4)

If, for example, the interface is represented via a smooth graph, y = f(x),
then we can express cosv as

1
where 7() ( f(rz)) represents the unit normal vector to the surface
x

x2 + f2?

ds" at point P(x,y) and denotes the unit normal to

1 ( 1 (@) )
L+ (/@) \ 7
the graph y = f(z) at point P(z,y).
Inserting the expressions for ds’ from (6.4) and cos ¢ from (6.5) with ds” =
Rd¢ into (6.3), and taking into account that ds’ — 0 is in fact equivalent to
d¢ — 0, we obtain

(VR P) (VITT@R) @ff@) - @)
Jabs = —Je jm, Rd¢

of @)~ f@)
(@ + (@) I+ (T @)

In general, the expression for cos can be written in the form

= _jer

cosY =n - vy,

where v, is the unit vector at the point P pointing in the direction of the
emitting point (). Therefore, for general absorbing surfaces the heat flux on
the moving front takes the form

Jabs = jedi ‘N Uy, (6.6)
P
where d,, is the distance between the point P and the center of plasma beam.
The derived expression (6.6) provides a method to compute the pointwise
heat flux density and can be effectively used in the numerical treatment of
the modified cutting model.

7. Discussion and Conclusions

We have presented a model describing the heat process in workpiece due
to plasma cutting. The temperature distribution and the geometry of the
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workpiece can be determined with this model. The latent heat of the solid-
solid phase transformation has been taken into account, which extends the
model developed in [22]. Numerical implementation of the modified model
and simulation results will be published in the second part of this work.

We would like to mention that the temperature field analysis and com-
putation of the geometry of the cut pieces is the first step on the way of
the modelling of the whole plasma cutting process. Further steps include the
determination of thermoelastic, thermoplastic deformations as well as the de-
formations due to phase transformations. A general modelling framework for
the case of finite deformations taking phase transformations into account was
presented in [9, 10]. The cutting model established in this paper should be
further coupled with a thermoplastic model and transformation induced plas-
ticity.
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