MATHEMATICAL MODELLING AND ANALYSIS
VOLUME 12 NUMBER 4, 2007, PAGES 459468
© 2007 Technika ISSN 1392-6292 print, ISSN 1648-3510 online

EVALUATION OF THE
HYPER-THREADING TECHNOLOGY FOR
HEAT CONDUCTION-TYPE PROBLEMS

S. IVANIKOVAS and G. DZEMYDA

Institute of Mathematics and Informatics

Akademijos St. 4, LT 08663, Vilnius, Lithuania
E-mail: Tvanikovas@gmail.com; Dzemyda@ktl.mii.lt

Received February 21, 2007; revised July 20, 2007; published online December 15, 2007

Abstract. Symmetric Multi Processor (SMP) systems become popular and avail-
able for most users nowadays. The main factor that affects the performance while
working with a large amount of data with the SMP system is operating memory
speed. Hyper-Threading technology lets to increase the amount of threads work-
ing in parallel and to speed-up the execution of program using the same hardware.
A standard heat conduction problem was chosen as a benchmark to test the SMP
system performance while working with memory-intensive tasks. The results of prac-
tical tests and the quantitative estimations of efficiency are presented in the article.
The experiments indicate how Hyper-Threading technology helps to use the SMP
systems and dual-core processor systems more effectively while working with a large
amount of data.

Key words: parallel algorithms, hyper-threading, symmetric multi processors, heat
conduction

1. Introduction

The usage of parallel processes lets us to increase the computing efficiency
greatly even when an ordinary technology and hardware is used [1, 9, 11].
Parallel programming is widely used while working with super computers and
clusters. Nowadays SMP (Symmetric Multi Processor) systems and computers
with HT (Hyper-Threading) technology have become popular and available
for most users [6]. Since such systems had appeared, the usage of parallel
processes became actual for all computers. HT technology lets an operating
system to treat one physical processor as two logical processors [2, 6]. In this
paper, the advantages of HT technology while working with memory-intensive
tasks are presented. It is shown, that parallel computing can be effective even
with a single processor system using HT technology. While working with SMP



460 S. Ivanikovas, G.Dzemyda

systems, the HT technology lets us to execute more threads in parallel. Using
more threads we can optimize the work of operating memory and increase the
efficiency of system work.

The paper is organized as follows: the next section presents the review of
HT technology and SMP systems and indicates the problem of slow operating
memory and system bus work. The benefits of using HT technology for solving
this problem are also presented in this section. Sections 3 and 4 illustrate the
problem of working with large amount of data with SMP system and describe
the realization of the discrete heat conduction algorithm, which was chosen
for the examination of the problem. In section 5, the results of computational
tests are presented and analysed. Finally, the last section summarizes the
results of the tests and presents the conclusion of the work.

2. Hyper-Threading Technology and SMP Systems

Parallel computing is the processing of one task in different places at the
same time. The complexity of nowadays applications requires to use parallel
computing and create parallel algorithms to solve real-world tasks [9, 11].

A wide variety of tools helps to create a parallel program by modifying
the serial one. While creating parallel algorithm, the whole task is divided
into smaller parts and the parallel execution of these parts is organized. We
seek for the uniform distribution of the work among processors, minimizing
data transfer and fitting program for the computer type and architecture, by
creating parallel algorithms [1].

Hyper-Threading technology was firstly used in 2002 in Intel Xeon proces-
sors. The essence of HT technology is that the physical processor execution
resources are shared and the architecture state is duplicated for two logical
processors [7]. Nowadays, this technology is widely used in Intel Pentium 4
processors and is available for most users. HT technology enables so called
thread-level parallelism (TLP) and allows multi-threaded software applica-
tions to execute threads in parallel within one single processor. Benchmark
tests proved that some applications can experience a 30 percent gain in perfor-
mance using this technology. Thus HT technology lets to use processor more
effectively [6].

Symmetric Multi Processing, or SMP, is a multiprocessor computer ar-
chitecture where two or more identical processors are connected to a single
shared main memory. Most common multiprocessor systems today use an
SMP architecture. Dual processor systems and systems with dual-core pro-
cessors are available for most users nowadays. The Intel Pentium processor
Extreme Edition combines the HT technology with dual-core processing to
get PCs capable of handling four software threads. Newly appeared quad-core
processors are another step for making multi-core processors common for the
ordinary users.

SMP systems allow any processor to work on any task no matter where
the data for that task is located in memory. With proper operating system



Evaluation of the Hyper—Threading Technology 461

support, SMP systems can easily move tasks between processors to balance
the workload efficiently.

In the SMP system, both processors have their own caches and registers.
HT system has only one cache and processors registers are divided between
two logical processors.

Operating memory is much slower than processors can access it and even
single-processor machines tend to spend a considerable amount of time wait-
ing for the data to arrive from memory. SMP makes this worse, as only one
processor can access memory at a time. It is possible for several processors
to be starving while one of them is working with memory. There is no such
problem working with NUMA (Non-Uniform Memory Architecture). But this
architecture is more complex and not so widely spread as UMA (Uniform
Memory Architecture).

So, user can work with four logical processors while using the SMP system
with double Intel Xeon processor with HT technology or the PC based on
Intel Pentium Extreme Edition processor. Using thread-level parallelism it is
possible to get an improvement by a factor of (nearly) the number of additional
processors in some applications. But as it was said the performance of the
system is limited by system bus and RAM speed while working with SMP
system with large amount of data.

3. Work with Large Amount of Data Using SMP System

The main aim of the work was to investigate how the processing speed in-
creases using more threads while working with large data arrays. As it was
presented in the work [2], the usage of several threads with ordinary com-
putations (floating point and integer calculations) gives a very small gain in
performance on HT technology. But combining several different works (com-
puting and working with RAM) gives much better results.

In this work the performance of multi-threaded programs was tested using
memory intensive tasks. A standard heat conduction problem was chosen to
test the SMP system performance. This problem and the algorithm which
was used during the tests are presented in Chapter 4. The OpenMP standard
was chosen to create the multi-threaded program. This is one of the most
popular ways to program applications for SMP systems. It lets to create the
multi-threaded programs in a simple and effective way [8, 10].

Programs were tested using Pentium 4 HT based system (Pentium 4 HT
3.2GHz, 512 KB L2 cache, 512 MB RAM) and Dual Xeon Server (Dual Xeon
3.2 GHz, 1 MB L2 cache, 2GB RAM). As Intel Xeon processors also have the
HT technology, there was an ability to work with four threads on this system.

Several criteria were used to measure program speed-up and efficiency

h-T, and the
1

of computer usage. The speed-up was estimated by S, =

T
efficiency of algorithm is estimated by E, = Tl Here p is the number of
Pip



462 S. Ivanikovas, G.Dzemyda

threads used, 77 is the sequential program working time and 7}, is the multi-
threaded program working time using p threads [1, 9].

4. Heat Conduction-Type Problems

Heat conduction type problems are widely used. The particularity of this type
of tasks is a large amount of data to be processed. Tasks like weather forecast,
heat spread or heat conduction, can be qualified as the tasks of this type. In
this work, numerically solved a heat conduction problem, while edges of flat
rectangular plate are heated and the temperature of the plate is calculated.
A heat flows through thermally conductive materials by a process generally
known as “gradient transport” [4].

To solve the chosen heat conduction problem the method of finite differ-
ences was used. First we define a discreet grid on the plate

wp, = {(wi,y5) .z =ih, y; =jh, 0<4,j <N},

where N is the number of rows and columns in the matrix wy, h = 1/N is a
space step of the grid. The solution U;; = U(z;,y;) is calculated only in nodes
of the grid. The dimension of the grid wy, is (N + 1)2.

In each node of the grid, continuous fluxes of the heat are approximated
by finite differences. To calculate the value of the solution at the given node,
four neighbouring nodes are used. So we have a system of linear equations

Uic1,j +Uiv1,; + Uij-1 + Uijn

4 )
The values of the solution on side nodes of the grid are found from the Dirichlet
boundary conditions. The remaining system of (N — 1)? linear equations is
solved using Jacobi iteration method [1]. First, initial approximation UZQj is
chosen. Then the iteration process

S El S S
et _ Yimng H UG + U0 + Ul
i = 1 ;

is repeated until two neighbouring approximations are sufficiently close. Here
s denotes the iteration number. It is well known that the total number of
iterations is proportional to the amount of nodes O(N?) [1, 3]. The computa-
tions performed in this task are rather simple, but we have to process a large
amount of data, so this task is memory-intensive.

The parallel algorithm is based on data parallelism. The same computa-
tions are performed with all the data. So, we can get a parallel algorithm
by dividing the nodes of the grid among processors (see Fig.1). Each of the
processors gets a part of the matrix and performs the iterative calculations
with its local part of the data. After each iteration, neighbouring processors
synchronize the values of side nodes to continue the iterative process. The
description of the parallel algorithm is presented in Table 1.

Uy = 1<i,j<N-1

1<4,7<N-L



Evaluation of the Hyper—Threading Technology 463

e 060 0 0 0 0 0 P
i1

e 6 6 6 o o o

e 6 06 6 o o o

[vj_l l’«/+1

© o060 06 0 0 0P
i+tlj

e 6 6 6 o o o

e 6 06 6 o o o

e 6 06 6 o o o P,

Figure 1. The distribution of the grid nodes among processors.

- w

Table 1. The structure of the parallel algorithm.
Set the number of threads, matrix dimension (N),
precision and side conditions.
Initialize OpenMP:
#pragma omp parallel
Each thread initializes its own part U;; of the whole matrix wy .
error = 2*precision; e = N / threads + 2.
Each thread processes its part of the matrix:
while (maxerror > precision)
for(i=1ji<(e-1);i++)
for(j=1;j<(N+1);j++)
Uij = (Uic1y + Uitry + Uio1 + Uijgr) /4
Each thread evaluates the error by finding the biggest
difference between the values of U;; in previous and present iteration.
Maximum error value for all threads is found.
This code is executed by only one thread at a time:
maxerror=0.0;
for(i=0;i<threads;i++)
if (my ID = = i) if (maxerror<error)
{ #pragma omp critical
maxerror=error; }
Threads synchronize the values of side nodes of Us;
to continue the iterative process.
If precision is not reached, iterative steps from 4 to 7 are repeated.
Parts of matrix wy, processed in different threads are collected to one array.

5. Practical Results

Tests with serial and two threads parallel program were performed using Pen-
tium 4 HT based system. These tests showed that the usage of two threads
lets us to increase the system performance up to 37% while working with a



464 S. Ivanikovas, G.Dzemyda

smaller amount of data and about 30% with a large amount of data using
single processor system with Hyper-Threading technology (see Fig.2).

0,40
0,30 1 P
. A
0,20 1
0,10 1
0,00 T T T T T T — N

100 500 9200 1300 1700 2100 2500 2900

a)

0,80
0,75
0,70 b
0,65
0,60 1
0,55
0,50 T T T T T T — N
100 500 900 1300 1700 2100 2500 2900

b)

Figure 2. The speed-up (a) and the efficiency (b) of the parallel algorithm. N is
the number of rows and columns in the matrix of the system of linear equations.

The obtained results are close to the announced speed-up of HT technol-
ogy. So, we can compute faster and use system possibilities more effectively by
creating multi-threaded applications to process a large amount of data while
working with single processor system with HT technology. We can observe
local maximums in Fig.2. The explanation of such variation of the curves is
a particularity of cache memory usage and the limitation of the size of this
memory. This effect also occurs while working with SMP system. The detailed
analysis of this effect is given after the presentation of the results obtained on
SMP system.

The tests with sequential and two, three and four thread parallel programs
were performed using Dual Xeon Server. The program working time was mea-
sured during the experiments. The results are presented in Table 2. The results
obtained working with Pentium 4 HT based system, are also presented in the
table for the comparison.

The tests have shown that the usage of a sequential program while work-
ing with the SMP system is inefficient. The same program with the same
data worked faster using a single processor system. The usage of two threads



Evaluation of the Hyper—Threading Technology 465

Table 2. The results of tests using single processor system. N is the number
of rows and columns in the matrix of the system of linear equations.

N Pentium 4 HT | Dual Xeon Server

Serial 2 threads Serial 2 threads 3 threads 4 threads
100 0,593 0,594 0,688 0,5 0,313 0,204
200 1,891 1,297 2,266 1,062 0,891 0,735
300 4,578 2,89 5,203 2,469 2,344 1,687

400 7,563 5078 13,813 4,391 3,801 2,234
500 11,437 9,328 25,844 8,563 8,171 5,484
600 17,484 11,297 36,031 16,015 13,203 9,906
700 22,579 18,782 53,281 23,312 19,203 14,531
900 39,156 26,157 80,204 36,907 31,172 25,5
1100 62,047 44,313 138,25 58,460 46,437 33,204
1300 91,391 67,641 198,515 84,25 65,625 54,579
1500 129,422 98,234 258,047 115,063 90,609 74,063
1700 176,188 127,907 331,203 143,891 120,391 100,063

2000 264,078 193,281 424,843 192,719 167,922 158,562
3000 756,266 542,281 1028,484 514,813 419,312 358,125

working with the SMP system let us to increase the performance up to 68%
(see Fig.3). So, the efficiency of the system work increases. But even using
two threads working with the SMP system and with single processor system,
programs working time is comparable.

Using HT technology we can work with up to 4 threads in parallel. So,
using three threads the speed-up increases up to 72% and working with 4
threads program speed-up reaches 84% (see Fig.3).

0,85

0,75

0,65

0,55

0,45

0,35

0,25 ‘ ‘ ‘ T \ w
100 500 900 1300 1700 2100 2500 2900

Figure 3. The speed-up of the parallel algorithm.



466 S. Ivanikovas, G.Dzemyda

Working with two threads the efficiency of algorithm is larger than 1 (see
Fig.4) it means that using 2 threads not only computation resources affect
the speed-up, but also the optimization of memory work. Similar result was
presented in [5] for CG benchmark. Working with smaller amount of data the
affect of memory optimization is also rather big.

Using more than two threads working in parallel we have no more compu-
tation resources (there are only two physical processors in the system) but we
still have a speed-up of the program. The tests showed that the usage of three
threads is less effective than the usage of four threads. The amount of threads
used should be multiple of two to achieve the best results. Such amount of
threads is due to the HT technology essence. This technology divides each
physical processor into two logical processors. So, to optimize the work of all
processors and to achieve better results it is better to use an even amount of
threads. Thus the speed-up is largest by using 4 threads (all virtual processors
are used).

The efficiency of the parallel algorithm is sometimes bigger using 4 threads
than using 3 threads working with smaller amount of data (especially with
N = 500). The efficiency of the algorithm using 3 or 4 threads is less than
1 (see Fig.4), so it is possible to make conclusion, that in this case operative
memory is used more effectively.

We can notice that the speed-up coefficient decreases for larger values of N.
This effect occurs because of the influence of operative memory. For bigger IV
the influence of operative memory is less, so the speed-up coeflicient decreases.
Fore large N (IN>5000) the speed-up coefficient stabilizes, the decrement of
its value stops. Using 2 threads the efficiency of algorithm is less than using
1 for large matrixes.

Speed-up (also the efficiency of algorithm) grows till N=500 and then it
declines. This effect occurs because of processors cache. Each processor in the
system has 1MB cache memory. Total amount of cache for two processors is
2MB. Working with real numbers (double format in C language uses 8 bytes
of memory) the matrix of dimension 500x500 takes about 2MB of memory. So
it is the biggest matrix which fits in to the 2 MB cache memory. Working with
such amount of data the usage of RAM should be minimal. The particularities
of cache memory are the reason of another local maximum of curves in Figures
3 and 4. This maximum occurs with N from 1000 till 1200. 1000 is the multiple
of 500 so the usage of cache memory is the possible reason of such variations
of the curves.

Similarly working with single processor HT system we have maximums
with N 300, 600 and 900. Working with bigger data arrays the influence of
RAM increases and the particularities of the processor cache memory work
become not so significant. That is why we have no maximums with bigger V.



Evaluation of the Hyper—Threading Technology 467

1,55
1,45
1,35
1,25
1,15
1,05
0,95
0,85
0,75
0,65 : ‘ ‘ ; : ‘ ‘
100 500 900 1300 1700 2100 2500 2900

Figure 4. The efficiency of algorithm.

6. Conclusions

In this paper, the evaluation of HT technology working with memory-intensive
tasks is presented. The experiments were carried out on different systems: Pen-
tium 4 HT based single processor system and Dual Xeon Server. The tests
showed that HT technology lets to increase the speed of single processor sys-
tem for about 30% by optimizing the work with operating memory. Working
with the SMP system, the usage of serial program is inefficient. Even working
with two threads, program working time is comparable to single processor
system results. HT technology lets to increase the system speed-up to 85%,
enhance processor workload and optimize the work of RAM.

The division of physical processor into two logical ones lets to increase
efficiency of system work and to solve the problem of shared memory usage
partly. While one of the logical processors is calculating, the other one can
work with RAM. So, the overall efficiency of physical processor usage increases
while working with the large amount of data and using HT technology.

The investigation showed that the usage of HT technology is the efficient
way to increase the system speed. To achieve better results we need to control
the computation processes properly.

References

[1] R. Ciegis. Parallel algorithms and net technologies. Technika, Vilnius, 2005.
(in Lithuanian)

[2] G. Dzemyda and S. Ivanikovas. Particularities of parallel programming for
personal computers. Information sciences, 34, 257-262, 2005. (in Lithuanian)

[3] G.H. Gloub and C.F. van Loan. Matriz computations. The Johns Hopkins
University Press, New York, 1996.



468

[4]

[5]

(6]

[7]

18]
[9]

[10]

[11]

S. Ivanikovas, G.Dzemyda

A. Grama, G. Karypis, V. Kumar and A. Gupta. Introduction to parallel com-
puting: design and analysis of algorithms. Addison Wesley, 2nd edition, New
York, Amsterdam, Sydney, Tokyo, 2003.

R.E. Grant and A. Afsahi. A comprehensive analysis of multithreaded OpenMP
Applications on Dual-Core Intel Xeon SMPs, workshop on multithreaded ar-
chitectures and applications (MTAAP’07). In: In Proceedings of the 21st Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2007). Long
Beach, California, USA, March 26-30, 2007.

David Koufaty and Deborah T. Marr. Hyper-threading technology in the Ner-
burst microarchitecture. IEEE Micro, 23, 2003. Issue IEEE Computer Society
Press

D. Marr, F. Binns, D.L. Hill, G. Hinton, D.A. Koufaty, J. A.Miller and M. Up-
ton. Hyper-threading technology architecture and microarchitecture. Intel
Technology Journal, 6(01), 2002.

M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill
Inc., New York, 2004.

L. Ridgway Scott, T. Clark and B. Bagheri. Scientific Parallel Computing.
Princeton University Press, 2005.

G. Mattson Timothy. An introduction to OpenMP 2.0. In: Lecture Notes
in Computer Science, Vol.1940. Third International Symposium, ISHPC 2000,
Springer berlin/Heidelberg, 2000, Tokyo, Japan, October 16-18, 2000.

V.V. Voevodin and V1.V. Voevodin. Parallel computing. BHV-Peterburg.



