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Abstract. In this work we deal with the boundary value problem for the non-
Newtonian fluid flow with boundary conditions of friction type, mostly by means of
variational inequalities. Among others, theorems concerning existence and unique-
ness or non-uniqueness of weak solutions are presented.
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1. Introduction

This paper is concerned with the boundary value problem for the stationary
power law Stokes flow with a certain nonlinear boundary condition to be
specified in Section 4, which we call the boundary condition of friction type
or the frictional boundary condition, see [9].

Extensive study has been done so far for the motion of incompressible
fluid which is governed by the Stokes/Navier-Stokes equation, or by the non-
Newtonian Stokes/Navier-Stokes equation in hydrodynamics as well as in
mathematics. As to the boundary condition, almost all of these works have
dealt with the adhesive boundary condition to the surface of a rigid body,
namely, with the Dirichlet boundary condition. This is of course reasonable
from or consistent with the nature of such fluids and walls. However, there
are phenomena, whose mathematical analysis seems to require introduction
of some non-routine boundary conditions which might allow non-trivial mo-
tion of fluid on or across the boundary, for instance, slip or leak of fluid at
the boundary. Examples are flow through a drain or canal with its bottom
covered by sherbet of mud and pebbles, flow of melted iron coming out from
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a melting furnace, flow through a net or sieve, flow through a filter, and water
flow in a purification plant etc.

Furthermore, among these phenomena there are those cases where the
non-trivial movements, say leak or slip, take place only when magnitude of
the stress at boundary surpasses a threshold. Also, the boundary condition
of friction type was frequently used in free boundary problems containing
dynamic or static contact lines, see [4, 16, 19, 21]. Our intention to introduce
the frictional boundary condition is to propose a way of modeling of these
boundary phenomena and carry out its mathematical analysis.

Our formulation and analysis are based on the theory of variational in-
equalities for nonlinear operators, see [13]. However, in dealing with the fric-
tional boundary conditions which allows the leak in some way or other, we
have to apply a new argument with resort to the Hahn-Banach theorem, which
seems worthy of some interest by its own right, namely, from the view point
of theory of variational inequalities.

As a matter of fact, the key idea of this work, particularly that of the above-
mentioned argument by use of the Hahn-Banach theorem was gotten originally
when Fujita gave a series of lectures at Collége de France in October of 1993,
see [5]. Since then in some papers and lectures at international conferences, the
authors have dealt with several closely related problems, some being presented
along with numerical examples, see [6, 7, 8, 10]. In these previous works, the
authors have mainly considered the (pure) slip boundary condition or the
(pure) leak boundary condition of friction type, although they have touched
even those cases where the flow is governed by the Navier-Stokes equation.
In this paper, however, we restrict our consideration to the flow governed
by the non-Newtonian Stokes equation and also to those frictional boundary
conditions where the transition from the trivial adhesive state to a non-trivial
movement on the boundary depends on the magnitude of the total stress there.
One reason of such restriction is our intention to focus on the characteristic
difficulties caused solely by the frictional boundary condition. The case of the
Newtonian fluid flow has been studied H. Fujita and H. Kawarada, see [9].

The plan of this paper is the following. In Section 2, we describe our prob-
lem. Some preliminaries are presented in Section 3. In Section 4 we include
the definition of the boundary conditions of friction type. The PDE formu-
lation of the boundary value problem is given in Section 5. We present in
Section 6 the formulation in terms of variational inequalities. The final Sec-
tion 7 is devoted to present the results concerning the equivalence between VI
formulation and PDE formulation, existence of solutions, and the uniqueness
or non-uniqueness of solutions.

2. Basic Equations and Assumptions

Let {2 be a bounded domain 2 in R™ (m = 2 or 3). The smooth boundary
012 = I of 12 is assumed to be composed of two separate compact components
Iy and I, i.e. 02 = I' = Iy U . To fix the idea, one could imagine, for
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example, that (2 stands for the inside of a vessel filled by the liquid and I
the inner wall of the vessel, I the outer wall.

As mentioned in Introduction, throughout the present paper we deal with
the stationary equation for non-Newtonian and incompressible fluid which is
written in a familiar form as follows.

div(T) + f =0,
=0.

div(u) 21)

Here, u is the velocity field and f the external force. The stress tensor T is
decomposed as follows, see [12]

T =T(u,p) = —pl +vle(u)|"2e(u), r>1, (2.2)

where p is the pressure, I is the m-dimensional identity matrix and e(u) is
the symmetric deformation velocity tensor of components

e~(u)—1 8u1 +8Uj

* B 2 6xj 8xi '
The positive constant v in (2.2) stands for the kinetic viscosity. Incidentally,
by replacing f formally by p(u.V)u + f in (2.1) (p is the density of the fluid),

our formulation is valid for the non-Newtonian Navier-Stokes equation below,
and some of our results will be extended thereto in a forthcoming paper.

div(T) + p(u.V)u+ f =0,
div(u) = 0.

For the boundary condition, we impose the usual Dirichlet boundary condition
on F()
u =g on Iy, (2.3)

while on I} we are going to impose a nonlinear boundary condition of friction
type of our main concern which will be specified below.
Concerning g in (2.3), we assume for simplicity, the restricted flux condi-

tion
/ gndl =0,
Io

where n means the unit outer normal to the boundary condition. The reason
of our somewhat simplified setting is the following. Indeed, we could consider
the case where I is a portion of I" with non-empty 017. However, then we
meet (seemingly unexplored) difficulties concerning the regularity of solutions
at 01, which should be discussed in a separate paper. On the other hand, if
we consider the case where I is void and hence I7 is equal to I', then the
solvability of the stationary problem which we are going to consider involves
further technical complication which is not essential from our point of view in
the present paper.
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3. Preliminaries

Now we list up symbols and function spaces to be used below.

3.1. Symbols

We denote by |a| the absolute value of a if a is a real number and the norm
of a if a = (a;) is a numerical m-vector (m=2 or 3). If a and b are vectors, a.b
means the scalar product of a and b. We adopt the summation convention.
We also denote by n = n(s) = (n;) the outer unit normal to the boundary
at the point s € I'. The stress vector at the boundary is o = o(u, p) = (T3;n;).

3.2. Function spaces and related symbols

We consider only real functions and real vector functions. L"-space and
the Sobolev spaces like W, W1/7 W=17" and W=+ are well known,
see [14], where 1’ is the conjugate exponent of r defined by ' = r/(r — 1)
if 1 < r < oco. Unless necessity arises, we do not distinguish real functions
and real vector functions in notation, neither Sobolev spaces of functions and
those of vector functions. In addition, we use the spaces

Wy " (2)={veW"(2) : v=00onT},
W' (2) = {ve Wh(2) : div(v) =0in 2},
Wi (@) = {v e Wy"(@) + div(v) =0in 2}
Furthermore, we put
v = the trace operator from W' (£2) to W+ (I') or to W+"(I1,).

However, when it is clear from the context that we are considering functions
or vector functions, say, v on the boundary, we shall simply write v instead of
~v. The norms and inner products of Sobolev spaces are denoted in a usual
manner, for instance:

(u,v) = (4, v)r,» = the inner product of u € L" and v € L.

Sometimes, the pairing < 7,£ > of 7 € W_%”T,(Fl) and ¢ € W%”T(Fl) will
be written in an intuitive way as
/ T.£dI.
Iy

Finally, we introduce the following nonlinear form:

a(um):/Q|e(u)|rf2eij(u)eij(v) dx.
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4. Boundary Conditions of Friction Type

Now we fix a given function k& = k(s) on I, which might called the modulus
function of friction or the barrier function of the frictional boundary condition
that we are going to describe. We assume that k& is continuous on I'; and hence
it is bounded and bounded away from 0.

DEFINITION 1. We say that (u,p) satisfies the boundary condition of friction
type (or frictional boundary condition) on I, if the following conditions hold
true almost everywhere on I}

|lo(u,p)| <k (4.1)
and

lo(u,p)| <k = u=0,
UZOOTU#O, (42)

o(u,p)| =k = {u #0= o(u,p) = —k|—u|.
u

From the frictional boundary condition follows that

o(u,p)u+klul =0 a.e. on I.

Actually, the whole frictional boundary condition is equivalent to the following
system, which is theoretically more convenient for our later consideration:

lo(u, p)| <k,
{o(u,p).u+ku| —0. (4.3)

Remark 1. Let 0)|.] denote the subdifferential of the non-smooth function |.| :
R?* — R, (or || : R? — Ry) where ¢ is the length of the vector £&. Then the
frictional boundary condition can be written in a concise form as

—o(u,p) € kO|u| at almost every point on I7.

Here we recall that

§

the unit vector in the direction of £ = =

if £ # 0,
the closed unit ball in the vector space = {n : |n| < 1}if £ =0.

0lgl =

Remark 2. In a similar manner, one can formulate the slip boundary condition
of friction type without leak on I as well as the leak boundary condition of
friction type without slip on I7. As to formulations and results of these slip
or leak boundary conditions of friction type, see [20].
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5. PDE Formulation

Our problem is formally stated in a classical form as

Problem 1. (Problem PDE classical) Find (u,p) satisfying the stationary
power law Stokes equation (2.1)-(2.2) in 2, the Dirichlet boundary condition
(2.3) on Iy, and the frictional boundary condition on I7.

Remark 3. A particular difficulty of the boundary problem above lies in the
fact that the pressure p can not contain an arbitrary additive constant be-
cause of the condition |o(u,p)| < k, which differs from the usual situation of
the Dirichlet boundary problem for the non-Newtonian Stokes equation. On
the other hand, we shall see that, as long as the Reynolds number remains
sufficiently small, there is no fluid motion on I, which means that the addi-
tive constant to p may not be free but is admitted of an allowance to some
extent. Thus we have to check carefully whether we can choose the pressure
(i- e., the additive constant in the pressure) so that the frictional boundary
condition is satisfied.

Henceforth, we assume that
FeL’(2), gewv ().

Concerning f, a weaker assumption that f € WL (£2) can be used. However,
for some argument below the assumption f € L™ reduces technical arguments.
Anyway, we are going to develop W1 "-theory in regard to the velocity wu.
Therefore, we need a weak formulation of the given problem.

DEFINITION 2. (weak power law Stokes equation) A vector function u €
Wd1 ""(£2) and a scalar function p € L™ (£2) are said to satisfy the weak power
law Stokes equation if the following identity holds:

va(u, ) — (p,div(g)) = (f,¢), Ve € Wy (2). (5.1)

Then (u,p) is called a weak solution of the power law Stokes equation. More-
over, we say that p is an accompanying pressure of the velocity wu.

When we restrict test functions in (5.1) to solenoidal ones, we obtain another
weak version of the power law Stokes equation which does not involve p.

DEFINITION 3. (solenoidal weak power law Stokes equation) A vector function
UNS W; (£2) is said to be solution of the solenoidal weak power law Stokes
equation if the following identity holds:

va(u,) = (f,¢), Vo€ Wy7(R). (5.2)
We have

Lemma 1. Let u € W;’T(Q) be a solution of the solenoidal weak power law

Stokes equation, then there exists p € LT,(.Q) such that (u,p) is a weak solution
of the power low Stokes equation.
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For bounded Lipschitz domains this Lemma follows from Corollary 2 in [17]
and Corollary 4 in [18]. See also [1, 2].

Before formulating a weak version of our boundary value problem, we intro-
duce some admissible sets of vector functions, which are used for formulation
of variational inequalities in the next section.

Ki={veW"(2):v=gonly}, K'={veW"(2):v=0o0nlIlp},

Kugl:{veW;7T(Q):v:gonF0}, Kg:{veW;’r(Q):UZOOHFO}.

Problem 2. (weak problem) Find u € K9 and p € L" (£2) such that

1. (u, p) satisfies the weak power law Stokes equation,
2. (u, p) satisfies the frictional boundary condition on I7.

Since the regularity assumed of (u,p) is not sufficient to take the traces of p
and Vu on I'7, the meaning of the stress vector o(u, p) involved in the frictional
boundary condition of Problem 2 must be understood in the manner explained
below.

1First, we note that the totality of traces v of all ¢ € KO is e(llual to
W"(I'1). On the other hand, as well known, see [15], any n € W+ " (1)
can be extended to a p € K. Moreover, if we can assume that (u, p) is smooth
up to the boundary, then the identity

/F o(u p).pdT" = va(u, o) — (p, div()) — (/. )

is immediately obtained by Green’s formula for all ¢ € K 0.1In view of this
identity, we intend to re-define o(u, p) as a functional over W+ "(I) through

< o,n >=va(u, o) — (p,div(ey)) — (f,0y), ¥ne W (Iy),  (5.3)

where ¢, is an extension of 7 to a vector function belongs to K°. As a matter
of fact, if (u, p) is a solution of the weak power law Stokes equation, the value
of the right-hand side of (5.3) does not depend by virtue of (5.2) on the manner
of extension of 7.

Thus the first inequality |o(u,p)| < k of the frictional boundary condi-
tion in Problem 2 should be understood as the requirement that o(u,p) €
W’r_l“r/(l“l) is realized by a vector function which is bounded by &k on I}
almost everywhere. In this way, the frictional boundary condition can be well
incorporated in our formulation in terms of solutions of less regularity, al-
though proof of further regularity of the solution under nicer given data is an
interesting (and seemingly open) mathematical problem.

Remark 4. In dealing with the power law Stokes equation as well as the power
law Navier-Stokes equation, one could use the Dirichlet form

d(u,v)z/ |Vu|""2Vu. Vv dz
fo)
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in place of a(u,v), provided that the whole boundary condition is the Dirich-
let boundary condition. If the boundary condition is of the Neumann type or
involves the stress vector o(u,p), one has to use a(u, v) for the weak formula-
tion of the problem. Naturally, this remark must be noted also when one deals
with the hydrodynamical potential theory in the Newtonian case, see [11].

In analyzing problems with solenoidal admissible functions later, we need the
lemma below, see [14], which concerned with the set

Yo={vponI: peKJ}. (5.4)

Lemma 2. Let denote
YOZ{HEWJ“T(H):<77,TL >:/ n.ndsz}. (5.5)
Iy

For any n € Yy, there exists its extension ¢ € KJ such that the inequality

lellr.e < collnlls

holds with a positive constant cy depending only on the domain.

By this lemma, if u is a solution of the weak solenoidal power law Stokes
equation and p is any one of its accompanying pressure, then o(u,p) can be
re-defined as a functional on Yj by

<o,n>=va(u,py) — (f,¢q), Y€ Yo.

Here ¢, is an extension of 1) to a vector function in K§.

6. Formulation in Terms of Variational Inequalities

Let us define a non-negative functional (barrier functional) j(v) for v in K9

by putting
j(v):/ k|v|dF:/ klyv|dI.
Fl Fl

We state two formulations in terms of variational inequalities.

Problem 3. (problem in variational inequalities) Find u € K and p € L" (1)
such that

va(u,v—u) — (p,div(v —u)) = (f,v —u) +j(v) —j(u) >0, VYve K. (6.1)

Problem 4. (problem in solenoidal variational inequalities) Find v € K such
that
va(u,v —u) — (f,v —u)+j(v) — j(u) >0, Yve K. (6.2)
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If (u,p) is a solution of Problem 3, then u alone solves Problem 4 auto-
matically. On the other hand, we shall see later that for any solution u of
Problem 4 we can choose its accompanying pressure p so that (u,p) solves
Problem 3.

Now, let (u,p) be a solution of Problem 3. Then, substituting into (6.1)
v =u+ ¢ with ¢ € Wy (£2), we have

va(u, p) — (p,dive) — (f, ) =0,

and see that the weak power law Stokes equation (5.1) is satisfied. Also, noting
that v — u belongs to K, we can rewrite in terms of o(u,p) the variational
inequality (6.1) of Problem 3 as follows;

<oy(v—u)>+jw)—ju) >0, VveK9I. (6.3)
Similarly, the variational inequality (6.2) can be reduced to

<o,y —u)>+jw) —ju) >0, YveK]. (6.4)

7. Main Results and their Proofs

7.1. Theorems

We claim the following theorems.

Theorem 1. Problem 3 and Problem 2 are equivalent.
Theorem 2. Problem 4 has a unique solution u.

Theorem 3. Let u be a solution of Problem j. Then the accompanying pres-
sure p can be chosen so that the frictional boundary condition on Iy is satisfied,
namely, (u,p) solves Problem 3. Consequently Problem 3 as well as Problem 2
has a unique solution.

Remark 5. The velocity part u of solution of Problem 3 is unique. However,
the uniqueness of the pressure part p of the solution of Problem 3 depends
on cases. In fact, suppose that f in {2 and g on I are small and such that
the classical boundary value problem for the power law Stokes equation with
the Dirichlet boundary condition (2.3) on Iy and w = 0 on I has a smooth
solution such that

Cr =suplo(u,p)| < infk = Cpy.
I I

Then (u,p) is a solution of Problem 3 (with no movement on I7), while re-
placement of p by p’ = p— A with a constant A subject to |A\| < Cys — C,, still
yields a solution of Problem 3. Actually, we see then

|o(u,p")| < k almost everywhere on I7.
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On the other hand, let (u,p) be a solution of Problem 3 with non-trivial
movement, i. e., v # 0 on I'y. Then p is uniquely determined. To see this,
suppose that u # 0 takes place on portion w with a positive measure of 17,
and note that the equality

—o(u,p) = k—

Jul

must hold on w, which prevents addition of any non-zero constant to p.

7.2. Proof of Theorem 1

Let (u,p) be a solution of Problem 3. It satisfies the weak power law Stokes
equation as noted above, while the Dirichlet boundary condition (2.3) on Iy is
obviously fulfilled since u € K9. Therefore, it remains to verify the frictional
boundary conditions. L

Let 1 be an arbitrary function on W+" (I) and let ¢ in K be its ex-
tension. Putting v = u + ¢ and substituting it into (6.1), we have

<0,7]>+/ k (lu+ 1| — [u]) dT > 0. (7.1)
I
By using an elementary property of |.| it follows that
—<o,n>< / kln|dI. (7.2)
I

In view of the inequality (7.2) with 7 replaced by —» and of the original (7.2)
also, we have eventually

|<o,77>|§/ kln|dI.
Iy

This implies that the functional o on W%’T(S) can be extended by continuity
to a bounded functional on Banach space

X=Li(D) = {g : /F k|§|dF<+oo} with ||§||X:/F k|¢| dT

and that it functional norm < 1. Since the dual space X* of X can be identified
with the Banach space

X =Ly () = {§ : ess S;lp Eizy < +oo}

with
1€(s)l
k(s)

[€]lx+ = ess sup
Iy

we have o € L°(I1) with its norm < 1, namely, we have |o(u, p)| < k almost
everywhere on [, obtaining (4.1). Then, putting n = —yu in (7.1), we have
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—/ ocudl — klu|dI” > 0,
I n
which gives in view of (4.2)

/ (-u+ Klul) dI" = 0. (7.3)
I

However, we have |o(u, p)| < k almost everywhere on Iy and then
ou+ klu| > (k —|o(u,p)|) |u| > 0 almost everywhere on I7.
Hence, (7.3) implies
o + k|u| = 0 almost everywhere on I7,

as desired.
Let (u,p) be a solution of Problem 2. It suffices to verify (6.3). This is
immediate in view of (4.2) and (4.3), as

/ a.(v—u)df+j(v)—j(u):/ (0.0 + Kfv]) I
I

I

—/ (a.u+k|u|)dF:/ (0.0 + E[v]) dI" > 0.
Iy

In

7.3. Proof of Theorem 2

Application of a standard theorem in variational inequalities for the mini-
mization of the convex functional

J) = ;a(v,v) —(f,v) +j@), wveK?

immediately gives the results, see [13].

7.4. Proof of Theorem 3

Let u be a solution of Problem 4, and p be any accompanying pressure of .
First of all, by substituting v = u £ ¢ into (6.4), we see that the functional
o(u,p) on the Banach space Yy (recall (5.4) and (5.5)) satisfies the following
inequality

<o,En>+j(utn) —ju) >0,

where 7 is an arbitrary element of Y; and ¢ € K is its extension. Hence, in
the same way as before, we deduce

|<o,n>|s/ Kol dT, ¥ € Y.
I

Thus the functional o can be regarded as a bounded linear functional on Yy,
which is the closure Yy in the Banach space Li(I7), and actually with its
functional norm < 1.
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Here we should note that Yp is not dense in L}(I}). However, by virtue
of the Hahn-Banach theorem concerning extension of linear functional, see [3,
22], there exists an extension ¢* € L°(I1) = X* of o with the property
llo*||x= < 1. Furthermore, by the same argument as before, we see that ¢* is
realized by a vector function on Iy with its L3°(I)-norm < 1. In this sense,
o* is a vector function subject to

|o*| < k almost everywhere on I7. (7.4)
Furthermore, from the fact that
<o n>=<o,n>, VneYy,

and by the definition of Y given by (5.5) in Lemma 2, it is easily shown that
there exists a real number A\ such that

o* — o = An almost everywhere on I7,

where n is the unit outer normal on I. This implies that o* is obtained from
o = o(u,p) by replacing the original pressure p by p* = p — A and thus we
can regard o* as the stress vector for v and p*. In other words, o* = o (u, p*).
Hence, (7.4) implies (4.1), i. e., the first inequality of the frictional boundary
conditions. After this has been obtained, the argument to show

o(u,p*).u+ k|u| = 0 almost everywhere on I'y

is quite similar to the corresponding one above. Consequently, together with
(u, p*) solves Problem 3, and therefore Problem 2 according to Theorem 1.
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