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Abstract. The aim of this paper is to prove the existence of a solution to the
quasistatic unilateral contact problem with a modified version of Coulomb’s law
of dry friction for nonlinear elastic materials. We derive a variational incremental
problem which admits a solution if the friction coefficient is sufficiently small and
then by passing to the limit with respect to time we obtain the existence of a solution.
Key words: nonlinear elasticity, quasistatic frictional process, incremental prob-
lems, variational inequality

1. Introduction

Contact mechanics is the branch of solid mechanics which typically involves
two bodies instead of one and focuses its objective on their common interface
rather than their interiors. Contact problems involving deformable bodies are
quite frequent in the industry as well as in daily life and play an impor-
tant role in structural and mechanical systems. Contact processes involve a
complicated surface phenomena, and are modeled with highly nonlinear ini-
tial boundary value problems. Taking into account various frictional contact
conditions associated with behavior laws becoming more and more complex
leads to the introduction of new and non standard models, expressed by the
aid of evolution variational inequalities. An early attempt to study frictional
contact problems within the framework of variational inequalities was made
in [7]. The mathematical, mechanical and numerical state of the art can be
found in [11]. In this paper we consider a problem of frictional contact be-
tween a body and a rigid foundation in nonlinear elasticity. We assume that
the forces applied to the body vary slowly in time so that the acceleration in
the system is negligible. In this case we can study a quasistatic approach to
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the process. We model the friction with a modified version of Coulomb’s law
which has been derived in [14, 15]. In linear elasticity the quasistatic problem
of unilateral contact using a normal compliance law has been studied in [1]
by considering incremental problems and in [9] by a different method, based
on a time regularization. The quasistatic contact problem with local or non-
local friction has been solved respectively in [12] and in [4] by using a time
discretization method. In [2] the quasistatic contact problem with Coulomb
friction was solved by an established shifting technique used to obtain in-
creased regularity at the contact surface and by the aid of auxiliary problems
involving regularized friction terms and a so-called normal compliance pe-
nalization technique. Signorini ’s problem with friction for nonlinear elastic
materials has been solved in [5] by using the fixed point’s method. In viscoelas-
ticity, the contact problem with a normal compliance law has been solved in
[13] by the same method. The book [8] introduces a mathematical theory of
contact problems involving deformable bodies. In carrying out the variational
analysis, the authors systematically use results on elliptic and evolutionary
variational inequalities, convex analysis, nonlinear equations with monotone
operators, and fixed points of operators.

The novelty of the present paper is to extend the results in [4] in the case
when the elasticity operator is nonlinear, strongly monotone and Lipschitz
continuous. As in [4], we propose a variational formulation written in the
form of two inequalities: an inequality which describes the contact under a
differential form with the velocity field as test function and an inequality
which represents the unilateral condition. By means of Euler’s implicit scheme
as in [4, 12|, the unilateral contact problem leads us to solve a well-posed
variational inequality at each time step. Finally by using lower semicontinuity
and compactness arguments we prove that the limit of the discrete solution is
a solution to the continuous problem.

2. Problem Statement and Variational Formulation

The physical setting is as follows. Let §2 C R%, (d = 2,3), be the reference
domain occupied by the nonlinear elastic body. {2 is supposed to be open,
bounded, with a sufficiently regular boundary I". I is partitioned into three
parts I' = Iy U Iy U Iy where Iy, I',, I's are disjoint open sets and measI >
0. The body is acted upon by a volume force of density ¢; on (2 and a
surface traction of density ¢o on I5. On I's the body is in unilateral contact
with friction with a rigid foundation. Under these conditions the classical
formulation of the mechanical problem is the following.

Problem P,. Find a displacement field u : 2 x [0,T] — R? such that

dive + o1 =0 in 2x(0,7), (2.1)
o= Fe(u) in 2% (0,7), (2.2)
u=0 onl} x (0,7), (2.3)
oV = o on Is x (0,7), (2.4)
0, <0, u, <0, opu, =0 on I3 x (0,7), (2.5)
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|o7| < pp (|Roy (w)])

lo.| < pp (|Roy (u)]) = 4, =0, on I3 x (0,T), (2.6)
lo.| = pp(|Roy, (u)]) = IAN >0 st. o = —Ait_
w(0) =up in 2. (2.7

Here equality (2.1) represents the equilibrium equation. Equality (2.2) repre-
sents the elastic constitutive law of the material in which F is a given function
and ¢ (u) denotes the small strain tensor; (2.3) and (2.4) are the displacement
and traction boundary conditions, respectively, in which v denotes the unit
outward normal on I" and ov represents the Cauchy stress vector. Conditions
(2.5) represent the unilateral contact boundary conditions. Conditions (2.6)
represent the nonlocal friction law in which o, denotes the tangential stress,
i, denotes the tangential velocity on the boundary and p is the coefficient
of friction. R is a continuous regularization operator representing the averag-
ing of the normal stress over a small neighborhood of the contact point. The
choice p (r) = 74 (1 —dr),, where r, = max (r,0) and § is a small positive
coefficient related to the wear and hardness of the surface, was employed in
[14, 15]. In (2.6) and below, a dot above a variable represents its derivative
with respect to time. Finally (2.7) represents the initial condition. We denote
by S4 the space of second order symmetric tensors on R? (d = 2, 3). We recall
that the inner products and the corresponding norms are given by

1
ww =wv, |v| = (uw)? , Vu,ve€RY
1
o.T = 04T, |T|=(r.T)?, Vo,7 € Sq.
Here and below, i,j = 1,...,d, and the summation convention over repeated

indices is adopted. Moreover, in the sequel, the index that follows a comma
indicates a partial derivative, e.g., u; ; = Ou;/0x;. To proceed with the vari-
ational formulation, we need the following functional spaces:

H=(1*(Q)", H=H(@)", Q={r=(r);imy=m€Ll*(Q)},
H (div; 2) = {0 € Q;divo € H}.

Note that H and @ are real Hilbert spaces endowed with the respective canon-
ical inner products given by

<U,U>H:/Uividma <UaT>Q:/ TijTij di.
7] 02

The small strain tensor is

E(U) = (Eij (u)) = %(ui7j+uj,i), S {17...,d},

d
here dive = (05,;) is the divergence of o. Let Hz (I') = (H% (F)) and let
1
2

~: Hy — Hz (I') be the trace map. For every element v € H;, we also use



500 A. Touzaline, D. E. Teniou

the notation v for the trace yv of v on I' and we denote by v, and v, the
normal and tangential components of v on I" given by

Vy =0V, Ur =0 — Ul

Let H™2 (I') be the dual of Hz (I'), for every o € H (div; £2), ov can be
defined as the element in H~2 (I') which satisfies the Green’s formula:

(0, (v))g + (divo,v) 5 = (ov, v)H_ 1 Yv € H. (2.8)

3 (I)xH3 ()

Denote by 0, and o, the normal and tangential traces of o, respectively. If o
is regular (say C'), then

oy, = (ov).w, or=0v—0,,

(ov,v) = /ay.vda Yv € Hy,

r

H™ % (I xH3 (I

where da is the surface measure element. Let V' be the closed subspace of
H, defined by V = {v € Hi;v=0o0n I} and K be the set of admissible
displacements given by K = {v € V;v, <0 on I3}. Since measI}y > 0, the
following Korn’s inequality holds (see [7]):

le g = callvlly, YveV,

where the constant ¢, depends only on {2 and I';. We equip V with the inner
product

<U7U>V = <E (U) ) € (U)>Q

and ||.||;, is the associated norm. It follows from Korn’s inequality that the
norms ||| and |.|[;, are equivalent on V. Then (V;|.|[;,) is a real Hilbert
space. Moreover by the Sobolev trace theorem, there exists d, > 0 which
only depends on the domain (2, I} and I3 such that

||U||(L2(F3))d S dQ ||U||V V'U S V (2.9)

For p € [1,00] , we use the standard norm of L? (0,7;V). We also use the
Sobolev space W1 (0,T;V) equipped with the norm

HU”WLOC(O,T;V) = ||U||L°°(O,T;V) + ||1')||Loo(o,T;V) :

For every real Banach space (X,|.|y) and 7" > 0 we use the notation
C([0,7]; X) for the space of continuous functions from [0,7] to X; recall
that C ([0,T]; X) is a real Banach space with the norm

12/l e (o,my,x) = max |z (8)]] x -

t€[0,T]

The force and the traction densities are assumed to satisfy

o1 € WE=(0,T; H), o€ WhH™ (O,T; (L? (Fg))d) . (2.10)



A Quasistatic Unilateral Contact Problem with Friction 501

We denote by ¢ (¢) the element of V' defined by
(6(6),v)y = /Qcpl ) .vdx+/F oo (t) wda Yo eV,te0,T].
Using (2.10) yields ¢ € W1 (0,T;V) . Let
H(Iy) = {wlr, ;we B (1), w=00n T}

equipped with the norm of Hz (I'). (.,.) shall denote the duality pairing on
H (I's) x H'(I3) where H' (I'3) denotes the dual of H (I3).

Before we start with the variational formulation of problem P; let us state
in which sense the duality pairing (.,.) is taken. For ¢ € H (div; 2), if ov €

(L? (Fg))d in the sense of distributions, i.e. 3h € (L? (Fg))d such that

- d
{ov, ('0>H*%(F)xH%(r) - ~/F2 h.oda Yo € (Cg° (I2))7,

we define the normal stress o, on I3 as follows:
Ywe H (Fg) :
(00, w) = (0,8 (v))g + (divo,v) iy — [}, hvda (2.11)
YveV;, wv,=w,v, =0 on 5.

We assume that R : H'(I3) — L?(I3) is a linear continuous mapping. It

is obvious to check that, when § is a given positive constant and sufficiently
small that there exists a constant L, > 0 such that

Ip(r1) —p(re)| < Lp|ry —re|, Vri,rs € R. (2.12)
We assume that F : 2 x Sy — Sy satisfies the following conditions:

(a) There exists L; > 0 such that
|F (z,e1) = F (z,82)| < L1 |e1 — &2
for all 1,65 € Sy, a.e. © € (2.
(b) There exists Lo > 0 such that
(F (2.1) = F (2,62)) . (61 — €2) > La|er — &2, (2.13)
for all 61,60 € Sy, a.e. ¢ € (2.
(¢) The mapping x — F (z,¢) is Lebesgue measurable on 2,
for any e € 5, .

(d) F(x,0) =0 for a.e. x € £2.

First we note that the condition (2.13) is satisfied in the case of the linear
elastic constitutive law o = Fe (u) in which ¢ = a;junékn, provided that
aijkn € L (§2) and there exists o > 0 such that

@ijkh () Epén > @ |§|2 V€ € Sq, a.e. T € 2.

Examples of nonlinear constitutive law which satisfy (2.13) can be find in [10]
and [16].
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Remark 1. F (z,7(x)) € Q, Y7 € Q and thus it is possible to consider F as
an operator defined from @ into Q.

Next, we assume that the friction coefficient satisfies
weLl>*(I3) and p>0 a.e. on ;s (2.14)

and we define the functional j: Vo x V — R by
Jj(u,v) = / up (|Roy (w)]) lvr|da ¥V (u,v) € Vo XV,
I3

where V}) is the subset of H; defined as follows
Vo ={v € Hy; diveo (v) € H}.

If u is a solution of problem P, stated below then o (u (t)) € H (div; 2) a.e.
t € [0,T] and therefore

i .0 = [ (R, @@l lde eV

Finally we assume that the initial data ug satisfies ug € K N Vg,
(Fe(uo) ;e (v—uo))g +J(uo,v —ug) = (¢(0),v —uo)y, VveK. (2.15)

Using Green’s formula (2.8) it is straighforward to see that if  is a sufficiently
regular function which satisfy (2.1)—(2.6) then,

u(t) € K for all t € [0,T],and for almost all ¢t € (0,7,
(Fe(u(t),e(v—1i(t)g+J(u),v) —jut),i() =

(@(t),v—u(t))y +(ov (u(t)), v, —t, (1)) YveV,
(o (u(t)),z—u, (£))y >0 VzeK.

Therefore, using (2.7) and the previous inequalities yields to the following
variational formulation of problem P;.

Problem P,. Find a displacement field uw € W (0,T;V) such that u (0) =
uo in 2, u(t) € KNV, for all t € [0,T], and for almost all t € (0,T),

(Fe(u(®), e()—e(a(®)))g+j(u(t),v)—ju(t),at) =
d(t),v—1(t))y, + (0w (u(t),v, — i (1) YveV, (2.16)
(o (u(t)), 2z —uy (t)) >0 VzeK. (2.17)

Our main result of this section which will be established in the next section
is the following theorem.

Theorem 1. Let T > 0 and assume that (2.10), (2.12), (2.13), (2.14) and
(2.15) hold. Then there exists at least one solution u of problem Py for a
sufficiently small friction coefficient p.
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3. Incremental Formulation
The proof of Theorem 1 is based on a time discretization method followed
by a fixed point arguments, similar to those used in [4] and is carried out
T
in several steps. For this, let n € N*, At = —, ¢, = iAt, 0 < i < n. We
. n .
denote by u’ the approximation vof u at the time ¢; and by the symbol Au’
the backward difference u'*! — u’. For a continuous function w (¢) we use the
notation w’ = w (¢;). Then we obtain a sequence of incremental problems P!
defined for u? = up by
Problem P!. Find u'™' € K NV, such that
(Fe(uh),e(w) — e (u“‘l))Q +j (W w—ut) = j (uit Wt —ut) >
(" w— u”‘l>v + (oy (u™) Jwy, —uitt) Yw eV,
(o, (W), 2z, —uTYy >0 VzeK.
We have the following result.

Proposition 1. Problem P! is equivalent to the following
Problem Q. Find u*t! € K NV, such that

{ (Fe (uth) e (w) —¢ (ui+1)>Q +j (u w —u?)

. . . ) ) 3.1
—j (Tt utt —uf) > (¢ w —utt) Y w e K. (8.1)

Proof. We refer the reader to [4] for the linear case. The proof is easily
extended to the nonlinear case as we replace only the bilinear form a : VxV —
R continuous and V —elliptic by a nonlinear operator A : V' — V strongly
monotone and Lipschitz continuous. B

Lemma 1. There ezists puo > 0 such that for ||p[| ey, < po, problem Q'
has a unique solution.

To show lemma 1 we introduce an intermediate problem. We define the convex
set Ct ={ge€ L?(I3);9>0ae. onl3} and

o= [ nglo,|da
I3

We introduce the intermediate problem Qflg for g € C7 by replacing in (3.1)
Ro, (u™t!) by g as follows.
Problem Q. . Find u, € K such that

(Fe(ug) & (w) — & (ug))g + 9 (w0 — ) — @ (g — ) > (61,0 — ),
Vwe K. (3.2)

Lemma 2. For any g € C7} problem Qﬁlg has a unique solution uy. Further-
more, there exist constants ¢; > 0, i = 1,2, such that

luglly < e llull o ry N9l pagry) + e2 |7, (3-3)
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Proof. Using Riesz’s representation theorem we define the nonlinear operator
A:V -V by
(Av, w)y, = (Fe (v) € (w))q -

Then hypotheses (2.13) (b) and (2.13) (d) on F imply that the operator A is
strongly monotone and Lipschitz continuous; on the other hand the functional
@ is proper, convex and lower semicontinuous. Some results from the theory
of elliptic variational inequalities (see [3]) imply that the inequality (3.2) has
a unique solution u,. Setting w = 0 in the inequality (3.2) and using both the
hypothesis (2.13) (d) on F and the inequality

(g =) [ = [ur|] < Jugr |,
we see that there exist constants ¢; > 0, i = 1, 2, such that
5 ,
luglly < cxllill oo (ryy N9l Loy luglly + ez |67y, Nuglly, -

Simplifying by the norm ||u,l|;, we have the inequality (3.3) . B
Lemma 3. Let ¥ : C — C7 be the mapping defined by

9—=¥(9) =p(Ro, (ug)]).

There ezists 119 > 0 such that for ||p|l o (p,) < po, ¥ has a fized point g* and
ug+ is a solution of problem Q.

Proof. As for g € L?(I3), 0, (uy) is defined on I'; and belongs to H' (I3),
using (2.12) we have

7 (91) =¥ (92) = Ip (|Ro (ug,)]) — p (|Row (ug,)])
< Ly [[Roy (ug,)| = [Row (ug,)|| < Ly [R (00 (ug,) — 0v (ug,))] -

Thus we deduce that

¥ (g1) — ¥ (g2)|l < Ly ||R(ow (ug,) —0u (ugz))||L2(F3) ‘

L2(I3)

Then using the continuity of the mapping R, there exists a constant ¢ > 0
such that

R (00 (ug,) — 00 (ug2))||L2(p3) <clloy (ug,) = ou (U’QQ)”H/(FS) )

and using the relation (2.11) and (2.13) () there exists a constant ¢’ > 0 such
that

llow (ug1) — Oy (ug2)||H/(p3) < ||ug1 — Ug,y ”V .

Therefore we deduce that

12 (91) = % (92 21y < € gy — gl -
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On the other hand set v = u,, in Q},,, and v = ugy, in Q},, and add them,
we obtain by using (2.13) (b), (2.9) and (2.12) that there exists a constant
d’ > 0 such that

gy — g lly < & lall ey 191 = 92l 2y -

Hence we find that

¥ (g1) — ¥ (92)||L2(F3) <cdd'Ly, ”.U”Loo(rg) llgr — QQHL2(F3) )

and when pg = , we have for ||u]| ;o p,) < po, that the mapping ¥ is

1
ccd' L,
a contraction. Thus, it has a fixed point g* and ug. is the solution of problem
Q% As ug. € H (div; 2) it follows that v'™! € 1V and so u'™ € KNVy. B

Lemma 4. We have the following estimates: there exists a constant py > 0
such that for ||pl| o,y < p1, there exist d; > 0, i=1, 2, such that

||u¢+1||v < d ||¢i+1||v7 HAMHV < dsy ||A¢1'HV, (3.4)

Proof. By setting w = 0 in the inequality (3.1) and by using hypothesis (2.13)
(b) on F and the properties of j, there exists c1 > 0 such that for ||/ e (p,) <
c1, we deduce that there exists d; > 0 such that the first inequality (3.4)
is satisfied. To show the second inequality (3.4) we consider the translated
inequality of (3.1) at the time ¢; that is

(Fe(u'),e(w) —¢ (uz)>Q +7 (', 0 —uh) —j (v ut —u'Th)
> (¢, w—u'), VweK. (3.5)

Setting w = v’ in (3.1) and w = u**! in (3.5) and adding them, we obtain
the inequality

— <}"a (ui“) — Fe (uz) ,€ (Aui)>Q —J (ui’Ll, Aui) +3 (ui,u”l — ui_l)
—j (ui,ui — uiil) > <—A¢i,Aui>V.

Furthermore by using the inequality
) | < [ .

i+1
||u7' —u T T

we have
J (@t u = uiY) = (uul —ui ) < g (o, Au)
and also the inequality
(e ()~ Fe (u) & (Au)) 45 (], Aul)—j (u, Au) 2 (-A¢T, Au),, .

Using the relation (2.11), there exists a constant ¢z > 0 such that
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low (@) = ou (W) |z 1y < €5 (A7 + (|46,

and then by using (2.9), (2.12), (2.13) (b) and the properties of j we deduce
that there exist two positive constants ds and d4 such that

L || 4|, < ds Ly llall ey 180 |5, + da [ A6 || 2l

By setting ¢y = 2dL3—2Lp, we deduce that if [[u]| e p,) < c2, there exists dy > 0
such that ' '
[Au'lly, < d [[A¢"]]y, -

Now, by taking 1 = min (¢, ¢2) we prove the lemma. B

4. Existence of Solutions

The main result of this paragraph is to show the existence of a solution ob-
tained as a limit of the interpolate function of the discrete solution.
We define the continuous function «” in [0,7] — V by

(t—t:)

Al Aui on [ti,tprl], i=07...,n—1.

u™ (t) = u’ +
As in [8] we have the following result.

Lemma 5. There ezists a function u € W1 (0, T;V) such that passing to a
subsequence still denoted (u™) we have

u" — u weak * in W (0,T;V).

Proof. From (4.1) we deduce that the sequence (u") is bounded in C ([0, T];V)
and there exists a constant cs > 0 such that

tfer[l(%?] [u" (D)l < cs ||¢||c([0,T];V) :

From (4.2) we deduce that the sequence (") is bounded in L*>° (0,7 V') and
there exists a constant ¢4 > 0 such that
ti

i (Ol = =

< 4]~ g

max
0<i<n—1 L>=(0,T;V)

Consequently each one of the functions u™ belongs to the space W1 (0,T;V)
and the sequence (u™) is bounded there. Then there exists a function u €
Wt (0,T;V) and a subsequence still denoted (u™) such that

u" — u weak x in W (0,T;V).

As in [10] let us introduce the following piecewise constant functions
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a0, T) =V, @r:[0,T|— H, ¢":[0,T]—V,
() =u @) = e (i), 0" (1) = S (tinr)
defined for t € (¢;,t;41] and i =0,...,n — 1.
Lemma 6. There erists a subsequence still denoted (i,,) such that
(1) u" — u weakxin L= (0,T;V),
(i1) u™(t) — u(t) weakly in'V a.e. t € [0,T],
(15i) u (t) € K for all t € [0,T].
Proof. From (3.4) we deduce that the sequence (@") is bounded in L>°(0,T; V).
Thus, we can extract from it a subsequence still denoted (™) which converges

weakly * in L> (0,7;V). On the other hand, from [8] we deduce that for al-
most every t € (0,7T)

8" (&) " @)y < " Ol (41)

and, since (4") is bounded in L*° (0,T; V), we deduce from (4.1) that 4" — u
weak * in L (0,T;V) as n — +o00, whence (7).

For the proof of (ii), since W1 (0,7;V) — C([0,T];V), we have
u™(t) — w(t) weakly in V, for all ¢ € [0,7], and from (4.1) we conclude
immediately.

For the proof of (iii) it suffices to remark that 4" (t) € K a.e. t € [0,7)
and using the continuity of «. B

Remark 2. As ¢ € W1 (0,T;V) we have
¢" — ¢ strongly in L? (0,T; V). (4.2)

SN

Lemma 7. The sequence (i") converges strongly to u in L* (0,T;V).

Proof. From inequality (3.1) we deduce the inequality V w € K

(Fe (u'th) e (w) —¢ (Ui+1)>Q+j (Wt w—u™) > (" w — ui+1>v )

Therefore
(Fe(a" (1)) ,e(w) —e(@" (t)))q +Jj(@" (t),w—u" (1))
> <q§” (t),w— a" (t)>v VweK, ae tel0,T]. (4.3)
To show the strong convergence, we take v = 4" "™ (t) in (4.3) and v = " (t)

in the same inequality satisfied by "™ (¢) and adding them, we obtain the
inequality

(Fe (@™t (t)) — Fe (@™ (1)), (@™ (t)) —e (™™ (t)))Q
(@ @) () — @ (1) + 5 (@ (1) @ () — " (1)
> = (8" (1) = 6" (1)@ () — (1)
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Then using (2.12) (b) and the continuity of the mapping R, we deduce that

Ip (1Row (WDl 21y < Lp 1 Bow (W)l L2ry)

< L,C oy @l ry < Lo ( sup 13 @l + sup [0 0] ).

As there exists a constant C’ > 0 such that

sup |[|a" (’5)”\/ < ||¢||W1m(o,T;v) )
te(0,T)

we deduce that there exists a constant Cy > 0 such that

i @ =& O, < ooy ez

e ) -

e ) - o))

HL2 (I3)? + ‘
Keeping in mind that

||un+m (t) _ ﬂ:} (t) < ||ﬁ:}+m (t) — u¢+m (t)H

||L2(F3)d L2(r3)d

+ ||uf+m () —ul (t)HL2([‘3)d + ||luy () — ay (t)||L2(F3)d ’

as (u™) is bounded in W (0,T; V), from the continuity of the trace map,
we obtain that the sequence (u" |1, ) is bounded in W1 (O,T; (L? (F3))d).
It follows from the Arzela-Ascoli theorem that it is relatively compact in
c ([O, T]; (L? (Fg))d) and therefore there exists a subsequence, still denoted
by (u™) such that

Vn > 0,3n; € N such that : Vn > ny, VYmeN, Vtel[0,T]:

[ (#) — uf Ol p2(ryye < 0-
On the other hand using (2.9), we have for almost every ¢t € (0,7
n n n n T, ..
luz (8) = @ Ol z2(ryy < de llu” (8) = a" Olly < de—[la" @)l -

Combining these results we obtain that there exists a positive constant C;
such that

T
[l o - ||L2(Fddt<01( +n)

On the other hand from (4.2) we have

Vn > 0,3ne € N, such that : Vn > ne,Vm € N:

[

gm0~ 3 ) dr <
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Then we obtain that there exists a constant Cy > 0 such that

Vn > 0, dns € N, such that : Vn > ng = max (n1, n2),
T
~ ~ 1
Ym € N : / @t (t) — un (t)Hf/ dt < Cy (27] + 5)
0

On the other hand

1
Vn > 0, dng € N, such that : Vn > nyg : — <.

3

We thus deduce that
VYn > 0, Ins = max (ng,ns), such that Vn > ns :

T
e @) @ @ d < scn
0
So we conclude that
u" — u strongly in L2 (0,T;V). (4.4)
|
Proposition 2. The function u is a solution of problem P.

Proof.  To prove that u is a solution of problem P, in the first inequality of
problem P} and for v € V, set w = u' + vAt and divide by At; we obtain the
inequality

Aut L Aut
i+1 e — gt =
<}—€( )€ (At >Q ) j(” ’ At)
><¢(tz+1 Al> +< Z+1),U,,—AA“E>, VoueV
1%

A
Whence for any v € L? (0,T;V), we have

(Fe(@" (1)), (v () —e (@" (t))q + 7 (@" (t),v(t) = j (u" (t),a" (1))

> (6" (1), 0 () =i (1) + (o, @ () v, (1) = i (1)) for aa.te0,T].

Integrating both sides of the previous inequality on (0,7), we obtain the
inequality

T T
| Fe@ @)@ - Ogd+ [ @ 0.0
0 0
T T o
- [a@ o [ (@ o00-e o),
T
+/ (o (@" (1)), vy (t) =y, (t))dt.  (4.5)

0

The statement is proved by passing to the limit in the previous inequality and
by using the following result of Lemma 8. H
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Lemma 8. We have that u (t) € Vi for all t € [0,T] .

Proof. Aswu(t) € K for all t € [0,T] we have u (t) € Hy for all t € [0,T]. It
suffices to show that divo (u (t)) € H for all t € [0,T]. From inequality (4.3)
we obtain that

dive (" (t))+ @7 (&) =0  forall t €[0,T7,
and then we have

[dive (@" ()l = 167 Ol < sup o1 ()l -
te(0,T)

We deduce that for a fixed ¢ € (0,7T") the sequence (divo (u™ (t))) is bounded in
H, then there exists a function x; € H such that after passing to a subsequence
still denoted (divo (W™ (t))) we have

(divo (u" (t))) — x¢ weakly in H.
As divo (U™ (t)) — divo (u (t)) in the sense of distributions, we deduce
divo (u(t)) = xq-
So that u (¢t) € Vo for all t € [0,7]. W

Remark 3. As u(t) € K for all t € [0,T] and u (t) € V, for all t € [0,T], it
follows that u (t) € KNV, for all t € [0,7].

Lemma 9. We have

T T
lim inf j(a"(t),u"(t))dtz/o J(u(t),u(t))dt

n—oo O
Proof. We write

g (@ (), (t)) = (4 (" (¢), 0" () = 7 (u(t),a" () + 5 (u(t) 4" ),

then we have

T
/O (G (@™ (), " () = g (u(t), " (1)) dt

<ec ||U||Loo(F3) Ly ||R (0 (u") = 0 (u))||L2(o7T;L2(F3)) ”i‘?”L2(07T;L2(F3)d) :

Using the continuity of the mapping R, we get that there exists a constant
¢ > 0 such that

[R (o (@" () = 0w (w ()l g2,y < cllow @™ (£) — o (w ()l g ()
ae. te (0,T).
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On the other hand using the definition of o, there exists a constant ¢’ > 0
such that

low " (1)) — 00 (u Ol < ¢ (17" (0) — (@) +
ae. te (0 T

Whence

R (o0 (" (1) = ov (w (@) 121y
<ed (||17" (t) —u (t)[ly, +

and so there exists a constant C’ > 0 such that

50)]) aete.1),

R (0 (u")) — o (u))HLQ(O,T;L?(Fg,))
< (1 = ullz o) + |6 = ¢

L2(0,T;V))'
From (4.2) and (4.4) we deduce that
i R (o0 (@) = 0 (W) o712y = 0 (4.6)

and we have

T T
hminf/o j(u(t),u”(t))dtZ/O HOORTOL.

n—oo

by Mazur’s lemma. B

Lemma 10. For any v € L? (0,T;V) we have the following properties:
T
lim (Fe(u™(t)),e(v(t) —e(@”(t))gdt

n—oo 0

T
= [ (P e - @m)g (4.7
T T
Jm [ o) = [ oo (48)
0 0
T

lim <05" (t),0(t) — " (t)>

n—oo 0

T
dt:/o (o (t),v(t)—u(t)), dt. (4.9)

\%4

Proof. For the proof of (4.7), we write:
T
/0 (Fe(u™ (1)) ,e (v (1) —e (@" (1)) dt
T
= /O (Fe (u™ (1)) = Fe (u(t) e (v (t) —e (a" () dt
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Using (4.4) and (2.12)(a) we have

T
/O (Fe(u" (1)) = Fe(u(t)),e (v (t) —e(a" (1)), dt

<clu" -~ ull 20,7 (||”||L2(0,T;V) + ||unHL2(O,T;V)) — 0.

We deduce that

T
lim (Fe(u" (1)) — Fe(u(t),e(v(t)) —e(a"(t)))gdt =0,

n—oo 0

and, we have
T T
A U%Qdﬂ%e@un—ewﬁﬁnmd#:A (Au(t), v (t) — " (1)), dt
T T
— /0 (Au (t),v (t) — (), dt = /O (Fe(u(t),e(v(t) —e (ult)),dt.

Using (4.6) and (4.2), it is straightforward to prove (4.8) and (4.9) respectively.
Passing now to the limit in inequality (4.5), we obtain the inequality

T T
/<.7-'5(u(t)),5(v(t))—e(u(t))>th+/ Ju(t),v(t))dt
0 0
T T
—/(Mwﬂmm»ﬁ2/<mwmm—umnﬁ
0 0

T
+/<%WW%%@—%@Mt
0
In this inequality we set

v(s):{z for s € (t,t+ A),

i (s) elsewhere,

and obtain the inequality
t+A
%/t (<F€(u (), (2) =€ (@(s))) o+ (u(s),2) = j (u (s),u(s))) ds
-+ t+A
> %/t <¢(s)7z—U(s)>Vds+§/t <U,, (u(s)),z, —uy (s)>ds.

Passing to the limit, we obtain that u satisfies the inequality (2.16). To com-
plete the proof we integrate on (0,7") both sides of (4.3), that is

T T
j/ <fé<ﬂ“<w>,e<v<w>—-s(ﬁ"(t»>th+-j/ @ (1) 0 (1) — A" (8)dt
0 0

> /OT <¢~s" (t), v (t) — a" (t)>v dt, Ve L?(0,T;V)
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such that v (t) € K a.e. t € [0, T]. Passing to the limit in the above inequality,
and using (4.2), (4.4), we obtain the inequality

T
/0 ((Fe (w®) e (0 (1) = @) +3 (wlt), v () ~u(®)) dt
> /T (p(t),v(t) —u(t))y, VveL*(0,T;V);v(t) € K, ae. te0,T].
0
Proceeding in a similar way, we deduce that u satisfies the inequality

(Fe(u(t)),e(w) —e(u®)g +i(u),w—u(t))
> (o (t),w—ul(t), Ywe K, ae. te0,T]. (4.10)

By using Green’s formula in inequality (4.10) as in [4], we obtain that u
satisfies the inequality (2.18) and consequently u is a solution of problem Ps.
[

Remark 4. We can consider another variational formulation of problem P;
defined as follows.

Problem P. Find a displacement field u € W (0, T; V) such that u (0) =
uo in 2, u(t) € KNV, for all t € (0,T), and for almost all t € (0,T),

(Fe(u(t),e(v) —e(u(®)))g+i(u),v)—ju(t),ul®) =
(@(t),v—u(t))y + (o (ut)),vy—u(t)y, VeV,
(Boy, (u(t),zo —uy (1)), >0 VzeK,

where R: H~z (I') — L% (Is) is a linear and continuous mapping and (., o
denotes the duality pairing on H~2 (I') x H2 (I') . The cutt-off function 6 ¢
Cg° (RY) has the property that = 1 on I3 and § = 0 on S> with S> an open
subset such that for all ¢ € [0, 7] suppps (t) C Sz C Se C Is.

5. Conclusion

In this article we have shown the existence of a weak solution to the quasistatic
unilateral contact problem with friction for nonlinear elastic materials under a
smallness assumption of the friction coefficient. The uniqueness of the solution
represents, as far as we know, an open question.
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