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Abstract. A fast (C,C™) solver for linear Fredholm integral equations v = Tu+ f
with smooth data is constructed on the basis of a discrete version of the spline
quasicollocation method. By a fast (C,C™) solver we mean a discrete method that
meets the optimal accuracy for f € C™ with minimal arithmetic work.
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1. Introduction

Consider the Fredholm integral equation

u(z) = / K(z,y)uly)dy + f(z), 0<z<1, (L1)

where f € C™[0,1] and K € C?™([0,1] x [0,1]), m € N. Assume that the
corresponding homogeneous equation v = Tu has in C[0, 1] only the trivial
solution u = 0; here T' = Tk denotes the integral operator of equation (1.1).

We are interested in fast solvers for equation (1.1). In literature, the mean-
ing of a fast solver often varies. In the present paper, we use a notion of a
fast solver which meets the optimal accuracy of the solver with the mini-
mal amount of the arithmetical work (we mean the order optimalities), cf.
[17, 19, 20, 21]. Below we assume that the information about f and K is
restricted to n, sample values; the evaluation points for f and K depend on
the solver of equation (1.1). A solver is called information optimal on a class
of problems (1.1) if (disregarding the amount of the arithmetical work) its
accuracy on the class is of the same order as the lower bound of the error over
all solvers with n, sample values of f and K. We proclaim a solver to be fast
if it is information optimal and its implementation costs b,,n, flops where the
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constant b,, is independent of n,. In addition, we require a fast evaluation of
the approximate solution at a given point. More precisely, by a fast (C,C™)
solver we mean a solver that produces approximate solutions u,,, n € N, such
that

e given the values of f at not more than n, points and the values K at not
more than n, points (determined by the solver, with the property that
Ny = ny(n) — 00 as n — o0), the parameters of u,, can be determined at
the cost of b,,n, flops, and an accuracy

lu — unlloo < cmnny ™| fllm,cos Cm i= limsup ¢, < 00 (1.2)

n—oo

is achieved where u = (I — T')~!f is the solution of (1.1) and the constant
¢m is independent of f (it may depend only on m and K);

e having the parameters of u,, in hand, the value of u,, at any point z € [0, 1]
is available at the cost of b/, flops (b/,, depends only on m).

Here [Julle = supg<,<; [u(z)| and [[ullm,c0 = maxo<p<m ||u(’“)||OO are the
norms in C[0,1] and C"™[0, 1], respectively. We have not set a condition that
in (1.2) also ¢, are independent of f; setting this condition we obtain a
more strict notion of a fast (C, C™) solver.

Estimate (1.2) can be rewritten with respect to the complexity 7., :=
bmn. of the fast (C,C™) solver in the form

||’LL - u"’LHOO S Em:”n:*m ||f||m,oo ) E'rmn = bmcm,m
T i= limsup G, < 00. (1.3)
n—oo

This form of the estimate enables a comparison of fast (C,C™) solvers with
different complexity parameters b,,, i.e. the smaller ¢,, corresponds to the
more effective solver.

It is not known what are the smallest values of ¢, and ¢,, in (1.2) and
(1.3) over all fast (C,C™) solvers. On the other hand, it is relatively easy
to prove (cf. [16, 17]) that for any solver using the sample values of f on a
uniform grid in [0, 1] consisting of n, points (whereas the information about
K and the arithmetical work may be unrestricted), there is a “bad” nonzero
function f € C"™[0,1] such that

qjm+1 — —
u—tnlloo > LTS | (1.4)
||I_TKHC4>C *
where
Sy (1)
= — , meN, 1.5
T k:o 2k —|— 1)

is the Favard constant,

4 4
1:451<q’>3<¢5<---<—<--~<%<4’>4<¢2=%, lim @n:;
™

m—00
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Thus ¢p, > Py ™/ — Tk|lc—c in (1.2) if uniform grids are used
for f. When we restrict the information about K and the arithmetical work
in accordance to the definition of the fast (C,C™) solver, the value of the
constant ¢, in (1.2) is expected to increase. In Sections 3-5 we succeed in
construction of a spline quasicollocation solver with c¢,, = @pi17 " dr,m
where the constant dg,, is determined by the kernel K through the quantities
| K ||2m.c0 and H(I_TK)_lHCHc’ and dg,, — 1 as ||K|l2m,co — 0. Thus
for small || K||2m,c0, upper estimate (1.2) for the proposed solver and lower
estimate (1.4) for any solver are close to one another.

Estimate (1.4) holds true disregarding the smoothness of the kernel K.
The role of the smoothness of K becomes clear due to the following result of
Werschultz [21] published in 2003 but having a long prehistory: for any solver
of (1.1) with n, evaluation points for f and K, disregarding the amount of
the arithmetical work, in any class of kernels

K = {K €™ (0.1 % 0,1) : [Kllew <7 |[T=Ti) o <5}
m >1, v>0, k>1,
there is a “bad” K such that even for f = 1, it holds

= tnlloo > Qs ™2 (1.6)

where ¢ is a positive constant depending only on m, m/, v and &; a self-

contained proof can be found also in lecture notes [16]. According to (1.6),
under the traditional assumptions f € C"™[0,1], K € C™([0,1]x[0,1]), i.e., for
m’ = m, the accuracy O(n, m/ %) and not more can be achieved by any solver.
This partial result is relatively simple, it has been established already in 1967
by Emel’yanov and Il’in [3]. A further consequence of (1.6) is that accuracy
(1.2) is possible only if m’ > 2m. This explains the constellation m’ = 2m of
our smoothness assumptions f € C™[0,1], K € C*™(]0,1] x [0, 1]).

It is of common interest to rearrange known methods into fast (C,C™)
solvers and characterise their effectiveness by the constant ¢,, in (1.3). Some
results in this direction can be found in [21] (Galerkin method with discon-
tinuous piecewise polynomial approximation of the solution), [19] (Nystrom
method), [17, 20] (wavelet approximations). The constant c,, in (1.2) and
the effectiveness constant ¢,, in (1.3) have not been characterised explicitly
in these works. In the present paper we introduce a new fast (C,C™) solver
based on the quasi-interpolation by smooth splines, and we expose the pa-
rameters ¢, b, and ¢, of this solver explicitly. It can be shown that the
effectiviness constant ¢,, of the constructed solver is smaller than those for
the solvers treated in [17, 19, 20, 21] but we cannot present corresponding
arguments here — they need a revisiting of long considerations of previous
works in a more detailed level; an interested reader can find the details and a
theoretical comparison of the mentioned methods and some further methods
in the lecture notes [16].

Perhaps the proposed quasicollocation method is of interest not only in
the complexity analysis but also in the practical solving of integral equations
with smooth kernels. Numerical examples are presented in Section 6.
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2. Approximation of Functions by Splines
2.1. The father B-spline

The father B-spline B,, of order m in the terminology of [2, 12], or of degree
m — 1 in the terminology of [5, 13, 22| can be defined by the formula

B () m—1) |Z < ) (z—i)7!, zeR, meN  (21)
Here, as usual, 0! = 1, 0° := lim, o 2% = 1,
m m! \m—1 (x_i)m_la m_i207
. = (iE—Z)T = )
i il (m —1)! 0, T —i<0.

Let us recall some properties of B,,:

supp By, = [0,m], Bp(z) = Bp(m—2) >0 for 0 <z <m, (2.2)

By € R, BV = 0 ("),

forl<z<i+1, 1=0,...,m—1,

/Bm(a:)d ZBm —j)=1 zeR
R

JEL

2.2. Spline interpolation on the uniform grid in R

Introduce in R the uniform grid hZ = {ih: i € Z} of the step size h > 0.
Denote by Sp m, m € N, the space of splines of order m (of degree m — 1)
and defect 1 with the knot set hZ. The family of B-splines By, (h~'z — j),
j € Z, belong to Sy, ,, and the same is true for Y-, d; By, (h~tz — j) with
arbitrary coefficients d;; note that the series is locally finite: it follows from
(2.2) that

Zij (bt —j) ZdBm (bt —j) for x € [ih, (i+ 1)h), i € Z.

JEZ j=t—m+1

Given a function f € C(R), bounded or of at most polynomial growth as
|z] — oo, we determine the interpolant Q. mf € Sh.m by the conditions

(Qnm)(@) = djBm (h 'z —j),

JEZ

(Qhnf) ((k+%)h) =1 ((k+2)n), kez (2.3)
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For m =1 and m = 2, Q. f is the usual piecewise constant, respectively,
piecewise linear interpolant which can be determined on every subinterval
[ih, (i+1)h), i € Z, independently of other subintervals. For m > 3, the value
of Qn,m f at a given point = € R depends on the values of f at all interpolation
knots (k + ) h, k € Z. It occurs (see [11, 13]) that for m > 3 conditions (2.3)
really determine d;, j € Z, uniquely in the space of bounded or polynomially
growing bisequences (d;), namely,

di=3" i wmf ((k+ %) B) =S anmf (( -+ %) h), ez, (24)

keZ keZ
where
m mo—1 . .
S SO A M ez B (m —2)/2 if m is even,
k,m — 7 Zlm>s € 4L, mo= . .
= P (z1m) (m—1)/2 if m is odd,
and 21, € (—1,0),1 =1,...,myg, are the roots of the characteristic polynomial
m
Po(z) = By, (k —) ktmo
()= > +5 )2
|k|<mo

(it is a polynomial of degree 2my). It occurs that P, has exactly mg simple
roots z;m, | = 1,...,my, in the interval (—1,0), and the remaining mgo roots
are of the form z;4 g m = 1/21m € (—o0,—1), I =1,...,myq.

Denote by BC(R) the space of bounded continuous functions on R
equipped with the norm || f|o = sup,cg |f(z)|, by V"*°(R) the space of
functions having bounded mth (distribution) derivative in R, by W™>(R)
the standard Sobolev space of functions on R having bounded derivatives of
order < m, and by W(gf)o (R) the space of functions f € W™>(R) with
supports in (0,1).

Lemma 1. For f € V™>®(R), it holds f — Qn.mf € BC(R) and

Hf_ Qh,m.f”oo S ¢m+17r—mh7n

|| (2:5)
where Py, is the Favard constant (1.5).

Estimate (2.5) is established in [5] for 1-periodic f, h = 1/n with even n €
N, and in [15] in general case. The following lemma proved in [15] tells that,
in some sense, the spline interpolation yields the best approximation of the
function classes W™ (R) and V"™ >°(R), asymptotically also of W(mo) f)o (R),
compared with other methods that use the same information as Qp .mf —
the values f|z, . of f on the grid Zy,, = {(j + 2)h : j € Z}. Denote by
C(Zy,m) the vector space of all (grid) functions defined on Zj, .

Lemma 2. For given v > 0, we have by Lemma 1
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whereas for any mapping My, : C(Zp.m) — C(R) (linear or nonlinear, contin-
uous or discontinuous), it holds

sup ||f = Mi (f1z,...) |oo > Dy h"y,
FEW™ > (R)
(R =
- M
liminf  sup I/ h(,J:,[A;;I)HOO > 1.
h=0 fewr=m® Pmprm ATy

[ER [N

2.3. Quasi-interpolation by splines

Let m > 3. In a quasi-interpolant Q(p ) f, p € N, the infinite sum (2.4) defining

h,m
the coefficients d; of the spline interpolant (2.3) is replaced by a finite sum:

(@) @) = X dP By (n712 = ),

jEz

d) = > ol f (G —k+g)h).

[k|<p—1

A simple truncation of the series in (2.4) does not give acceptable results.
Using a special difference calculus for fast decaying bisequences, the following

(") have been proposed in [6]:

formulae for a7,

p—1
2q
o= 5 0 (2 Y W <01

q=|k|

mo (1 + Zl,m)zzszq_l -

= ]_ =
Yoom =1L Yem ; (I~ 22 P (ztm)” 17

Then it occurs that
HQh’mf — Q;lpzan < cm,ph?p Hf(2p)H for f € V2p,oo(]R)

with a constant ¢, , that can be described explicitly. A consequence is that
for f € V™>(R) with uniformly continuous f(™ and 2p > m, it holds
Qo = Q21
asymptotically of the same accuracy as the interpolant Q. f. It is reasonable
to take the smallest p € N for which 2p > m, denote it by mq,

‘ h™™ — 0 as h — 0, i.e., the quasi-interpolant Q;fznf is

m
5 + 1, m even m
my = = \;gJ + 1l=m-— mo, Q;Lm = Xnnll),

Qo = Qg s k[ <ma, (2.6)
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Note that (@}, ,,,f)(z) is well defined for x € [ih, (i + 1)h] with an i € Z if f
is given on [(i — m + 1)h, (¢ + m)h]| N Zp m.-

We assumed that m > 3. For m = 1 and m = 2, we may put Q, ,,, = Qn,m-
The following results are proved in [6].

Lemma 3. For i € Z, f € C™[(i —m+ 1)h, (i + m)h), it holds

1f(@) = (Qhmf) (@)

max
ih<z<(i+1)h

S (@erlﬂ—_m +qmc;n) h™

)| @)

max
(i—m+1)h<z<(i+m

For f e C™[—6,14 4], 6 > 0, it holds

. m oy < —m ’<m> ‘
lim sup x| /(@) = (Qhmf) (@)] < Prpar™™ max |£(z)

For a relatively compact set M in C[—0,1+ 6], 6 > 0, 4t holds

/
sup max, |f(x) = (Qhmf) ()| — 0 as h — 0.

In [6], formulae for ¢, == ||Qn,m| Bo®)—BO®), Tm = HQZ7mH

.. from (2.7) and their numerical values are presented.

BC(R)—BC(R)’

3. Spline Quasi-Collocation Solvers

3.1. Introducing remarks

Fast (C, C™) solvers can be designed directly for integral equation (1.1) or for
the equivalent equation

v=Tv+g, g=T4]f. (3.1)
We choose the latter way. The solutions of (1.1) and (3.1) are in the relations
v="Tu, u=v+f. (3.2)

Assuming f € C™[0,1], K € C?*™([0,1] x [0,1]), we have u € C™[0,1], v €
C?™]0,1] for the solutions of (1.1) and (3.1), and the higher smoothness of
v simplifies a fast solving of (3.1) compared with (1.1). On the other hand,
a new problem arrives, how to approximate g = T'f in a fast and sufficiently
precise way. Nevertheless, fast solvers using equation (3.1) occur to be more
effective and algorithmically more simple than the solvers using (1.1) directly.

For n € N, h = 1/n, the spline quasicollocation method for equation (3.1)
can be defined as the solving the equation

Un = Q;L,QmT’UTL + Q;172mTf7
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where Q) ,,, is the quasi-interpolation operator introduced in Section 2.3.
Note that/Qthu is well defined in [0, 1] if w is defined on [—2mh, 1 + 2mh).
Thus a realization of the quasi-collocation method needs the values of K on
[-2mh, 1+ 2mh] x [0,1]. In the problem setting, the kernel K of the integral
operator 7' is given only on [0, 1] X [0, 1]. So we have somehow to extend K (z,y)
with respect to the argument z. The quasi-collocation method is not discrete.
To build a fully discrete method, we need an extension of K with respect to
both arguments = and y. Also f must be extended for numerical algorithms.
We are interested in extensions that preserve the smoothness of f and K. In
Section 3.2 we discuss one possible extension.

3.2. A smoothness preserving extension of functions

Let u € C™]0,1]. It is possible to extend u to [—4,1], 0 < § < 1/m, by the
well-known reflection formula (see, e.g., [7])

u(zx) = icju(—jx) for —0 <z <0, (3.3)
=0

where c; are chosen so that a C""-smooth joining takes place at = 0. Namely,
differentiating (3.3) k times we have

u(k) Z c u(k) jz), —d<zx<0,
7=0

the C"™-smooth joining at = = 0 happens if lim, 1o u®) (z) = u*)(0), i.e., if

d (=iFei=1, k=0,...,m.

=0

This is a uniquely solvable (m + 1) x (m + 1) Vandermonde system to deter-
mine cg, ..., Cn. Moreover, the Cramer rule enables to present the solution
of the system in a closed form. Let us recall the formula for a Vandermonde
determinant:

1 1 ...1
zZ0 21 .- Zm
2 .2 2
— N
V(20,215 2m) :=| 70 *1 m| = H (21 — 21)-
N 0<i<k<m
m m m
25 22l

If we replace the jth column by the column consisting of 1’s, we again obtain
a Vandermonde determinant. The Cramer rule yields after reductions

Vi-m,...,—m+j—-1,1, —-m+j+1,...,0)
V(-m,—m+1,...,0)

(m+1
= —]_j | = PP .
C(TE) d= o

Cj =
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Same c¢; suit to extend u onto [0,1 + J]:
u(z) = chu(l —jx—=1)) for 1<z <1+4. (3.4)
j=0

As the result we obtain an extended function u € C™[—6,1 + §]. It holds

m

|u(z) Z ¢j| max |u(z)] = (2™ — 1) max |u(z).

—6<x<1+6 ) 0<z<1 0<z<1

If u is given only on the grid {ih : i = 0,1,...,n}, h = 1/n, n > m?,
(3.3)—(3.4) still enable to compute u(ih) for ¢ = —m,...,—1 and for i =
n+1,...,n+m. One must be careful with truncation errors when the values
u(jh) for j = 0,...,n, are computed, since these errors may be magnified
2m+1 1 times extending u(jh) by (3.3) for j < 0 and by (3.4) for j > n.

3.3. Discrete quasi-collocation method

Assume that f € C™ [—%, 1+ %} K € 02 ([=20,1 + 28] x [~20,1 + 24)),
6 > 0, and that the knot values of f and K exploited below are given. Put
h = 1/n where n € N, n > m/§ (then mh? < §2/m, 2mh < 26). Using the
spline quasi-interpolation operators (see Section 2.3)

Qh2m 2 Cl=mh? 1+ mh?] — C[0,1], Q9. : C[~2mh, 1+ 2mh] — C[0,1],
introduce the quasi-interpolant approximations of f and K: for 0 < z < 1,

fn(@) == (@2 f) (z) (3.5)

n?—1

SR (T L

I=—m+1  |gl<m

for 2mh <z <1+42mh, 0<y <1,

Kﬂ(ma y) = Q% 2m7'uK(x y) (36)

= S (X e g ) B —

k=—2m+1 " |q|<m

recall (2.6) for the definition of m1; the subindex y in @}, ,,,, , K (7, y) indicates
that @}, ,,,, is applied to K (z, y) as to a function of y treating x as a parameter.
According to Lemma 3, we have the estimates

< —-m, —2m ‘ (m) } —2m .
goax [f(2) = fu(@)] < Pmaam "0 max |f(@)] + 0" e m, g (3.7)
K - Kn ’
72mh£nza£i+2mh| (x’y) (x y)|
0<y<1
< Bopprm 20T max |82mK (z,9) |+n e nm K (3.8)

0<z,y<1
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where €, 1, f, €n,m,xk — 0 as n — oo. Introduce the integral operator
1
T C[0,1] — Cl—2mh, 1+ 2mh], (Tho)(z) = / Koz, y)o(y) dy.
0

Due to (3.8),

1T = Tollcjo,1)— [ 2mh,14+2mh] (3.9)

< Poppi1m 2P max ‘8§mK(x,y)| + 7f2m5n,m,K-
0<z,y<1

Instead of the pure quasi-collocation method v, = Q}, 5,,,Tvn + QY 5, T f, We
introduce its fully discrete modification

Un = Q;L,QmTTLUn + Q;z,2anfn- (310)

Theorem 1. Let f € C™ [—fni, 1+ %} K € 02 ([~20,1+20] % [~20,1+20]),

5 >0, and let N(I —T) = {0}. Then equation (3.1) has in C[0,1] a unique
solution v € C*™[0, 1], for all sufficiently large n equation (3.10) has in C[0,1]
o unique solution v,, and it holds

max [0(a) = v (@)] < wan™2" (Sirn™ £+ ) 1K

(a2 (1|02 K, + (b, + D) 027 K] ) + Emami )1 1< )
(3.11)

where €, m,xk — 0, €nm,; — 0 as n — oo,

-1 —
fin = H(I B Q;“2mT") Hc[o,l]—»o[o,l] - H(I -T) 1HC[OJ]HC[O,I] =

®,,, is the Favard constant, ¢5,, = HQ;””H : (see Section 2.3),

BC(R)—BC(R
oo = , Ko = K(x,
Il o= o £ Kl o= o [K (o)

and similar sense have the norms ||f(m)HOO, H(’?ﬁmKHOO, ||8§mK||oo.

Proof. Consider the difference of operators in equations (3.1) and (3.10):
T = QhomTn = (I = Qpom) T + Qo (T = Tn).

The operator T : C[0,1] — C?™[—4,1 + ¢] is compact. The image M C
C?*m[—6,1 + 4] of the unit ball of C[0,1] by T is relatively compact in
C?M[-§,1+ 4], and Lemma 3 yields

Y _ _ /
H(I Qh’zm) THC[O,l]—»C[O,l] Hfﬂipglolélﬁé’(T“)(m) (Qh’QmTu) (a:)‘

S ¢2m+1ﬂ.—2mn—2m max }8§mK($, Z/)} + n_QmEn,m,Ma
0<z,y<1
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where €, ;s — 0 as n — oo. The norm HQ;L om (T —1T) can be
’ C[0,1]—-C10,1]
estimated with the help of (3.9), and we obtain
—2m, —2m
1T = Qh 2m Tl o011 .1 < Pomarm™™ ™m0 (3.12)

x (oiﬁ%’il 027 K (2, 9)]| + dom e |05 K (x, W] ) +n7,

where €], . ;- — 0 as n — oo. Further, for the difference of the free terms of
equatlons (3 1) and (3.10) we have

Tf— Q;z72anfn = T(f - fn) + (T - Q;L,?’ITLTTL) In
that together with (3.7) and (3.12) yields

175 = Qs Tfull o < 1K oo (Smam™ |7+ enns) 2"

¢2m+1 2m 2m |f (33)|
(P (02K o 977K ) + emanic) gmax, 2L 313)

Here maxo<g<1 | fn(z)| < maxo<z<i|f(z)| +O (n?™) as n — oo. The claims
of the theorem follow from estimates (3.1 ) and (3.13). &

Remark 1. According to (2.7), for the quantity or &, ., ¢ in (3.13) and hence
n (3.11), we have the estimate

< gmc, .
En,m,f > qmCp 7(m71)h2£nwa§)§.+(mfl)h2 |f($)|

3.4. Two grid iterations

Equation (3.10) can be solved by the two grid iteration method (cf. [1, 3, 19]):
take a v € N such that v ~ n?, 3 < 6 < 1, rewrite equation (3.10) in the form

Up = Qll/u)QmTuvn + (Q;L,Qan - Qll/y)QmTu) Un + Q;L,Qanfnv (314)

and starting from v? = 0, compute the iterations for k = 1,2, :

Ufb = Qll/u,ZmTl’UfL + (Q;L,Qan - Q/]./u,QmTl’) Ufb_l + Q;172anfTL (315)

The operator I — @ Jv om 1w is invertible for sufficiently large n, cf. Theorem
1. It occurs that two iterations (3.15) is enough for our accuracy needs.

Theorem 2. Let the conditions of Theorem 1 be fulfilled, and let v ~ n?, % <
0 < 1. Then

_ 2 < 74077’7, — A
0@3§1|Un r) — vy, (7 )| dmn Hf”oo()l] 0( )”f”oo,[Ol (3.16)

where v,, is the solution of equation (3.10) and v? is the second iteration
defined by (3.15). The constant d,,, can be reproduced explicitly following the
proof.
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-1
Proof. Denoting S,,, = (I—Q’l/U,QmTV) (Q;me" _Q/l/V,QmTV)7 we
rewrite (3.14) and (3.15) in the form
-1
Un = Sn,uvn + (I - Q/l/l,72mTl/) Q;L,QmTTLfTLa U’?L =0,
-1

ok = Susth 4 (1= @ onTy)  QhomTafns k=1,2
Subtracting we obtain
Up — U,QZ =S5 (vn — U,ll) = 5’27,} (vn — 112) = S’iuvn,
[on — 02 [los,0,1] < ”SH,VHQC[O,l]HC[O,l] [0 loo, 0,1 < K2

2
/ !
Q T, —Q T,
’ ho2mEn A v 2m || Gi0.11— 00,1

X

] Kn ||Q;L,2TI’LTTL||C[O71]*>C[O’1] ||anoo,[0,1]~
Here (see Theorem 1 and (3.12))

HQ;LZmT”||c[071]_,o[071] - ||T||C[071]~>C[0,1]7

||fﬂ||oo7[071] - ”f”oo,[O,l]v Rn, Ky — K as 1 — 00,

HQ;LZmT” - Qll/u,QmTV

C[0,1]—C[0,1]

< [|@h2mTn — THc[o,l]—»C[o,l] + HT ~ QijvamTy C[0,1]-Cl0,1]

< 20 an 2 (27K + i 027K L) + 27
and we arrive at (3.16). B

Due to (3.2) and Theorems 1, 2, u,, = v2 + f is a suitable approximation
to the solution u of equation (1.1) in the practice but not for the construction
of a fast (C,C™) solver since too rich information about f is used. Therefore
we set

Up = V2 + fn, (3.17)

where f,, is defined in (3.5) and satisfies (3.7). For u,, defined by (3.17) The-
orems 1 and 2 still imply the estimate

Cm,n m .
[ — tn oo < n2;” (Hf||oo + Hf( )Hm) ,  Cm:=limsupey,, <oco. (3.18)

n—oo

In Section 5 we present (3.18) in a more detailed form (5.2), (5.3) with an
explicit formula for ¢,,.

Treating (3.18) as the estimate (1.2) with n, = n?, our main task now
will be to show, how the parameters of v2 can be computed in b,,n, = by, n>
flops (see the definition of the fast (C, C™) solver, Section 1). The n? +2m —1
parameters of f,, —the knot values f (({ + 2) k%), l = —m+1,...,n*+m—1,
involved in (3.5) — are assumed to be given, similarly as suitable ~ n? knot
values of K (z,y). To be formally precise, we should rewrite (3.18) with respect
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to ny = n?+2m — 1 and take the care that also K is evaluated not more than
in n? + 2m — 1 points. Fortunately, moderate shifts in n, do not influence on
asymptotics as n — oo, in particular, on ¢, in (3.18), so we do not need to
follow the formalism so precisely.

4. Implementation of the two Grid Iterations

4.1. Reformulation of the iteration formula and further prospects

The two grid iterations (3.15) occur to be more flexible and convenient if
we rewrite them with respect to w® := T,v% and wkf := T, k = 1,2,...

Applying T, to (3.15), then T,, to (3.15), the iteration formula (3.15) yields
for k=1,2,...

wllj = TVQ/I/V,2mw]Ij + (TVQ;Lmefz_l - TVQ/l/VQmwl]f_l) + TVQ;172mTTLfTL7
wa = 1-17162/1/u,21n’w]uC + (THQ;L,Qmwfl?Lil - Tanl/y,Qmwllfil) + TTLQ;IQanfTL

With w? = 0, w) = 0, the first iteration approximations can be represented
as

wll, = TVQIl/u,Qmwi + TVQ;7,72mT’ILfn7 (41)
w717, = Tanl/u,Qmwi + THQ;L,Zanfn7 (42)
w12/ = Tqul/u,Qmwg - wi + TI/Q;172m (w}w + ZT”f") ’ (4'3)

after that (3.15) yields
v727. = Qll/z/,?m (wz - wi) + Q;L,Qm (w717, + Tnfn) . (44)

Note that (4.1) and (4.3) are equations on the coarse level v w.r.t. wl and
w?, respectively, whereas in (4.2), only certain linear operators are applied
to known functions. The computations can be performed using only the grid
values of functions: having (7., f,)(ih), i = —2m + 1,...,n+ 2m — 1, at our
disposal, we can compute w.(i/v), i = —2m + 1,...,v + 2m — 1, by solv-
ing (4.1), after that w.(ih), i = —2m + 1,...,n + 2m — 1, by (4.2) and
w2(i/v), i = —2m + 1,...,v + 2m — 1, by solving (4.3); with these grid
values, (4.4) recovers v2 for 0 < z < 1. The computation of (T}, f,)(ih),
i1=—-2m+1,....,n+4+ 2m — 1, occurs to be the most labour consuming part
of the solver and we postpone the algorithmic details to Section 4.5. In Sec-
tions 4.2-4.4 we comment on the computation of the grid values of 7,,Q}, ,,,, w,
T,,Q’l/U’Qmw, TnQ’l/y,Qmw, T, Q}, 5,,w through the grid values of a given func-
tion w. This enables an implementation of (4.1)—(4.3) without matrix repre-
sentations of the operators in (4.1)—(4.3) so far as we solve equations (4.1)
and (4.3) by a suitable iteration method, for instance by GMRES. About al-
gorithmic aspects of GMRES, see [8, 9, 10, 14]; the complexity of GMRES
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for discretisations of integral equations has been analyzed in [10, 18]. Apply-
ing GMRES to equation (3.10) directly, accuracy O (n~") with any given r is
achieved in o(log n) GMRES iterations that results to a complexity o (n?log n)
flops of the method due to the dimension ~n of problem (3.10). This is quite
acceptable for practical purposes but slightly too expensive for the construc-
tion of a fast (C, C™) solver where only O (n?) flops are allowed (see Section
3). When we solve equation (3.10) via two grid iterations (4.1)—(4.4) and ap-
ply GMRES to equations (4.1) and (4.3), we achieve an accuracy O (n~") still
in o(logn) GMRES iterations, and due to the dimension v < n of problems
(4.1), (4.3), the complexity of method (4.1)—(4.4) reduces to desired O (n?)
flops.

When solving (4.1) and (4.3) by the Gauss elimination or by other direct
methods of the complexity O (1/3), we have to strengthen the condition on v
so that 1 < n? — we choose the coarse level so that v < nf, 3 < 6 < Z;
moreover, we need the matrix representation of the coarse level equations (4.1)
and (4.3). The matrix representation of the fine level equation (3.10) is also
useful in the practice allowing to solve it directly (without two grid iterations)
by standard codes of the Gauss elimination, GMRES, conjugate gradients or
other methods of linear algebra. The matrix representations of equation (3.10)
is treated in Section 4.6; for (4.1) and (4.3) the matrix representation is similar.

4.2. Application of the operator TnQ;%2m

For w € C[—2mh, 1 + 2mh], we have

(Q;172mw) (y) = Z Z a‘p 2mW j p+m)h)BQ7n(ny_.])7 0 < Y < 1a

j==2m+1 |p|<m

and by (3.6), for —2mh <z < 1+ 2mh,

n—1

1
(T Q@) o) () = / Kl ) @pam) @) dy = S 3 o
k=—2m-+1 |q|<m

n—1

x K@, (k—g+mh) Y Bl Y aponw((G—p+mh),  (4.5)

j==2m+1  |p|<m

where we denoted
1
ﬂ,’;’f = / Bom(ny — k)Bopm(ny — j)dy, k,j=-2m+1,...,n—1. (4.6)
0

From (2.2) we observe that 8,/ = 0 for [k — j| > 2m, thus the summing
up over p and j in (4.5) is cheap, it is sufficient ~ (2m + 1)n flops for the
computation of

&= Y aponw((j—p+mh), j=-2m+1,...,n-1, (4.7)

[p|<m
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after that ~4mn flops for the computation of

n—1
N 1= Z ﬁg”j’.lfj, k=-2m+1,....,n— 1 (4.8)

j=—2m+1

Now (4.5) takes the form

n—1
(Ta@pomw) @) = S0 3 aly K, (k — g +m)h)n
lg|l<m k=—2m+1
n+m—q—1

= Z Z a;,QmK(mv k/h)nk’—i-q—m

lg|<m k'=—m—q+1

and after the change of summation ordering

n+2m—1 min{m,—k’+n+m—1}
(T"Q;172mw) (z) = Z K (z,k'h) Z 04:172m7lk/+q—m-
k'=—2m+1 g=max{—m,—k’—m+1}

Thus we can continue (4.7), (4.8) by

min{m7fk/+n+mf 1}

Co = Z O oMk +q—m> K = —=2m+1,... n+2m—1, (4.9)
g=max{—m,—k’—m+1}

n+2m—1
(1@ 0mw) (ih) = Y K (ih,K'h) Gy, i = —2m+1,...,n+2m~1, (4.10)
k'=—2m+1

that cost, respectively, ~(2m + 1)n and ~n? flops.

Let us comment on the computation of nonzero ones of the quantities 6,?”;7,
k,j=—-2m+1,...,n — 1, defined in (4.6). Everybody of them is a sum of
not more than 2m copies of the following m(2m + 1) “brick” integrals

(i+1)h
/ By (ny)Bop(ny —l)dy, 1=0,....2m—1, i=1,....2m—1
ih

The integrand of a “brick” integral is a polynomial of degree 4m — 2, and a
“brick” integral can be evaluated exactly by the 2m point Gauss quadrature
formula in 2m flops provided that we already have evaluated Ba,,(ny) at the
Gauss knots of the subintervals (ih, (i + 1)h), i = 0,...,2m (the evaluations
can be done in 2m - 2m - 2m flops). Thus all “brick” integrals are available in

~ 12m? flops, and also all By kyj = —2m+1,...,n — 1, are available in
O (m?) flops independently of n.
The computation of the knot values (TnQﬁl’zmw) (th), i = —2m +

1,...,n+2m—1, from (4.7)—(4.10) costs ~ (2m-+1)n+2mn+ (2m+1)n+n? ~
n? flops.

The computation of the knot values (TVQ’l/V Qmw) (i/vs), i = —2m +
1,...,v+2m — 1, is similar to (4.6)-(4.10) and costs ~v? flops.
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4.3. Application of the operator TVQ;7,,2m

Only slight modifications occur in formulae (4.6)—(4.10) when we compute
TVQ;7,72mw' Namely, for —2m/v < x <1+ 2m/v,

1 v—1
(T Qo) (z) = / K@) @am)mdy = Y Y

k=—2m+1 |q|<m

Xa;72mK( ( _Q+m/y Z ﬂ Z O[1)2777‘ j-p—‘r’ﬂ’l)h)

j=—2m+1 IPISm

where

1
By = / Bom(vy — k)Bam (ny — j) dy,
0
k=-2m+1,....,.v—-1, j=-2m+1,...,n—1. (4.11)

Having computed

§i= > dpouw((j—p+mh), j=-2m+1,...,n-1, (4.12)
[p|<m

N = Z Brte, k=-2m+1,...v-1, (4.13)
j=—2m+1

min{m,—k'+v+m—1}
= o Wta—m, K =—=2m+1,...,v+2m—1, (4.14
g,2m Tk +q
g=max{—m,—k’—m+1}
we obtain

v+2m

(T, Q) 2w) () Z K(— —)gk, i=—2m+1,...,v+2m—1. (4.15)

—2m+1

Dividing the integrals in (4.11) into elementary “bricks” similarly as in Section
v,n

4.2, we can compute 5’7, k= —2m+1,...,v —1,j=-2m+1,...,n—1,
in O(m?n/v). After that the computation of (TVQQLme) (i/v), i = —2m+

1,...,v—1, by (4.12)— (4 15) costs ~ (2m + 1)n+ 202 + (2m + 1)v +v? ~ 3v/2
ﬁops recall that v < nf, 1 < 0 < 1.

4.4. Application of the operator T'"'Qll/u,2m
For the computation of T,,Q’ JuamW We obtain the following formulae: for

—2mh < x <1+ 2mh,

n—1

(1@l ) () = /O Kaeo) (@) W= S Y

k=—2m+1|g|<m
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X al o K (2, (k — g + m)h) Z Bl Y o aw((f—p+m)/v),

Jj=—2m+1 IPISm

where (cf. (4.11))

1
g = / Baw(ny — k) Bam(vy — j) dy = 877,
0
k=-2m+1,....,.n—1, j=-2m+1,...,v—1.

Having computed

& = Z ongm (G—p+m)/v), j=-2m+1,...,v—1, (4.16)
Ip|<m

M= Y, Beré, k=-2m+1,...,n—1, (4.17)
j=—2m+1

min{m7fk/+n+mf 1}

G = Z O om Mk tq—ms K ==2m+1,... . n+2m—1, (4.18)
g=max{—m,—k’—m+1}

we obtain
n+2m—1
(1@ ) (R) = 3 K (ihKR) G, i = =2m 41, n 4 2m—1.
k'=—2m+1

(4.19)
The computation of (T”Qg_/u,Qmw) (th),i=—2m+1,...,n— 1, by formulae
(4.16)—(4.19) costs ~ (2m + 1)v + 4mn + (2m + 1)n + n? ~ n? flops.

4.5. The computation of T, f,,

By (3.5) and (3.6),

n?—1

(Tof) ( /ny > ( > zomf(l_er )hg))

l=—m+1 |p|<m1 1

X Bp(n?y —1)dy = Z Z o (k—q+m)h)
k=—2m+1 |g|<m
n?—1
S Y ot ((1-r+ 5 )82 (4.20)
l=—m+1 Ip|<mi—1

where we denoted for k= —2m+1,....n—1,l=—-m+1,...,n?> -1

1
Yk, = Yk, l,mn = / BQm(ny - k)Bm(TLQZ/ - l) dy (421)
0
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Let us comment on the computation of these integrals.

First of all, y,; = 0 if (0,1) N (knh?, (k + 2m)nh?) N (1A, (1 +m)h?) = 0,
thus for fixed k, —2m + 1 < k < n — 1, the summation over [ in (4.20) is
actually restricted to the index set
T =Tkymn ={l€Z: I; <1<}, card(Zyx) <m(2n+1),

I == max{—-m+1,—m+ kn + 1}, I3 :=min {n* —1,2mn +kn — 1} .

There is a kind of periodicity in ~;; for “central” k, 0 < k < n — 2m — 1: the
change of variables y — z, ny = nz — 1 in (4.21) yields vk = Yi+1,i4n-

Further, each of integrals v4;, k= —-2m+1,...,n—1, 1 € Z, is a sum of
not more than 2mn + 2m — 2 copies of the ~2m?n “brick” integrals

(i+1)h?
/ Bo (ny) B, (ngy —j) dy, j=-m+1,...2mn—1, j<i<j+m—1,
ih?

with a polynomial integrand of degree 3m — 2; due to symmetry, actually the
number of bricks can be reduced to ~m?2n. A “brick” integral can be exactly
computed by a ~ %m point Gauss quadrature formula at the cost of ~ %m
flops provided that we already have evaluated Ba,,(ny) at the Gauss knots of
the subintervals (ih?, (i + 1)h?), i = 0,...,2mn — 1; due to symmetry, these
evaluations can be done in ~mn-3m-3m flops (number of intervals x number
of Gauss knots in one interval x evaluation cost of polynomial integrand at
one Gauss knot). Thus all “brick” integrals can be computed in ~ %m?’n +
9m3n = 6m>n flops, and the same asymptotics holds for the price of all 7,
k=-2m+1,....n—1,1 € Zy.

A direct computation of the intermediate quantities (see (4.20))

Pk ZZZ’Yk,l Z a;lu,mf((l p+ )hg) k:_2m+1van_17

LETy Ip|<mi—1

costs ~ 3mn? flops (~ mn? for the summations over p and ~ 2mn? for the
summations over /). By changing the ordering of summations the computation
cost can be reduced to ~2mn? flops. Indeed, with I’ = [ — p and the change
of summation ordering we obtain for k = —2m+1,...,n — 1:

l** mi—1

Z%l Z a;7mf((l P+ )hz)
I=lf  p=—mitl

ol

I+mq—1

S 3 ()

1=y I'=l—m1+1
I +mi—1 min{li*,l’—i—ml—l}

IS ) (e 2w

U=l —mi+1 \l=max{l},l'—m,+1}

For a fixed k, —2m + 1 < k < n — 1, the computation of the occurring here
coefficients
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min{l}*,'+m,—1}

Vie,r = Z "/ma;f“m, I EI]; = {l; —m1—|—17...,lg*—|—m1—|—1}7
I=max{l},l'!—=m1+1}

costs ~ (m + 1)2mn flops (the number of terms in the sum is < m + 1, and
card (Z;,) < m(2n + 2)). Due to the periodicity property v = Yi+1,i+n for
0<k<n—-2m-—-1,l€Z,it holds Yr1 = Yet1,04n for 0 <k <n—2m—1.
So it is sufficient to compute the coefficients 7y ;» for 4m + 1 different values
of k, and all 4y, k = —2m+1,...,n— 1,1’ € I, are available in ~8m?n
flops (plus ~6m3n flops for the computation of v, k = —2m+1,...,n — 1,
l € T, established above).
Having 44, in hand, the computation of

l;*+7TL171
B B P A B
PYr = E ’Yk,l/f((l —I—?)h), k=-2m+1,...,n—1, (4.22)

V=lf—mi+1

costs ~2mn -n flops (the number of terms in the sum times the number of k).
Thus the full cost of vy, k = —2m+1,...,n—1,is ~2mn? + 14m3n ~ 2mn?
flops as asserted. After that for i = —2m+1,...,.n4+2m —1

@f)ih) = S oK (ih, (kg — m)h)g,

k=—2m+1|g|<m

can be computed in ~ n? flops similarly as in Section 4.2, replacing 7 in
(4.9) by ¢y
min{m77k/+n+mfl}
Yy = > O om Pl 4q—m, K =—=2m+1,... n+2m—1, (4.23)
g=max{—m,—k’—m+1}
n+2m—1
(Tufn) (ih) = > K(ih,k'h)t, i=-2m+1,... ,n+2m—1, (4.24)
k'=—2m+1

The summary is that the knot values (T, f,,)(ih), i = —2m+1,...,n+2m—1,
are available by (4.22)—(4.24) in ~ (2m + 1)n? flops.

4.6. The matrix representation of the systems
Consider the counterpart of equation (3.10)
wy, = Tn Q) 9mWn + g (4.25)

with an arbitrary force term ¢. The function TnQ;ﬂmwn is uniquely deter-
mined by the knot values w, (ih), i = —2m + 1,...,1 4+ 2m — 1. Collocating
(4.25) at points ih we obtain a certain system of linear algebraic equations

n+2m—1
wp (th) = Z TijWn(jh) +g(ih), i=-2m+1,...,n+2m—1. (4.26)
j=—2m+1
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The matrix entries 7; ; can be determined knowing from Section 4.2 the re-
sponse of the operator 7,,(2}, ,,,w to a given function w. Namely, let functions
ej € C[—2mh,1+2mh], j = —2m+1,...,n+ 2m — 1, be such that

ej(ih) =64, 4,j=—-2m+1,....,n+2m—1, (4.27)
then
Tig = (TnQhomes) (ih), i,j=—2m+1,...,n+2m—1. (4.28)

Revisiting Section 4.2 and using (4.27) we observe that the matrix of system
(4.26) (the knot values (4.28)) is available in ~ (6m + 3)n? flops.

Respectively, the computation of the matrix for equations (4.1) and (4.3)
costs ~ (6m + 3)v* = o (n?) flops.

5. Summary: the Spline Quasicollocation Fast (C,C™)

Solver

The integrals 87", 8, B s B Vkts Yer (see Section 4) are available at
the cost of O (m3n) flops. Computing v2 via iterations (4.1)—(4.4), we apply
either GMRES or the Gauss elimination for the solving of equations (4.1) and
(4.3), and so we actually obtain two different fast (C,C™) solvers. In both
cases we define the approximate solution u,, of (1.1) via the formula (see (3.5),
(3.17) and (4.4))

Un = U721 + f" = Q/]./V,Qm (U)g - U)i) + Q;L,Qm (wib + Tnfn) + Q;ﬂﬂnf' (51)

The approximation w,, is well defined on [0, 1] provided that the ~ n? knot
values f ((l—|— %) hg), l=—-m+1,...,n2 +m — 1, are given and and the
parameters (T}, f,)(ih), wk(ih), i = —2m+1,...,n+2m—1,and wk(i/v), i =
—2m+1,...,v+2m—1, k = 1,2, have been computed; in the computations,
the ~n? knot values K (ih,jh), i,5 = —2m+1,...,n+ 2m — 1, of K have
been involved. The considerations of Sections 3 and 4 can be interpreted as
a construction and justification of the fast (C,C™) spline quasicollocation
solver {(4.1)—(4.3), (5.1)}. For simplicity, let us confine ourselves to the case
of Gauss elimination for solving (4.1) and (4.3). First of all, (3.7), (3.11) and
(3.16) yield

Jmax [u(z) = un ()] < Kpn 2™ (¢m+1777m (1Kl +1) Hf(m)H (5.2)
—2m 2m / 2m En,ﬁK
 (@amam 2 (027K, + Oty + 1) 027K ) Y1 o) + K,

where ¢, s,k — 0 as n — oo. This is estimate (1.2) with n, = n? and

em = lm ¢pmp = P17 " dK m, (5.3)

n—oo

@ m —m m m
dcm= (;—:w (ﬁuag K|| + (righ,, +1) |02 K||Oo)>+n(||K||oo+1).
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Further, according to Section 4.5, (T}, f,,)(ih), i = —2m+1,...,n+2m—1,
are available in ~ (2m+1)n? flops. The solution of (4.1) and (4.3) by the Gauss
elimination costs O (¥*) = o (n?) flops (recall the condition v ~ n?, < 6 < %
in the case of Gauss elimination), whereas (4.2) can be implemented in ~2n
flops (see Sections 4.2 and 4.4). Thus all parameters of u,, are available at the
cost of ~ (2m + 3)n? = b,,n, flops where b,, = 2m + 3. For the effectiviness
constant ¢, (see (1.3)) of the solver {(4.1)—(4.3), (5.1)} we obtain the formula
Cm = (2m + 3)™¢,, with ¢, defined in (5.3).

Finally, the value u,(z) at any x € [0,1] can be computed in b, flops
determined by the price of the evaluation of the quasi-interpolants in (5.1)
when the knot values of corresponding functions are given.

For solver {(4.1)—(4.4), (5.1)}, the upper estimate (1.2) and the lower
estimate (1.4) (which is true for any solver), are of the same order w.r.t. n;
moreover, di m — 1 as || K||2m,co — 0, and the limits of the r.h.s. of estimates
(1.2) and (1.4) coincide.

Estimate (5.2) contains the term ¢, ,, ¢,k Which converges to 0 as n — oo
but non-uniformly with respect to f from the unit ball of C"™[0,1]. With
the help of Remark 3.1 we have an estimate of type (5.2) also with ¢,
independent of f, resulting to (1.2) with

C = limsup ¢ = Prni1m™ "dicm + (1 + K[| K| 00)qm s

n—oo

see Lemma 3 for the quantities ¢,,, and c;,, and [6] for their numerical values.

6. Numerical Example

The results of the present paper are mainly of theoretical character but since
we have introduced a new method for the solving of integral equations (the
discrete quasicollocation method (3.10)), it is of interest to examine its accu-
racy also in numerical examples. Below we consider the model problem (1.1)
with K (z,y) = e~**¥ and the solution u(z) = e~ where a and 3 are pos-
itive parameters; the free term f(x) can be easily computed. Note that for
large « and 3, an acceptable accuracy of the solution of (3.10) needs large n
so far as uniform grids are used, and fast solvers, in particular, {(4.1)—(4.3),
(5.1)} will be useful; numerically, GMRES applied directly to (3.10) (without
two grid iterations) is preferable due to the simplicity of its algorithm com-
pared with (4.1)—(4.4) and since the computational cost of GMRES exceeds
the complexity of (4.1)—(4.4) only by a factor o(logn).

The accuracy of the computed approximate solution u,, = v, + f is pre-
sented graphically on Fig. 1 — Fig. 7. For the parameter values a = 1, 10,
B =mand a = 1, § = 107, the solution of (3.10) is of a high accuracy al-
ready for relatively small n, and corresponding system of linear equations was
solved by the Gauss elimination neglecting the two grid iterations. On the
other hand, for « = 1, § = 1007 and for o = 30, 8 = 7, an acceptable accu-
racy of the solution of (3.10) is achieved for relatively large n, so we tackled
(3.10) by GMRES still neglecting the two grid iterations.
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Figure 1. a = 1, 8 = 7, 256-bit Figure 2. o = 1, § = 10w, 256-bit
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Figure 3. o = 10, 8 = m, 256-bit Figure 4. o = 30, 8 = 7, 256-bit
real numbers, Gauss elimination. real numbers, GMRES.

The computations were performed in C++ using 256-bit real numbers
(type qd_real) made available by library qd version 2.2.4 (see [4]). For sta-
bility and simplicity, the evaluations of B,,(z) were done in a way that the
coefficients of the father B-spline B,, in (2.1) were computed beforehand as
overhead.

For comparison, in the case « = 1, § = m computations using 64-bit real
numbers (type double) were also performed as well as the problem (3.10)
was also solved by GMRES together with measuring the running time of the
program (see Fig. 8) (the source code was compiled under GNU C++ compiler
4.2.1 and run on a 1460 MHz Athlon XP, the host operating system being
FreeBSD 6.2). Note that the low accuracy due to only 64-bit numbers slightly
improves already when the values of B,,(x) by formula (2.1) are computed
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Figure 8. Program run time comparison
for the case « = 1, 8 = 7. The line of

lowest times in every category corresponds
to m = 3; the greater m, the more time is
consumed.

in 256-bit arithmetics (as overhead) and other calculations are still done in
64-bit arithmetics (see Fig. 6 and Fig. 7).
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