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Abstract. The generalized thermoelastic problem of a thick-walled simply-suppor-
ted beam subjected to different applied heat source and mechanical loads at its sur-
faces is studied. The thermoelastic coupling differential equations of motion of the
beam are established. The generalized thermoelasticity based on the dual-phase-lags
(DPLs) theory is considered to treat this problem. An exact 2-D coupled solution
is presented to deduce analytical expressions for the temperature, displacements and
stresses. The time-harmonic motion behavior as well as the thermal and mechanical
conditions at the bounded faces of the beam is used for this purpose. The effect of the
DPLs on the field quantities against the axial and normal directions of the beam un-
der thermomechanical loads is discussed. Final investigations to various thermoelastic
models are made.
Keywords: generalized thermoelasticity, dual-phase-lags, state-space approach, thermo-

mechanical loads.

AMS Subject Classification: 74Fxx.

1 Introduction

A literature review reveals that many generalized theories of thermoelasticity
have been developed to study the behavior of thermoelastic structures. These
theories can be classified in different models, such as the theory of coupled
thermoelasticity (CTE) [3], the Lord and Shulman (L-S) theory [13], the Green
and Lindsay (G-L) theory [8], the Green and Naghdi (G-N) theory [9, 10, 11]
as well as the Tzou dual-phase-lag (DPL) thermoelasticity theory [21, 22, 23].
To the author’s best knowledge, only a few authors have presented the exact
two-dimensional solution of the generalized thermoelastic beam problem up to
present time.
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Many investigators have used different forms of the normal mode anal-
ysis to obtain the exact analytical solutions of various thermoelastic prob-
lems [1, 8, 9, 10, 11, 19, 21, 22, 23, 28]. Most of these publications have used the
Laplace transformation to eliminate the time parameter. Sharma et al. [19]
have applied the Hankel transform technique in the context of generalized the-
ories of thermoelasticity to investigate the effect due to a time-harmonic normal
point load and thermal source in a homogeneous isotropic thermoelastic, half-
space. Verma [24] has obtained the dispersion relations of thermoelastic waves
by invoking continuity at the interface and boundary conditions on the surfaces
of layered plate. Othman and Singh [16] have studied the equations of a 2-D
problem in a micro-polar thermoelastic medium for a half-space whose sur-
face is free and subjected to an instantaneous thermal point source. Jiangong
and Tonglong [12] have used the G-N generalized thermoelastic theory without
energy dissipation to investigate the propagation of thermoelastic waves in or-
thotropic spherical curved plates subjected to stress-free, isothermal boundary
conditions. Mukhopadhyay and Kumar [15] have formulated the state-space
approach to the problems of thermoelastic interactions on the basis of the G-
N theory of generalized thermoelasticity of type-III with energy dissipation.
Prasad et al. [17] have dealt with the investigation of the propagation of har-
monic plane waves with assigned frequency by employing the thermoelasticity
theory with dual-phase-lags. Zhou et al. [29] have investigated the generalized
coupled thermoelasticity based on the L-S theory by considering the transient
thermoelastic response of functionally graded rectangular plates. Hyperbolic
heat conduction problem is solved numerically by Čiegis [4].

The 3-D problem for a homogeneous, isotropic and thermoelastic half-
space subjected to a time-dependent heat have been considered by Sarkar and
Lahiri [18]. They assumed that the boundary of the space is traction free and
treat this problem in the context of G-N model II of thermoelasticity with-
out energy dissipation. Lotfy [14] has presented the magneto-thermoelastic
interactions in an isotropic homogeneous elastic half-space with two tempera-
tures using mathematical methods under the purview of the CTE, L-S and G-L
theories. Abbas [1] has established a 3-D model of the generalized thermoe-
lasticity without energy dissipation under temperature-dependent mechanical
properties. Recently, Zenkour [26] has presented a unified generalized thermoe-
lasticity theory for the transient thermal shock plate problem in the context of
G-L, L-S, and CTE theories.

El-Karamany and Ezzat [5] have proved the uniqueness and reciprocal the-
orems without the use of Laplace transforms for the dual-phase-lag thermoe-
lasticity theory. Ezzat et al. [6] have constructed a new mathematical model
of two-temperature magneto-thermoelasticity taking under consideration the
fractional order dual-phase-lag heat conduction law.

The present article is concerned with the two-dimensional transient gen-
eralized thermoelastic problem for a beam subjected to thermal and thermo-
mechanical loads at its faces. Based on the dual-phase-lags model [2, 27, 28],
the state equations are established by state-space method. The equations of
the classical thermoelasticity theory, Lord and Shulman theory, and Green and
Naghdi theory may be established as special cases of the DPLs theory. All
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expressions for temperature, displacements and stresses are presented. Numer-
ical results showing the thermoelastic dynamic responses of the field quantities
through the axial and thickness directions of the beam are presented.

2 Governing equations

Let us consider an elastic beam with dimensions of length L (0 6 x 6 L),
width b (−b/2 6 y 6 b/2), and thickness h (−h/2 6 z 6 h/2), as shown in
Figure 1. The x-axis is defined along the axis of the beam and the y- and
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Figure 1. Schematic diagram of the beam.

z-axes correspond to the width and thickness, respectively. Let u, v = 0, and
w denote the displacement components of a material point located at (x, y, z)
in the present beam in the x, y, and z directions, respectively. The stress-strain
relationships in the beam coordinates are written in the form:{

σ1

σ3

}
=

[
c11 c13

c13 c33

]{
ε1 − αθ
ε3 − αθ

}
, σ5 = c55ε5,

where σj and εj are the stress and strain components, θ = T − T0 is the
temperature increment of the resonator, in which T (x, y, z) is the temperature
distribution and T0 is the environmental temperature, α is the linear thermal
expansion coefficient. The elastic coefficients cij are given, in terms of the
engineering properties, by

c11 = c33 =
E (1− ν)

(1 + ν) (1− 2ν)
, c13 =

νE

(1 + ν) (1− 2ν)
, c55 = G =

E

2 (1 + ν)
,

where E denotes the Young’s modulus of elasticity, ν represents the Poisson’s
ratio and G is the shear modulus. The strain-displacement relations are taken
in the linear form as

ε1 =
∂u

∂x
, ε3 =

∂w

∂z
, ε5 =

∂w

∂x
+
∂u

∂z
.
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The governing equations of motion can be presented as

c11
∂2u

∂x2
+ c55

∂2u

∂z2
+ (c13 + c55)

∂2w

∂x∂z
− α (c11 + c13)

∂θ

∂x
= ρ

∂2u

∂t2
,

(c13 + c55)
∂2u

∂x∂z
+ c55

∂2w

∂x2
+ c33

∂2w

∂z2
− α (c13 + c33)

∂θ

∂z
= ρ

∂2w

∂t2
,

where ρ is the material density of the beam.
In addition, the heat conduction in the context of generalized (non-Fourier)

thermoelasticity for the above displacements in the absence of body forces,
external loads and heat sources should be considered. The modified classical
thermoelasticity model is given by Tzou theory in which the Fourier law is
replaced by an approximation of the equation

q (x, t+ τq) = −K∇T (x, t+ τθ) ,

where q is the heat flux vector, K is the thermal conductivity, and τq and τθ
represent the delay times. The delay time τθ is said to be the phase-lag of the
temperature gradient and the other delay time τq is called the phase-lag of the
heat flux.

The above equation may be approximated by(
1 + τq

∂

∂t

)
q = −K

(
1 + τθ

∂

∂t

)
∇T,

where 0 < τθ < τq. Then the heat conduction equation corresponding to the
dual-phase-lag model proposed by Tzou in this case takes the form

K

(
1 + τθ

∂

∂t

)
∇2θ +

(
1 + τq

∂

∂t

)
(ρQ∗) =

(
δ + τq

∂

∂t

)(
ρCe

∂θ

∂t
+ γT0

∂e

∂t

)
,

where Ce is the specific heat per unit mass at constant strain, e = εkk = ∂u
∂x+ ∂w

∂z
is the volumetric strain, γ = Eα/(1 − 2ν), δ is an unification parameter and
Q∗ is the heat source. So, the final form of the thermal conduction equation
for the present beam without heat source (Q∗ = 0) is given as(

1 + τθ
∂

∂t

)(
∂2θ

∂x2
+
∂2θ

∂z2

)
=

(
δ + τq

∂

∂t

)[
η
∂θ

∂t
+
γT0
K

∂

∂t

(
∂u

∂x
+
∂w

∂z

)]
,

where η = ρCe/K. The above equation describes the most generalized ther-
moelasticity theories. For example, the coupled dynamical thermoelasticity
theory (CTE), the generalized thermoelasticity theories proposed by Lord and
Shulman (L-S), Green and Naghdi (G-N) and dual-phase-lag (DPL) for differ-
ent sets of values of phase-lags parameters τq, τθ and the unification parameter
δ as follows:

CTE model: τθ = τq = 0 and δ = 1.

L-S model: τθ = 0, τq = τ0 (τ0 is the relaxation time) and δ = 1.

G-N model: τθ = 0, δ = 1, τq = 1 and K = K∗ (the material constant
characteristic of G-N theory).

DPL model: δ = 1 and 0 < τθ ≤ τq.
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3 Solution of the problem

In what follows we will use the following dimensionless variables and notations,
for our convenience,

{x
′
, z

′
, L

′
, h

′
, u

′
, w

′
} = ηc{x, z, L, h, u, w}, σ

′

j =
1

ρc2
σj , Θ

′
=
Θ

T0
,

{t
′
, τ

′

0, τ
′

θ, τ
′

q} = ηc2{t, τ0, τθ, τq}, c2 =
E

ρ(1 + ν)(1− 2ν)
.

(3.1)

The equations of motion and heat equation become (dropping the prime for
convenience)

(1− ν)
∂2u

∂x2
+

1− 2ν

2

∂2u

∂z2
+

1

2

∂2w

∂x∂z
− αT0

∂θ

∂x
=
∂2u

∂t2
,

1

2

∂2u

∂x∂z
+

1− 2ν

2

∂2w

∂x2
+ (1− ν)

∂2w

∂z2
− αT0

∂θ

∂z
=
∂2w

∂t2
, (3.2)(

1 + τθ
∂

∂t

)(
∂2θ

∂x2
+
∂2θ

∂z2

)
=

(
δ + τq

∂

∂t

)[∂θ
∂t

+
γ

ηK

∂

∂t

(
∂u

∂x
+
∂w

∂z

)]
.

The following simply-supported conditions are imposed at the edges of the
beam:

σ1(x, z, t) = 0, w(x, z, t) = 0, θ(x, z, t) = 0, at x = 0, L.

Time-harmonic motion at angular frequency ω is considered here. So, the
displacement and temperature components satisfying the above boundary con-
ditions on the edges may be expressed as:

{u,w, θ}(x, z, t) = {U(z) cos(ξx),W (z) sin(ξx), Θ(z) sin(ξx)}eIωt,

where ξ = π/L is a mode number and I =
√
−1. Then, Eqs. (3.2), after some

elementary manipulations, become

d2U

dz2
= C1U + C2Θ + C3

dU

dz
,

d2W

dx2
= C4W + C5

dU

dz
+ C6

dΘ

dz
,

d2Θ

dx2
= C7U + C8Θ + C3

dW

dz
,

where the expressions Ck(k = 1, · · · , 9) are given by

C1 =
2[ξ2(1− ν)− ω2]

1− 2ν
, C2 =

2ξαT0
1− 2ν

, C3 =
ξ

1− 2ν
,

C4 =
ξ2(1− 2ν)− 2ω2

1− 2ν
, C5 =

ξ

2(1− ν)
, C6 =

αT0
1− ν

,

C7 = − (δ + τqIω)Iωγξ

(1 + τθIω)Kη
, C8 = ξ2 − KηC7

γξ
, C9 = −C7

ξ
.

Math. Model. Anal., 21(3):319–335, 2016.



324 A.M. Zenkour

For the sake of convenience the state variables are introduced as follows [25]
(see also [6, 7]):

S1 = Θ, S2 = U, S3 = W, S4 =
dΘ

dz
=

dS1

dz
,

S5 =
dU

dz
=

dS2

dz
, S6 =

dW

dz
=

dS3

dz
.

Equations (13) may be reduced to the matrix form as{
dS

dz

}
= [A]{S}, (3.3)

where the vector {S} and the matrix [A] are given, respectively, by

S =



S1

S2

...

S6


, [A] =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

c8 c7 0 0 0 c9

c2 c1 0 0 0 c3

0 0 c4 c6 c5 0


.

The general solution of Eq. (3.3) is available since [A] has distinct eigenvalues
and it is given by

S = [R]


eλ1z 0

eλ2z

. . .

0 eλ6z

 [R]−1B, (3.4)

where B1, B2, · · · , B6 are arbitrary unknown complex constants connected with
the boundary conditions. Here, λk, λk+1 = −λk(k = 1, 3, 5) and [R] are the
eigenvalues and the matrix of eigenvector of the coefficient matrix [A] and [R]−1

is the inverse of the matrix [R]. The eigenvalues λj(j = 1, 6) and the elements
of the matrix of eigenvector [R] are generally complex valued. Equation (3.4)
can alternatively be presented as

Si =

6∑
j=1

sije
λjzBj , j = 1, 2, · · · , 6, (3.5)

where sij = λjs(i−3)j , (i = 4, 5, 6) and the other components of the expressions
sij(i = 1, 2, 3) are given by

S1j = 1, S2j = A4λ
4
j +A5λ

2
j +A6, S3j = (A7λ

4
j +A8λ

2
j +A9)λj . (3.6)

In addition, the components of the coefficients Ai(i = 1, 9) and λj are given in
Appendix A.
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The temperature θ and the displacements u,w may be easily given from the
above relations. That is

θ = sin(ξx)eIωt
6∑
j=1

s1je
λjzBj , u = cos(ξx)eIωt

6∑
j=1

s2je
λjzBj ,

w = sin(ξx)eIωt
6∑
j=1

s3je
λjzBj .

In addition, the temperature and the displacements and their first derivatives
with respect to z are used to obtain the stresses in the present beam as

σ1 = sin(ξx)eIωt
6∑
j=1

[
− ξ(1− ν)s2j − αT0s1j + λjνs3j

]
eλjzBj ,

σ3 = sin(ξx)eIωt
6∑
j=1

[
− ξνs2j − αT0s1j + λj(1− ν)s3j

]
eλjzBj ,

σ5 =
1− 2ν

2
cos(ξx)eIωt

6∑
j=1

[
ξs3j + λjs2j

]
eλjzBj .

To obtain the displacements, temperature, and stresses of the beam, thermal
and mechanical boundary conditions must be satisfied according to the follow-
ing two cases:
Case 1: Pure thermal conditions

The thermal conditions are taken as

θ(x,
h

2
, t) = T0 sin(ξx)eIωt,

∂θ

∂z
|z=−h

2
= 0, (3.7)

where ∂θ
∂z denotes the normal components of the heat flux vector. Also, the

mechanical boundary conditions on the face surfaces of the beam have the
form

σ3(x,±h
2
, t) = σ5(x,±h

2
, t) = 0. (3.8)

Case 2: Thermomechanical conditions
The thermal conditions are the same as in Eq. (3.7) while the mechanical

boundary conditions on the face surfaces of the beam will be

σ3(x,
h

2
, t) = σ0 sin(ξx)eIωt, σ3(x,−h

2
, t) = σ5(x,±h

2
, t) = 0, (3.9)

where σ0 represents the intensity of the applied load at the upper face surface
of the beam. For the comparison purpose, we can take σ0 equals to the unity.

The results of the present thermomechanical loaded beam will be considered
in the following section. Equations (3.5) and (3.6) in conjunction with the
boundary conditions of Eqs. (3.7) and (3.8) or (3.9) yield a determination of
the arbitrary constants.

Math. Model. Anal., 21(3):319–335, 2016.
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4 Numerical results

The thermoelastic coupling effect is presented here to get the temperature,
displacements and stresses in the present beam. The material parameters used
here are due to the physical data of magnesium [20]:

ρ = 1.74× 103 kg m−3, E = 4.212× 1010 N m−2, G = 1.639× 1010 N m−2,

ν = 0.285, K = 170 W m−1 deg−1, γ = 2.68× 106 W m−2 deg−1,

Ce = 1040 J kg deg−1, T0 = 25 ◦C.

The length-to-thickness ratio of the beam is fixed as L/h = 5 and the
angular frequency ω = 2. All plots are prepared by using the real values of the
dimensionless variables defined in Eq. (3.1) for a wide range of beam length
and thickness. Once again, the directions of the beam are given in terms of
the length and thickness of the beam, that is x

′
= x/l and z

′
= z/h (the

prime will be dropping in the figures for convenience). The computations are
carried out for one value of time, namely t = 0.2 and various values of the
delay time parameters τθ and τq. Figures 2-13 compared the results obtained
for temperature, displacements, and stresses against the x and z directions for
beams under various loads. The graphs represent curves predicted by the CTE,
L-S and G-N models of thermoelasticity obtained as special cases of the present
general the DPL model. The results of the CTE model (τθ = τq = 0, δ = 1), the
L-S model (τθ = 0, τq = 0.1, δ = 1), the G-N model (τθ = 0, τq = 0.1, δ = 0),
and the DPL model (τθ = 0.05 < τq = 0.1, δ = 1), are all presented.
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Figure 2. The temperature distributions in the axial direction for beams under (a)
thermal load and (b) thermomechanical load.

Figure 2 shows the variation of the dimensionless temperature θ along the
axial direction at the bottom surface z = −0.5 of the beam under (a) thermal
load and (b) thermomechanical load. The behaviors of all models may take
different shapes. The maximum temperature occurs at the center of the beam.
The G-N model gives the smallest temperature for the beam under thermal
load only and the CTE model gives the smallest temperature for the beam
under thermomechanical load. However, the DPL model gives the largest one
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for the first case and the L-S model gives the largest one for the second case.
The temperatures due to the DPL and CTE models are decreased when the
mechanical load is added. This is not the same for the temperatures due to the
L-S and G-N models.
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Figure 3. The temperature distributions in the thickness direction for beams under (a)
thermal load and (b) thermomechanical load.
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Figure 4. The axial displacement distributions in the axial direction for beams under (a)
thermal load and (b) thermomechanical load.

Figure 3 shows the through-the-thickness variation of the dimensionless
temperature at x = 0.5 of the beam under (a) thermal load and (b) thermo-
mechanical load. The maximum temperature occurs at the bottom face of the
beam under thermomechanical load according to the G-N, L-S and DPL mod-
els. The CTE model gives minimum temperatures on the bottom beam face
due to thermomechanical load. The temperature due to the G-N model is de-
creasing through the beam thickness under thermal load only. In fact, the DPL
and L-S models may be suitable to represent the temperature distribution.

Figure 4 shows the variation of the dimensionless axial displacement u along
the axial direction at the mid-plane z = 0 of the beam under (a) thermal load
and (b) thermomechanical load. The axial displacement vanishes at the center
of the beam. The G-N model may be unsuitable to treat with this displacement
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along the axial direction. It always gives absolute high displacements. The
smallest axial displacements are given due to the DPL model for the two cases
of the beam load. The axial displacement may be little enlarged for beams
under thermomechanical load. However, the behaviors of the DPL, CTE and
the L-S models are unchanged for the two cases.
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Figure 5. The axial displacement distributions in the thickness direction for beams under
(a) thermal load and (b) thermomechanical load.

Figure 5 shows the through-the-thickness variation of the axial displace-
ment u at the first edge x = 0 of the beam under various loads. The G-N
model may be still unsuitable for the two cases. Other models give closed ax-
ial displacement through-the-thickness of the beam. The DPL model is closed
with the L-S one through the upper half-plane of the beam and with the CTE
model through the bottom half-plane.

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

 0

 0.3

 0  0.2  0.4  0.6  0.8  1

w

x

CTE

L-S

G-N

DPL

(a)

-2.4

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

 0

 0.3

 0  0.2  0.4  0.6  0.8  1

w

x

CTE

L-S

G-N

DPL

(b)

Figure 6. The transverse deflection distributions in the axial direction for beams under
(a) thermal load and (b) thermomechanical load.

Figure 6 shows the variation of the transverse displacement w along the axial
direction at the middle surface z = 0. Each model gives different behavior of
w along the axial direction of the beam. The maximum (minimum) deflection
occurs at the center of the beam for the CTE and DPL models (G-N and
L-S models) in the first case. However, the maximum deflection occurs at
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Figure 7. The transverse deflection distributions in the thickness direction for beams
under (a) thermal load and (b) thermomechanical load.

the center of the beam for the DPL model only in the second case. It is to be
noted that, the deflection due to the CTE model may be vanished in the second
case. Figure 7 shows the through-the-thickness variation of the dimensionless
transverse displacement w at x = 0.5. The deflections due to the CTE, L-S
and DPL models are closed to each other. The G-N model may be having the
same behavior through-the-thickness of the beam and still unsuitable for the
two cases.
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Figure 8. The axial normal stress distributions in the axial direction for beams under (a)
thermal load and (b) thermomechanical load.

Figure 8 shows the variation of the dimensionless axial stress σ1 along the
axial direction at the bottom surface z = −0.5. The absolute maximum axial
stress σ1 occurs at the center of the beam. For the two loaded beams, the axial
stress σ1 of the G-N and L-S models still positive while those of the DPL and
CTE models still negative along the axial direction. The G-N gives the highest
axial stresses along the axis of the beam in the two cases. Figure 9 shows
the through-the-thickness variation of the dimensionless axial stress σ1 at the
center of the beam x = 0.5. The G-N model may be failed to get accurate axial
stress. Other models may be closed to each other. The DPL model gives tensile
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Figure 9. The axial normal stress distributions in the thickness direction for beams
under (a) thermal load and (b) thermomechanical load.
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Figure 10. The transverse normal stress distributions in the axial direction for beams
under (a) thermal load and (b) thermomechanical load.

(compression) stresses at the upper (bottom) surface of the beam. However,
the L-S (CTE) model gives tensile (compressive) stresses through-the-thickness
of the beam.

Figure 10 shows the variation of the dimensionless normal stress σ3 along the
axial direction at z = 0. The G-N model gives tensile transverse normal stress
in the two cases of the thermal and thermomechanical loads. The stresses due
to other models are changed from compressive stresses in the thermal loaded
beam to tensile stresses in the thermomechanical loaded beam. Figure 11 shows
the through-the-thickness variation of the dimensionless normal stress σ3 at the
center of the beam x = 0.5 All models are very sensitive to the variation of the
used load. The G-N model gives the greatest tensile stress above the mid-plane
of the beam (at z = 0.15) while the L-S model gives the smallest compressive
stress at z = −0.1 of the thermally loaded beam only. Figure 12 shows the vari-
ation of the dimensionless transverse shear stress σ5 along the axial direction at
z = 0. The shear stresses are vanished at the center of axial direction according
to all models. The G-N model may be failed to get accurate shear stress for
beams subjected to different loads. It is to be noted that the L-S models gives
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Figure 11. The transverse normal stress distributions in the thickness direction for
beams under (a) thermal load and (b) thermomechanical load.
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Figure 12. The transverse shear stress distributions in the axial direction for beams
under (a) thermal load and (b) thermomechanical load.
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Figure 13. The transverse shear stress distributions in the thickness direction for beams
under (a) thermal load and (b) thermomechanical load.

the smallest shear stress for thermomechanical loaded beams. Figure 13 shows
the through-the-thickness variation of the dimensionless transverse shear stress
σ5 at the first edge x = 0 of the beam. The behavior of the transverse shear
stresses for the two cases may be the same. Just the first case enlarges the
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shear stresses with little changes in the behavior of the shear stress via the L-S
model. Also, the CTE and DPL models replace their positions.

Conclusions

The exact presentations of the temperature, displacements and stresses in the
axial and thickness directions of a generalized thermoelastic beam are consid-
ered in this article. The model of generalized thermoelasticity with dual-phase-
lags is constructed and other known thermoelastic models may be considered
as special cases. The exact 2D general solution is applied to the present beam
subjected to various heating source or thermomechanical load. The compar-
isons are shown along the axial and thickness directions of the beam. The field
quantities are very sensitive to the applied load. Values of the field quantities
induced by the thermomechanical load may be differ of those due to the ther-
mal load. The method used here may be applicable to a wide range of problems
in thermodynamics and thermoelasticity. The numerical results presented here
may be considered as more general in the sense that they include the exact
analysis of different field quantities. It is concluded from the graphical results
presented here that the effect of dual-phase-lag parameters plays a significant
role on all the physical quantities. Some of models may be failed to treat the
thermoelastic response of many structures. This means that, the investigators
may be not restricting their attentions to a specific thermoelastic generalized
theory.
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Appendix A

The components of the coefficients Ai appeared in Eq. (3.6) are given by

A1 =C1 + C4 + C8 + C3C5 + C6C9,

A2 =− C1(C4 + C8 + C6C9) + C2(C7 + C5C9)− C3(C5C8 − C6C7)− C4C8,

A3 =C4(C1C8 − C2C7), A4 = C9/4,

A5 =− C9(C4 + C8 + C3C5 + C6C9) + C3C7

4
,

A6 =− (C7 + C5C9)(C2C9 − C3C8)− C4C8C9

4
, A7 = −C7 + C5C9

C44
,

A8 =
(C7 + C5C9)(C1 + C8 + C3C5 + C6C9) + C4C5C9

C44
,

A9 =− (C7+C5C9)(C1C8−C2C7+C3C5C8+C1C6C9 − C3C6C7 − C2C5C9)

C44

− C4C9(C5C8 − C6C7)

C44
,

where 4 = C1C5C
2
9 + C7C9(C1 − C4 − C3C5)− C3C

2
7 .

The components of the coefficients λ1, λ3 and λ5 appeared in Eq. (3.6) are
given by

λ1 = −

√
I
[
(
√

3 + I)A
2/3
0 − 4(

√
3− I)(A2

1 + 3A2)− 4IA1A
1/3
0

]
2
√

3A
1/6
0

,
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λ3 = −

√
−I
[
(
√

3− I)A
2/3
0 − 4(

√
3 + I)(A2

1 + 3A2) + 4IA1A
1/3
0

]
2
√

3A
1/6
0

,

λ5 = −

√
A

2/3
0 + 2A1A

1/3
0 + 4A2

1 + 12A2
√

6A
1/6
0

,

where

A0 = 36A1A2 + 108A3 + 8A2
1

+ 12
√

12A3
1A3 − 3A2

1A
2
2 + 54A1A2A3 − 12A3

2 + 81A2
3.
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