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1 Introduction

The Cahn-Hilliard equation was proposed to describe phase separation phe-
nomena in binary systems (see [2]). The well-known form of Cahn-Hilliard
equation is written as follows:

∂u

∂t
+∆(∆u− f(u)) = 0,

where u = u(x, t) is an unknown function representing the relative concentra-
tion of one species. Many papers have already been published to study the
Cahn-Hilliard equation. For example, in [9, 24], the problem of stability and
long time behavior of solutions was studied; Gilardi et al. [14] considered the
Cahn-Hilliard equation with dynamic boundary conditions; Cherfils et al. [6]
investigated the Cahn-Hilliard equation in phase separation with the thermo-
dynamically relevant logarithmic potentials; Schimperna [21] considered the
global attractors for Cahn-Hilliard equations with nonconstant mobility. On
the other hand, due to a wide application of a hyperbolic type of equations
in humane society and in biology [10, 11]. It would be logical and consistent
to speculate about application and possible analysis of the hyperbolic Cahn-
Hilliard generalized equation. In [12, 13], Galenko et al. have proposed to add
the inertial term in order to model non-equilibrium decompositions caused by
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deep supercooling in certain glasses. For more results on hyperbolic Cahn-
Hilliard equation, we refer the reader to [15,22] and the references therein.

Recently, Khain and Sander [16] proposed a generalized Cahn-Hilliard equa-
tion for biological applications:

∂u

∂t
− ∂2

∂x2

[
ln(1− q)∂

2u

∂x2
+ F ′(u)

]
+ αu(u− 1) = 0. (1.1)

Equation (1.1) is modelling cells which move, proliferate and interact via adhe-
sion in wound healing and tumor growth. Here, u is the local density of cells,
q is the adhesion parameter, α > 0 is the proliferation rate, F is the local free
energy. Furthermore,

q = 1− exp(− J

kBT
),

where J corresponds to the interatomic interaction, kB is the Boltzmann’s
constant and T is the absolute temperature, assumed constant.

In [7], for simplicity, Cherfils, Miranville and Zelik set all physical constants
equal to 1 and solved the problem in the higher space dimension (in two space
dimensions, the equation models, e.g., the clustering of malignant brain tumor
cells, see [7, 16]), i.e., they studied asymptotic behavior the generalized Cahn-
Hilliard equation

∂u

∂t
+∆2u−∆f(u) + g(u) = 0 (1.2)

endowed with Neumann boundary conditions, where g(s) = s(s−1) and f(s) =
s3 − s.

Remark 1. Equation (1.2) can also been seen as a generalized diffusion model for
growth and dispersal in a population model (see [8]). Suppose u(x, t) represents
the population density, D is a proportionality constant, f(u) represents the
energy density which this volume would have in a homogeneous composition,
and the other terms reprensent the energy density which is a function of local
composition and which clearly will be significant in non-homogeneous states.
F [u] =

∫
Ω

[f(u)+ 1
2k(∇u)2 + · · · ]dx is the total energy function, the variational

derivative δF
δu defines a potential µ(u). Based on Fick’s law, the flux J is

proportional to the gradient of µ. Then,

∂u

∂t
= −divJ = −kD∆2u+ div(Df ′′(u)gradu).

Finally, if we incorporate the dynamics (or reaction terms) G(u), we obtain

∂u

∂t
= −Dk∆2u+DA∆u+DB∆u3 +G(u),

which is similar to equation (1.2). There’s also some other papers concerned
with this diffusion model, for example [18,25] and so on.

The study of pullback attractor for nonautonomous infinite dimensional
dynamical systems has attracted much attention and made fast progress in
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recent years; see for instance, [4, 23]. Recently, Caraballo et al. [5] introduced
the notion of the pullback D-attractor for nonautonomous dynamical systems
and gave a general method to prove the existence of pullback D-attractor.
In [17], Li and Zhong proposed the concept of norm-to-weak continuous process
and proved the existence of pullback attractors for the nonautonomous reaction-
diffusion equation.

There’s also some papers studied pullback attractor for non-autonomous
fourth order nonlinear diffusion equations. For example, the authors in [20]
considered the existence of pullback attractor for a nonautonomous modi-
fied Swift-Hohenberg equation when its external force has exponential growth.
Caraballo and Colucci [3] proved the existence of a pullback attractor for the
initial boundary(Dirichlet boundary conditions) value problem of the following
non-autonomous fourth order evolution equation

∂u

∂t
+ ε2

∂4u

∂x4
− 1

2
W ′′

(
∂u

∂x

)
∂2u

∂x2
= f(x, t),

which arise in the field of phase transitions and elasticity theory.
In this article, suppose that h ∈ L2

loc(R, L2(0, 1)) is an external forcing
term. We are concerned with the following non-autonomous generalized Cahn-
Hilliard equation:

∂u

∂t
+
∂4u

∂x4
− ∂2

∂x2
f(u) + g(u) = h(x, t), x ∈ (0, 1), t ∈ [τ,∞), (1.3)

where g(s) = s(s − 1) and f(s) = s3 − s. Equation (1.3) is supplied with the
boundary value conditions

u(x, 0) = u(x, 1) =
∂u

∂x
(x, 0) =

∂u

∂x
(x, 1) = 0 (1.4)

and the initial condition

u(x, τ) = uτ (x), x ∈ (0, 1). (1.5)

The paper is organized as follows. In Section 2, we recall some abstract
results on pullback attractors and give the main result. In Section 3, we prove
the existence of pullback attractor for problem (1.3)–(1.5).

Throughout this paper, we denote (·, ·) as the inner product of L2(0, 1) and
‖ · ‖ as the induced norm. ‖ · ‖X denotes the norm of a Banach space X. For
simplicity, we denote ‖ · ‖Lp(0,1) by ‖ · ‖p, respectively.

2 Preliminary

In this section, we give some basic definitions and results on the existence of
pullback attractor. Suppose that X is a complete metric space and {U(t, τ)} =
{U(t, τ) : t ≥ τ, τ ∈ R} is a two-parameter family of mappings act on X:
U(t, τ) : X → X, t ≥ τ, τ ∈ R.

Definition 1 [see [17]]. A two-parameter family of mappings {U(t, τ)} is said
to be norm-to-weak continuous process in X if

Math. Model. Anal., 21(3):371–384, 2016.
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• U(t, s)U(s, τ) = U(t, τ), ∀t ≥ s ≥ τ ,

• for all τ ∈ R, U(t, τ) = Id is the identity operator,

• U(t, τ)xn ⇀ U(t, τ)x, if xn ⇀ x in X.

Let B be a bounded subset of X. The Kuratowski measure of noncompact-
ness α(B) of B is defined by

α(B) = inf{δ > 0|B has a finite open cover of sets of diameter ≤ δ}.

Suppose D is a nonempty class of parameterised sets D̂ = {D(t) : t ∈ R} ⊂
B(X).

Definition 2 [see [17]]. A process {U(t, τ)} is called pullback ω-D-limit com-
pact if for any ε > 0 and D̂ ∈ D, there exists a τ0(t, D̂ ≤ t such that
α(Uτ≥τ0U(t, τ)D(τ)) ≤ ε.

Definition 3 [see [17]]. The family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be
a pullback D-attractor for U(t, τ) if

• for all t ∈ R, A(t) is compact,

• Â is invariant, i.e., U(t, τ)A(τ) = A(τ), ∀t ≥ τ ,

• Â is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ), A(t)) = 0, ∀D̂ ∈ D, t ∈ R.

• if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t)
for all t ∈ R.

In the following, we give the result on the existence of pullback D-attractor
for nonautonomous systems which can be seen in [17].

Lemma 1. Let {U(t, τ)}τ≤t be a norm-to-weak continuous process such that
{U(t, τ)}τ≤t is pullback ω-D-limit compact. If there exists a family of pullback

D-absorbing sets {B(t) : t ∈ R} ∈ D, i.e., for any t ∈ R and D̂ ∈ D there is
a τ0(t, D̂) ≤ t such that U(t, τ)D(τ) ⊂ B(t) for all τ ≤ τ0. Then, there is a
pullback D-attractor {A(t) : t ∈ R} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)D(τ).

In order to study pullback attractor for the non-autonomous problem (1.3)–

(1.5), we set A = ∂4

∂x4 and λ be the first eigenvalues of A. For the external force
h, we assume that there is a non-negative constant β such that

‖h(t)‖2 ≤ βeα|t|, 0 ≤ α < λ

81
. (2.1)
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Then, simple calculation shows that

G1(t) :=

∫ t

−∞
eλs‖h(s)‖2ds <∞, ∀t ∈ R,

G2(t) :=

∫ t

−∞

∫ s

−∞
eλs‖h(s)‖2dsdt <∞, ∀t ∈ R,∫ t

−∞
e−8λr{G1(r)}6dr <∞,

∫ t

−∞
e−

8
7λr{G1(r)} 15

7 dr <∞, ∀t ∈ R.

By a standard method, we can prove that for every τ ∈ R and uτ ∈ H2
0 (0, 1),

there exists a unique solution u(x, t) ∈ C([τ,∞), H2
0 (0, 1))(see e.g. [7, 19]).

Moreover, the solution u(x, t) is continuous with respect to the initial value
condition uτ in the space H2

0 (0, 1). In order to construct a process {U(t, τ)}
for problem (1.3)–(1.5), we define U(t, τ) : H2

0 (0, 1) → H2
0 (0, 1) by U(t, τ)uτ .

Thus, the process {U(t, τ)} is a norm-to-weak continuous process in the space
H2

0 (0, 1).
Our main purpose is to study the existence of pullback attractor for problem

(1.3)–(1.5) by employing the techniques in [17, 20]. The main difficulties for
treating the problem (1.3)–(1.5) are caused by the nonlinear terms. Since the
term g(s) = s(s − 1) is a polynomial of order 2 on s ∈ R, it is difficult to
deal with this term on the process of a prior estimates for problem (1.3)–(1.5).

Employing the techniques in [19], we introduce the inverse operator
(
− ∂2

∂x2

)−1
,

which is a positive self-adjoint operator, to handle the nonlinear term g(u);

Due to the two terms ∂2

∂x2 f(u) and g(u) in (1.3), the estimates are delicate. We
impose the exponential growth conditions (2.1) on the external forcing term
h(x, t) to overcome this difficulty.

Now, we give the main result of this paper, which will be proved in the next
section.

Theorem 1. The process corresponding to problem (1.3)–(1.5) possesses a u-
nique pullback D-attractor in the space H2

0 (0, 1).

Throughout this paper, the letter c is a generic positive constant that may
change from line to line even if in the same inequality.

3 Proof of Theorem 1

Now, we study the existence of pullback attractors for non-autonomous problem
(1.3)–(1.5). First of all, we introduce the definition of the norm ‖ · ‖−1, which
will be used in this section.

Proposition 1 [see [1]]. For v ∈ L2(0, 1), the solution ξ (denote by N(v)) of
the Dirichlet problem −

∂2ξ

∂x2
=v, in (0, 1),

ξ =0, x = 0, 1.

Math. Model. Anal., 21(3):371–384, 2016.
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Furthermore, the norm ‖ ∂
2ξ
∂x2 ‖ is equivalent to the canonical norm ‖ξ‖2. Hence,

we can denote ‖q‖−1 = ‖∂N(q)
∂x ‖.

Then, we derive uniform estimates of solutions for problem (1.3)–(1.5),
which are necessary for proving the existence of absorbing set of {u(t, τ)} as-
sociated with the problem.

Lemma 2. Consider the problem (1.3)–(1.5), for all t ≥ τ , we have

‖u(t)‖2−1 + ‖u(t)‖2 ≤ e−λ(t−τ)(‖uτ‖2−1 + ‖uτ‖2) +
M

λ
+

4

λ
e−λtG1(t),∫ t

τ

eλs
∥∥∥∥ ∂2∂x2u(s)

∥∥∥∥2 ds ≤ [1 + λ(t− τ)]eλτ (‖uτ‖2−1 + ‖uτ‖2)

+
2M

λ
eλt +

4

λ
G1(t) +G2(t).

Proof. Multiplying equation (1.3) by
(
− ∂2

∂x2

)−1
u(t), integrating it over (0, 1),

we derive that

1

2

d

dt
‖u(t)‖2−1 +

∥∥∥∥ ∂∂xu(t)

∥∥∥∥2 + ‖u(t)‖44 + ‖u(t)‖2−1

=−

(
h(t),

(
− ∂2

∂x2

)−1
u(t)

)
+ ‖u(t)‖2 +

(
[u(t)]2,

(
− ∂2

∂x2

)−1
u(t)

)

≤‖h(t)‖

∥∥∥∥∥
(
− ∂2

∂x2

)−1
u(t)

∥∥∥∥∥+ ‖u(t)‖2 + ‖u(t)‖24

∥∥∥∥∥
(
− ∂2

∂x2

)−1
u(t)

∥∥∥∥∥
≤ 1

λ
‖h(t)‖‖u(t)‖+ ‖u(t)‖2 +

1

λ
‖u(t)‖24‖u(t)‖

≤‖h(t)‖2

λ
+

1

16
‖u(t)‖44 +

(
1

4λ
+ 1 +

4

λ2

)
‖u(t)‖2

≤‖h(t)‖2

λ
+

1

8
‖u(t)‖44 +

M1

2
,

(3.1)

where M1 = 8
(

1
4λ + 1 + 4

λ2

)2
is a positive constant. Multiplying equation (1.3)

by u, integrating it over (0, 1), we obtain

1

2

d

dt
‖u(t)‖2 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 + 3

∥∥∥∥u(t)
∂

∂x
u(t)

∥∥∥∥2
=

∥∥∥∥ ∂∂xu(t)

∥∥∥∥2 + ‖u(t)‖2 − ([u(t)]2, u(t)) + (h(t), u(t))

≤

(
1

4

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 + ‖u(t)‖2
)

+ ‖u(t)‖2 +

(
1

16
‖u(t)‖44 + 4‖u(t)‖2

)
+

(
‖h(t)‖2

λ
+
λ

4
‖u(t)‖2

)
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≤ 1

4

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 + 6‖u(t)‖2 +
1

16
‖u(t)‖44 +

‖h(t)‖2

λ
+
λ

4
‖u(t)‖2

≤ 1

2

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 + 6‖u(t)‖2 +
‖h(t)‖2

λ
+

1

16
‖u(t)‖44

≤ 1

2

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 +
1

8
‖u(t)‖44 +

‖h(t)‖2

λ
+
M2

2
, (3.2)

where M2 is a positive constant. Combining (3.1) and (3.2) together, we deduce
that

d

dt

(
‖u(t)‖2−1 + ‖u(t)‖2

)
+ 2

∥∥∥∥ ∂∂xu(t)

∥∥∥∥2 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 +
3

2
‖u(t)‖44

+ 6

∥∥∥∥u(t)
∂

∂x
u(t)

∥∥∥∥2 + 2‖u(t)‖2−1 ≤M1 +M2 +
4

λ
‖h(t)‖2, (3.3)

that is

d

dt
(‖u(t)‖2−1 + ‖u(t)‖2) +λ(‖u(t)‖2−1 + ‖u(t)‖2) ≤M1 +M2 +

4

λ
‖h(t)‖2. (3.4)

Multiplying (3.4) by eλ(t−τ) and integrating it over (τ, t), we derive that

‖u(t)‖2−1 + ‖u(t)‖2 ≤ e−λ(t−τ)(‖uτ‖2−1 + ‖uτ‖2)

+
M1 +M2

λ
+

4

λ
e−λt

∫ t

−∞
eλs‖h(s)‖2ds. (3.5)

Multiplying (3.5) by eλt and integrating it over (τ, t), we deduce that∫ t

τ

eλs(‖u(s)‖2−1 + ‖u(s)‖2)ds ≤ (t− τ)eλτ (‖uτ‖2−1 + ‖uτ‖2)

+
M1 +M2

λ2
eλt +

4

λ

∫ t

−∞

∫ s

−∞
eλr‖h(r)‖2drds.

Similarly, multiplying (3.3) by eλt and integrating it over (τ, t), we get∫ t

τ

eλs
∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 ds ≤ eλτ (‖uτ‖2−1 + ‖uτ‖2) +
M1 +M2

λ
eλt

+ λ

∫ t

τ

eλs(‖u(s)‖2−1 + ‖u(s)‖2)ds+
4

λ

∫ t

−∞
eλs‖h(s)‖2ds

≤ [1 + λ(t− τ)]eλτ (‖uτ‖2−1 + ‖uτ‖2) +
2(M1 +M2)

λ
eλt

+

∫ t

−∞

∫ s

−∞
eλr‖h(r)‖2drds+

4

λ

∫ t

−∞
eλs‖h(s)‖2ds.

Then, the proof is completed. ut

Math. Model. Anal., 21(3):371–384, 2016.
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Lemma 3. Consider the problem (1.3)–(1.5), for all t ≥ τ , we have∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 ≤ c[(1 + (t− τ) +
1

t− τ

)
e−λ(t−τ)[‖uτ‖2−1 + ‖uτ‖2 + ‖uτ‖18−1

+ ‖uτ‖18 + ‖uτ‖
30
7
−1 + ‖uτ‖

30
7 ] +

(
1 +

1

t− τ

)
+

(
1 +

1

t− τ

)
e−λt

× [G1(t) +G2(t)] + e−λt
∫ t

τ

e−8λs[G1(s)]9ds+ e−λt
∫ t

τ

e−
8
7λs[G1(s)]

15
7 ds

]
.

Proof. Using Nirenberg’s inequality, we have

‖u(t)‖8 ≤ c
∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 3
32

‖u(t)‖ 29
32 ,

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥
4

≤ c
∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 9
16

‖u(t)‖ 7
16 ,

‖u(t)‖∞ ≤ c
∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 1
8

‖u(t)‖ 7
8 ,

∥∥∥∥ ∂∂xu(t)

∥∥∥∥
4

≤ c
∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 5
16

‖u(t)‖ 11
16 ,

‖u(t)‖4 ≤ c
∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 1
16

‖u(t)‖ 15
16 .

Multiplying (1.3) by ∂4

∂x4u(t), integrating it over (0, 1), using Nirenberg’s in-
equality, we derive that

1

2

d

dt

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 +

∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥2 =
( ∂2
∂x2

[u(t)]3 − ∂2

∂x2
u(t)− [u(t)]2

+ u(t) + h(t),
∂4

∂x4
u(t)

)
= (3[u(t)]2

∂2

∂x2
u(t) + 6u(t)

∣∣∣∣ ∂∂xu(t)

∣∣∣∣2 − ∂2

∂x2
u(t)

− [u(t)]2 + h(t),
∂4

∂x4
u) +

∥∥∥∥ ∂2∂x2u
∥∥∥∥2

≤ 3‖u(t)‖28
∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥
4

∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥+ 6‖u(t)‖∞
∥∥∥∥ ∂∂xu(t)

∥∥∥∥2
4

∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥
+

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥+ ‖u(t)‖24
∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥
+ ‖h(t)‖

∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥+

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2
≤ c

(∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 3
32

‖u(t)‖ 29
32

)2(∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 9
16

‖u(t)‖ 7
16

)∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥
+ c

(∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 1
8

‖u(t)‖ 7
8

)(∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 5
16

‖u(t)‖ 11
16

)2 ∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥
+

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥+ c

(∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥ 1
16

‖u(t)‖ 15
16

)2 ∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥
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+ ‖h(t)‖
∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥+

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2
≤ 1

2

∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥2 + c

(
‖u(t)‖18 + ‖u(t)‖ 30

7 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 + ‖h(t)‖2
)
,

that is

d

dt

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2+

∥∥∥∥ ∂4∂x4u(t)

∥∥∥∥2≤c
(
‖u(t)‖18+‖u(t)‖ 30

7 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2+‖h(t)‖2
)
,

d

dt

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 + λ

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2
≤ c

(
‖u(t)‖18 + ‖u(t)‖ 30

7 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 + ‖h(t)‖2
)
. (3.6)

Multiplying (3.6) by (t− τ)eλt and integrating it over (τ, t), we obtain

(t− τ)eλt
∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 ≤ c[ ∫ t

τ

(1 + (s− τ))eλs
∥∥∥∥ ∂2∂x2u(s)

∥∥∥∥2 ds
+

∫ t

τ

(s− τ)eλs‖h(s)‖2ds+

∫ t

τ

(s− τ)eλs(‖u(s)‖18 + ‖u(s)‖ 30
7 )ds

]
.

Therefore∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥2 ≤c(1 +
1

t− τ

)
e−λt

∫ t

τ

eλs
∥∥∥∥ ∂2∂x2u(s)

∥∥∥∥2 ds+ ce−λtG1(t)

+ ce−λt
∫ t

τ

eλs‖u(s)‖18ds+ ce−λt
∫ t

τ

eλs‖u(s)‖ 30
7 ds

:=I1 + I2 + I3 + I4.

(3.7)

We have

I1 + I2 ≤c
(

1 + (t− τ) +
1

t− τ

)
e−λ(t−τ)(‖uτ‖2−1 + ‖uτ‖2)

+ c

(
1 +

1

t− τ

){
1 + e−λt[G1(t) +G2(t)]

}
.

Note that e−8λ(t−τ) ≤ 1 for s ∈ [τ, t]. Thus,

I3 ≤ ce−λt
∫ t

τ

eλs
[
e−λ(s−τ)(‖uτ‖2−1 + ‖uτ‖2) +

M1+M2

λ
+

4

λ
e−λsG1(s)

]9
ds

≤ ce−λt
∫ t

τ

eλsds+ ce−λt
∫ t

τ

eλse−9λ(s−τ)(‖uτ‖2−1 + ‖uτ‖2)9ds

+ ce−λt
∫ t

τ

eλse−9λs[G1(s)]9ds
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≤ce−λt(eλt − eλτ ) + ce−λ(t−τ)(‖uτ‖2−1 + ‖uτ‖2)9
∫ t

τ

e−8λ(s−τ)ds

+ ce−λt
∫ t

τ

e−8λs[G1(s)]9ds

≤c+ c(t− τ)e−λ(t−τ)(‖uτ‖18−1 + ‖uτ‖18) + ce−λt
∫ t

τ

e−8λs[G1(s)]9ds. (3.8)

Using the same method as (3.8), we derive that

I4 ≤ c+ c(t− τ)e−λ(t−τ)(‖uτ‖
30
7
−1 + ‖uτ‖

30
7 ) + ce−λt

∫ t

τ

e−
8
7λs[G1(s)]

15
7 ds.

Combining these estimates with (3.7), we complete the proof. ut

Suppose that R be the set of all function r : R→ (0,∞) such that

lim
t→−∞

teλtr18(t) = 0.

Denote by D the class of all families D̂ := {D(t) : t ∈ R} ⊂ B(H2
0 (Ω)) such

that D(t) ⊂ B0(r(t)) for some r(t) ∈ R, B0(r(t)) denote the closed ball in
H2

0 (Ω) with radius r(t). Let

r20(t) = 2c[1 + e−λt(G1(t) +G2(t) +

∫ t

τ

e−8λs[G1(s)]9ds

+

∫ t

τ

e−
8
7λs[G1(s)]

15
7 ds)].

Obviously, for any D̂ ∈ D and t ∈ R, by the result of Lemma 3, there exists
τ0(D̂, t) < t such that ∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥ ≤ r0(t), ∀τ < τ0. (3.9)

Furthermore, since 0 ≤ α < λ
81 , we get B0(r0(t)) ∈ D. Therefore, B0(r0(t)) is

a family of bounded pullback D-absorbing sets in H2
0 (Ω).

Now, we give the proof of Theorem 1.

Proof. In order to prove the existence of pullback attractor for problem (1.3)–
(1.5), we need only prove that the process {u(t, τ)} is pullback ω − D-limit
compact (PDC).Thanks to A−1 is a continuous compact operator in L2(0, 1),
there exists a sequence {λj}∞j=1 satisfying

λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj →∞, as j →∞

and a family of elements {wj}∞j=1 of H2
0 (0, 1) which are orthonormal in L2(0, 1)

such that

Awj = λjwj , for j = 1, 2, · · · .
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Write Xn = span{w1, w2, · · · , wn} ⊂ H2
0 (Ω) and Pn : H2

0 (0, 1) → Xn is an
orthogonal projector. Hence

u = Pnu+ (I − Pn)u := u1 + u2.

Taking the scalar product of (1.3) with ∂4

∂x4u2(t), using Young’s inequality, we
get

d

dt

∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 +

∥∥∥∥ ∂4∂x4u2(t)

∥∥∥∥2
≤ c
(∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 + ‖h(t)‖2 + ‖u(t)‖18 + ‖u(t)‖ 30
7

)
,

which means

d

dt

∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 +

∥∥∥∥ ∂4∂x4u2(t)

∥∥∥∥2
≤ c

(∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 + ‖h(t)‖2 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥18 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥ 30
7

)
.

(3.10)

Multiplying (3.10) by (t− τ)eλnt and integrating it over (τ, t), we deduce that

(t−τ)eλnt

∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 ≤ ∫ t

τ

eλns

∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 ds+c(t−τ)

∫ t

τ

eλns‖h(s)‖2ds

+ c(t−τ)

∫ t

τ

eλns

(∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥18 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥ 30
7

)
ds. (3.11)

Then it follows from (3.9) and (3.11) that∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2≤(t−τ)−1e−λnt

∫ t

τ

eλns

∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2ds+ce−λnt

∫ t

τ

eλns‖h(s)‖2ds

+ ce−λnt

∫ t

τ

eλns

(∥∥∥∥ ∂2∂x2u2(t)

∥∥∥∥2 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥18 +

∥∥∥∥ ∂2∂x2u(t)

∥∥∥∥ 30
7

)
ds

≤ c(t− τ)−1e−λnt

∫ t

τ

eλnsr20(s)dx+ ce−λnt

∫ t

τ

eλns‖h(s)‖2ds

+ ce−λnt

∫ t

τ

eλns[r20(s) + r180 (s) + r
30
7
0 (s)]ds, ∀τ ≤ τ0. (3.12)

Note that

e−λnt

∫ t

τ

eλnsr20(s)ds = ce−λnt

∫ t

τ

eλns[1 + e−λs(G1(s) +G2(s)

+

∫ s

τ

e−8λr[G1(r)]9ds+

∫ s

τ

e−
8
7λr[G1(r)]

15
7 ds]dr

≤ cλ−1n + c(λn − λ)−1e−λt[G1(t) +G2(t)]
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+ c(λn − λ)−1e−λt
[∫ t

−∞
e−8λs[G1(s)]9ds+

∫ t

−∞
e−

8
7λs[G1(s)]

15
7 ds

]
. (3.13)

Similarly, applying (a+ b)p ≤ c(ap + bp), we derive that

e−λnt

∫ t

τ

eλnsr180 (s)ds ≤ cλ−1n + c(λn − 9λ)−1e−9λt{[G1(t)]9 + [G2(t)]9}

+ c(λn−9λ)−1e−9λt
[∫ t

−∞
e−8λs[G1(s)]9ds+

∫ t

−∞
e−

8
7λs[G1(s)]

15
7 ds

]9
(3.14)

and

e−λnt

∫ t

τ

eλnsr
30
7
0 (s)ds ≤ cλ−1n +c

(
λn−

15

7
λ

)−1
e−

15
7 λt
{

[G1(t)]
15
7 +[G2(t)]

15
7

}
+ c

(
λn−

15

7
λ

)−1
e−

15
7 λt

[∫ t

−∞
e−8λs[G1(s)]9ds+

∫ t

−∞
e−

8
7λs[G1(s)]

15
7 ds

] 15
7

.

(3.15)

On the other hand, simple calculations show that

e−λnt

∫ t

τ

eλns‖h(s)‖2ds

≤


βe−λnt

∫ t

τ

eλnse−αsds, t ≤ 0,

βe−λnt

∫ t

τ

eλnseα|s|ds, t ≥ 0,

≤


βe−λnt

λn − α
, t ≤ 0,

βe−λnt

λn − α
+

βeαt

λn + α
, t ≥ 0.

(3.16)
Adding (3.12)–(3.16) together, we can obtain for any ε > 0, there exist τ0 < t
and N ∈ N such that

‖∆u2(t)‖ ≤ ε, ∀τ < τ0.

This infer that the process {U(t, τ)} is pullback ω−D-limit compact. Then, by
Lemma 1, the process corresponding to problem (1.3)–(1.5) possesses a unique
pullback D-attractor in H2

0 (Ω). ut

Remark 2. In this article, based on the techniques in [17, 20], we study the
existence of pullback attractor for a non-autonomous generalized Cahn-Hilliard
equation in 1D case. It seems that the study on the following non-autonomous
equation

∂u

∂t
+ ε2∆2u−∆f(u) + g(u) = h(x, t), x ∈ RN , t ∈ [τ,∞), N ≥ 2

are more important and difficult. However, so far by now, we could not obtain
satisfactory result and just leave them as problems to be carried out later.
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