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Abstract. It is known that, under certain conditions, solutions of some ordinary
differential equations of first, second or even higher order are asymptotic to polyno-
mials as time goes to infinity. We generalize and extend some of the existing results
to differential equations of non-integer order. Reasonable conditions and appropri-
ate underlying spaces are determined ensuring that solutions of fractional differential
equations with nonlinear right hand sides approach power type functions as time
goes to infinity. The case of fractional differential problems with fractional damping
is also considered. Our results are obtained by using generalized versions of Gronwall-
Bellman inequality and appropriate desingularization techniques.
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1 Introduction

In this paper, we consider the following fractional differential equation

D1+α
0 y (t) = f(t, y (t) , Dβ

0 y (t)) t > 0, (1.1)

with initial conditions

Dα
0 y (t) |t=0 = b2 and I1−α0 y (t) |t=0 = b1, b1, b2 ∈ R, (1.2)

where Dσ
0 is the Riemann-Liouville fractional derivative of order σ > 0 and

0 ≤ β ≤ α ≤ 1. The existence and uniqueness of solutions in the space
C1+α

1−α [0, b], b > 0, for problem (1.1)–(1.2) has been proven in [14].
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The study of asymptotic behavior of solutions of linear and nonlinear dif-
ferential equations is not only of theoretical importance but it is also extremely
useful in applications such as in fluid mechanics, differential geometry (Jacobi
fields, [18]), bidimensional gravity and other fields. It has attracted many re-
searchers. For more details, we refer the reader to [1].

In this paper, our main objective is to determine conditions ensuring an
asymptotic behavior similar to that of much simpler differential equations (of
integer order). In particular, it is well known that, in some situations, solutions
of integer order differential equations approach a line or in general a polynomial
for large values of time. This is what has motivated the present investigation.
We would like to shed some light on this issue.

The asymptotic behavior of solutions of the nonlinear equation

y′′ (t) + f (t, y (t)) = 0 (1.3)

has been studied by Cohen [10], Constantin [12], Kusano and Trench [16, 17],
Tong [29], Waltman [31] and others. They proved that, under various condi-
tions, every solution of the equation (1.3) is asymptotic to b + ct as t → ∞,
for some b, c ∈ R. Some results for the linear case are also known, see, for
instance, Trench [30] and Waltman [31].

In the study of asymptotic behavior of solutions to the differential equation

y′′ (t) + f (t, y (t) , y′ (t)) = 0 (1.4)

it is usually assumed that the nonlinearity f in (1.4) satisfies the assumption

|f (t, y (t) , y′ (t))| ≤ F (t, |y (t)| , |y′ (t)|) ,

where the real-valued function F (t, u, v) is continuous, monotone in the last
two arguments, and vanishes at infinity, see, for instance Dannan [13], Con-
stantin [11], Rogovchenko [28], Rogovchenko and Rogovchenko [27], Mustafa
and Rogovchenko [24, 25], Lipovan [19]. It is proved that every solution of the
equation (1.4) is asymptotic to b+ ct as t→∞, for some b, c ∈ R.

The fractional case of problem (1.3) has been studied by relatively few
researchers. In 2009, Mustafa and Băleanu [23] studied the nonlinear fractional
differential problem

CDα
0 y (t) = f (t, y (t)) , 0 < α < 1, t > 0, (1.5)

where CDα
0 is the Caputo derivative of order α. They proved that the solution

of (1.5) is asymptotic to

o
(
tbα
)

as t→∞, for some b, 1− α < b < 1.

Some classes of linear fractional differential equations with Riemann-Liouville
fractional derivative have been investigated under various sufficient conditions,
for example, in 2010, Băleanu et al. [5] considered the linear fractional differ-
ential equation

D1+α
0 y + a (t) y = 0, 0 < α < 1, t > 0. (1.6)
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They proved that the solution of the equation (1.6) is asymptotic to

[b+O (1)] tα−1 + [c+ o (1)] tα as t→∞,

where

b = lim
t→0

[
t1−αy (t)

]
and c =

1

Γ (1 + α)
lim
t→∞

Dα
0 y (t) .

Also, in 2010, the same authors [4] studied the linear fractional differential
equation

Dα
0 (ty′ − y) + a (t) y = 0, 0 < α < 1, t > 0. (1.7)

They proved that (1.7) has a solution y ∈ C ([0,∞),R) ∩ C1 ((0,∞),R) satis-
fying limt→0

[
t2−αy′ (t)

]
= 0 and

y (t) = ct+O
(
tb
)

as t→∞, for some b, b ∈ (0, 1) and some c 6= 0.

In 2011, again the same authors [6] proved that solutions of (1.7), under other
conditions, obey the asymptotic property

y (t) = ct+ [b+O (1)] tα−1 = ct+O
(
tα−1

)
as t→∞,

for some c 6= 0 and

b = − 1

(2− α)Γ (α)
lim
t→∞

I1−α0 [ty′ (t)− y (t)] .

Also they proved that the linear fractional equation

Dα
0 y
′ + a (t) y = 0, 0 < α < 1 t > 0 (1.8)

has a solution y ∈ C ([0,∞),R) enjoying the asymptotic property

y (t) = b+ ctα +O
(
tα−1

)
, as t→∞, (1.9)

where

b = y (0) and c =
1

Γ (1 + α)
lim
t→∞

CDα
0 y (t) . (1.10)

We note that problems (1.6) and (1.8) are different as D1+α
0 y = DDα

0 y 6=
Dα

0Dy = DCDα
0 . In fact

DCDα
0 y (t) = Dα

0Dy (t) = D1+α
0 y (t) +

αy (0)

Γ (1− α)
t−α−1.

In 2011, Băleanu et al. [3] discussed the nonlinear form of (1.8)

Dα
0 y
′ + f (t, y) = 0, 0 < α < 1, t > 0. (1.11)

They proved that solutions of (1.11) have the same asymptotic behavior as
(1.9) under the same initial conditions (1.10).



Asymptotic Behavior of Solutions to Nonlinear Fractional DEs 613

In 2012, Medved [20] studied the behavior of solutions of the fractional
differential problem with Caputo fractional derivative{

CDα+1
a y (t) = f (t, y (t)) , t ≥ a > 1, 0 < α < 1,

y (a) = c1, y
′ (a) = c2.

(1.12)

He proved that the solution y(t) of the problem (1.12) is asymptotic to b + ct
as t→∞, for some b, c ∈ R.

Also, in 2013, the same author [21] considered the following generalization

CDα+1
a y (t) = f (t, y (t) , y′ (t)) , t ≥ a > 1, α ∈ (0, 1) (1.13)

and proved that every solution of the equation (1.13) is asymptotic to b+ ct as
t→∞, for some b, c ∈ R.

In [9], Brestovanska and Medved considered the fractional initial-value prob-
lem y′′ (t) + f (t, y (t) , y′ (t)) +

m∑
i=1

ri (t)
t∫
0

(t− s)αi−1 fi (s, y (s) , y′ (s)) ds = 0,

y (1) = b1, y
′ (1) = b2, 0 < αi < 1, i = 1, 2, ...m.

(1.14)
They proved that any solution of (1.14) is asymptotic to a straight line.

In 2015, Medved and Posṕı̌sil [22] studied the fractional differential problem{
CDα

a y (t) = f
(
t, y (t) ,CDβ

ay (t)
)
, 0 < β < α < 1,

y (a) = b.
(1.15)

They proved that any solution y (t) of the problem (1.15) has the asymptotic
property y (t) = ctβ + o

(
tβ
)

as t→∞, for some c ∈ R.
In this paper, we will generalize the results in [3,4,5,6,23] to problem (1.1)–

(1.2). Our results will also extend the results obtained for equations (1.3) and
(1.4) with α = β = 1. In particular, the problems treated in [20, 21] become
special cases of (1.1) corresponding to y (0) = y′ (0) = 0. Moreover, by the
same occasion, we improve several results found in the literature, concerning
the integer order, where the authors have been forced to work away from zero.
This difficulty will be solved.

We shall establish some conditions under which all solutions of the fractional
differential problem (1.1)–(1.2) have the following property: limt→∞ y (t) /tα =
a, for some real number a. The proof of this result is based on the Gronwall-
Bellman inequality and its generalization due to Bihari [2].

The rest of the paper is divided into four sections. In Section 2, we present
some definitions, notations, and lemmas which will be needed later in our
proof. In Section 3, we give some properties and inequalities for some classes
of functions. In Sections 4 and 5 we present the asymptotic behavior results
for non-fractional and fractional source term, respectively.

2 Fractional calculus and preliminaries

In this section we present some definitions, lemmas, properties and notation
which will be used in our results later. Also we prove results regarding the

Math. Model. Anal., 21(5):610–629, 2016.
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asymptotic behavior of fractional integrals. For more details concerning frac-
tional derivatives, we refer the reader to [14].

We denote by L1 (a, b) the space of Lebesgue integrable functions on (a, b).
Let C [a, b] and Cn [a, b] denote the spaces of continuous and n times continu-
ously differentiable functions on [a, b], respectively.

Definition 1. We define the weighted spaces of continuous functions

Cγ [a, b] = {f : (a, b]→ R: (t− a)
γ
f (t) ∈ C [a, b]} , 0 < γ < 1,

C0 [a, b] = C [a, b] ,

Cnγ [a, b] =
{
f ∈ Cn−1 [a, b] : f (n) ∈ Cγ [a, b]

}
, n ∈ N, C0

γ [a, b] = Cγ [a, b] .

The left-sided Riemann–Liouville fractional integral and derivative are de-
fined as follows.

Definition 2. The Riemann-Liouville left-sided fractional integral Iαa f of or-
der α > 0 is defined by

Iαa f(t) :=
1

Γ (α)

∫ t

a

f(s)

(t− s)1−α
ds, t > a,

provided that the integral exists. Here Γ (α) is the Gamma function. When
α = 0, we define I0af = f .

Definition 3. The Riemann-Liouville left-sided fractional derivative Dα
a f of

order α ≥ 0, n− 1 < α < n, n = [α] + 1, is defined by

Dα
a f (t) = DnIn−αa f(t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

a

f(s)

(t− s)α−n+1
ds, t > a,

provided that the right hand side exists. In particular, when α = n we have
Dα
a f = Dnf and when α = 0, D0

af = f .

From Definition 1 we have the following characterization of the space Cnγ [a, b].

Lemma 1. [14] The space Cnγ [a, b] , n ∈ N, consists of those and only those
functions f which can be represented in the form

f (t) = Inaϕ (t) +
∑n−1

k=0
ck (t− a)

k
,

where ϕ ∈ Cγ [a, b] and ck, k = 0, 1, ..., n−1 are arbitrary constants. Moreover,

ϕ (t) = f (n) (t) , ck =
f (k) (a)

k!
, k = 0, 1, ..., n− 1.

Remark 1. Note that Cnγ [a, b] ⊂ ACn [a, b], n ≥ 1.

Lemma 2. [15] Let α > 0 and 0 ≤ γ < 1. Then Iαa is bounded from Cγ [a, b]
into Cγ [a, b].
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Lemma 3. Let g be a continuous function on (a, b]. Then g(n) ∈ Cγ [a, b] if
and only if g ∈ Cnγ [a, b] , 0 ≤ γ < 1.

Proof. Given ε > 0, then g(n) ∈ C [a+ ε, b] and thus by the Fundamental
Theorem of Calculus, we get

g (t) =

n−1∑
k=0

g(k) (a+ ε)

k!
(t− a− ε)k + Ina+εD

ng (t) , t ∈ [a+ ε, b] . (2.1)

Since g(n) ∈ Cγ [a, b] ⊂ L1 (a, b), then I1ag
(n) (t) is bounded on [a, b] and∣∣∣I1a+εg(n) (t)− I1ag(n) (t)

∣∣∣ ≤ ∫ a+ε

a

(s− a)
−γ
∣∣∣(s− a)

γ
g(n) (s)

∣∣∣ ds
≤M

∫ a+ε

a

(s− a)
−γ

ds =
M

1− γ
ε1−γ → 0 as ε→ 0.

Therefore
lim
ε→0

I1a+εg
(n) (t) = I1ag

(n) (t) , t ∈ [a, b] .

Thus by taking the limit of (2.1) we obtain

g (t) =

n−1∑
k=0

g(k) (a+)

k!
(t− a)

k
+ InaD

ng (t) .

Now clearly g(k) (a+) , k = 0, ..., n − 1 are finite and the result follows from
Lemma 1. The other direction follows directly from the definition of Cnγ [a, b].
ut

For power function we have the following property.

Property 1. [14] If α ≥ 0 and β > 0, then(
Iαa (s− a)

β−1
)

(t) =
Γ (β)

Γ (β + α)
(t− a)

β+α−1
,(

Dα
a (s− a)

β−1
)

(t) =
Γ (β)

Γ (β − α)
(t− a)

β−α−1
.

Next, we have the semigroup property of the fractional integration operator
Iαa .

Lemma 4. [14] Let α > 0, β > 0 and 0 ≤ γ < 1. If f ∈ Cγ [a, b] then the
equation

Iαa I
β
a f = Iα+βa f

holds at any point t ∈ (a, b]. When f ∈ C [a, b] this relation is valid at any point
t ∈ [a, b].

Another composition property between the fractional differentiation opera-
tor and the fractional integration operator is given next.

Math. Model. Anal., 21(5):610–629, 2016.
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Property 2. [14] Let 0 < β < α and 0 ≤ γ < 1. If f ∈ Cγ [a, b], then the
relationDβ

a I
α
a f = Iα−βa f holds at any point t ∈ (a, b]. When f ∈ C [a, b] this

relation is valid at any point t ∈ [a, b]. In particular, when β = k ∈ N and
α > k, then Dk

aI
α
a f = Iα−ka f .

The following result provides another composition of the fractional integra-
tion operator Iαa with the fractional differentiation operator Dα

a .

Lemma 5. [14] Let α > 0, 0 ≤ γ < 1, n = − [−α]. If f ∈ Cγ [a, b] and
In−αa f ∈ Cnγ [a, b], then the equality

IαaD
α
a f (t) = f (t)−

n∑
i=1

(
Dn−iIn−αa f

)
(a)

Γ (α− i+ 1)
(t− a)

α−i
(2.2)

holds at any point t ∈ (a, b]. In particular, if 0 < α < 1 then

IαaD
α
a f (t) = f (t)− I1−αa f (a)

Γ (α)
(t− a)

α−1
. (2.3)

Lemma 6. Let 0 < α < 1 and 0 ≤ γ < 1. If f ∈ Cγ [a, b] and I1−αa f ∈ C1
γ [a, b] ,

then for 0 ≤ β ≤ α < 1 we have

Dβ
af (t) = Iα−βa Dα

a f (t) +
I1−αa f (a)

Γ (α− β)
(t− a)

α−β−1
, t ∈ (a, b].

Proof. Since I1−αa f ∈ C1
γ [a, b] then by Definition 1 we have Dα

a f = DI1−αa f ∈
Cγ [a, b]. Applying Dβ

a to both sides of (2.3), then using Properties 1 and 2, we
obtain

Dβ
af (t) = Iα−βa Dα

a f (t) +
I1−αa f (a)

Γ (α− β)
(t− a)

α−β−1
, t ∈ (a, b].

ut

The following lemma describes the asymptotic behavior of the Riemann-
Liouville fractional integral of a summable function.

Lemma 7. Let f ∈ L1 (0,∞), then

lim
t→∞

1

tα
Iα+1
0 f (t) =

1

Γ (α+ 1)

∫ ∞
0

f (s) ds =
1

Γ (α+ 1)
I10f (∞) , α > 0.

Proof. Indeed, in view of the Definition 2, we have∣∣∣∣ 1

tα
Iα+1
0 f (t)− 1

Γ (α+ 1)

∫ ∞
0

f (s) ds

∣∣∣∣
=

∣∣∣∣ 1

Γ (α+ 1)

∫ t

0

(t− s)α

tα
f (s) ds− 1

Γ (α+ 1)

∫ ∞
0

f (s) ds

∣∣∣∣
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=
1

Γ (α+ 1)

∣∣∣∣∫ t

0

(
1− s

t

)α
f (s) ds−

∫ ∞
0

f (s) ds

∣∣∣∣
=

1

Γ (α+ 1)

∣∣∣∣∫ ∞
0

χ[0,t] (s)
(

1− s

t

)α
f (s) ds−

∫ ∞
0

f (s) ds

∣∣∣∣
=

1

Γ (α+ 1)

∣∣∣∣∫ ∞
0

[
χ[0,t] (s)

(
1− s

t

)α
− 1
]
f (s) ds

∣∣∣∣
≤ 1

Γ (α+ 1)

∫ ∞
0

∣∣∣χ[0,t] (s)
(

1− s

t

)α
− 1
∣∣∣ |f (s)| ds,

where

χ[0,t] (s) =

{
1, s ∈ [0, t] ,
0, s /∈ [0, t] .

Since

lim
t→∞

χ[0,t] (s)
(

1− s

t

)α
= 1, s < t,

then, using the Dominated Convergence Theorem (continuous version) [7], we
obtain

lim
t→∞

∫ ∞
0

∣∣∣χ[0,t] (s)
(

1− s

t

)α
− 1
∣∣∣ |f (s)| ds

=

∫ ∞
0

lim
t→∞

∣∣∣χ[0,t] (s)
(

1− s

t

)α
− 1
∣∣∣ |f (s)| ds = 0.

ut

Lemma 8. Let 0 < α < 1 and 0 ≤ γ < 1. Assume that y ∈ Cγ [0,∞) and
I1−α0 y ∈ C2

γ [0,∞). Then

lim
t→∞

y (t)

tα
= lim
t→∞

Dα
0 y (t)

Γ (α+ 1)
. (2.4)

Proof. Since y ∈ Cγ [0,∞) and I1−α0 y ∈ C2
γ [0,∞), then we can apply Lemma

5, with α replaced by 1 + α and n = 2, to get

I1+α0 D1+α
0 y (t) = y (t)−

(
I1−α0 y

)
(0)

Γ (α)
tα−1 − Dα

0 y (0)

Γ (1 + α)
tα. (2.5)

Dividing both sides of (2.5) by tα and taking the limit as t→∞, we obtain

lim
t→∞

y (t)

tα
=

Dα
0 y (0)

Γ (1 + α)
+ lim
t→∞

1

tα
I1+α0 D1+α

0 y (t)

=
Dα

0 y (0)

Γ (1 + α)
+

1

Γ (α+ 1)
I10D

1+α
0 y (∞) , (2.6)

where we have used Lemma 7. On the other hand, we have

I10D
1+α
0 y (t) = Dα

0 y (t)−Dα
0 y (0) (2.7)

and (2.4) follows directly from (2.6) and (2.7). ut

Math. Model. Anal., 21(5):610–629, 2016.
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3 Inequalities

In this section we establish inequalities that involve special classes of functions.
These inequalities will be used to obtain our main results. But first we cite
here the Bihari inequality.

Theorem 1. ( [2], Bihari inequality) Let u and f be nonnegative continuous
functions defined on R+ (R+ = [0,∞)). Let w(u) be a continuous nondecreas-
ing function defined on R+ and w(u) > 0 on (0,∞). If

u (t) ≤ k +

∫ t

0

f (s)w (u (s)) ds,

for t ∈ R+, where k is a nonnegative constant, then for 0 ≤ t ≤ t1,

u (t) ≤ G−1
(
G (k) +

∫ t

0

f (s) ds

)
,

where

G (r) =

∫ r

r0

ds

w (s)
, r > 0, r0 > 0

and G−1 is the inverse function of G and t1 ∈ R+ is chosen so that

G (k) +

∫ t

0

f (s) ds ∈ Dom
(
G−1

)
,

for 0 ≤ t ≤ t1.

Theorem 2. ( [2], Gronwall-Bellman inequality) Let u and f be continuous
and nonnegative functions defined on R+ and let c(t) be a continuous, positive
and nondecreasing function defined on R+. Then for t ≥ 0

u (t) ≤ c (t) +

∫ t

0

f (s)u (s) ds

implies that

u (t) ≤ c (t) exp

(∫ t

0

f (s) ds

)
.

Now we define the following classes of functions:

Φ =
{
ϕ ∈ C (0,∞) : ϕ is positive and nondecreasing on (0,∞) ,

uϕ (v) ≤ ϕ (uv) , 0 < u ≤ 1
}
, (3.1)

Ψ =
{
F : R+ × R+ → R+ such that 0 ≤ F (t, u)− F (t, v) ≤ N (t) (u− v) ,

t > 0, u ≥ v ≥ 0, for some continuous function N on R+

}
. (3.2)

The class of functions Φ defined above has been widely employed in the liter-
ature, see for instance [8]. Two simple functions belonging to spaces Φ and Ψ
are

ϕ (s) =

n∑
i=1

sαi , αi ≤ 1, i = 1, 2, ..., n, and F (t, u) = uet,

respectively.
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Remark 2. If ϕ in the space Φ, then
∫∞
x0
ds/ϕ (s) = ∞, x0 > 0. (take u = 1/v,

then 1
vϕ (v) ≤ ϕ (1)).

In what follows we give some properties and inequalities that involve these
classes of functions. Clearly we have

Lemma 9. The spaces Φ and Ψ are closed under addition and scalar multipli-
cation.

Lemma 10. Let z (t) be a positive solution of the integral equation

z (t) = c1 + c2t+ c3t

∫ t

0

h(s)ϕ (z (s)) ds, ci ∈ R, i = 1, 2, 3, t ≥ 0, (3.3)

where ϕ in the space Φ defined in (3.1) and h : R+ → R+ is a continuous
function such that th (t) ∈ L1(1,∞). Then

z (t) ≤
{
G−1 (K) , 0 ≤ t < 1,
tG−1 (H) , t ≥ 1,

(3.4)

where G−1 is the inverse function of G (x) =
∫ x
x0

ds
ϕ(s) ,

K = G (|c1|+ |c2|) + |c3|
∫ 1

0

h(s)ds, H = G (A) + |c3|
∫ ∞
1

sh(s)ds,

A = |c1|+ |c2|+ |c3|ϕ
(
G−1 (K)

) ∫ 1

0

h(s)ds.

Proof. We begin by noting that from the definition of Φ the functions G
and G−1 are increasing, continuous and defined on (0,∞) and (G (0+) ,∞) ,
respectively. For 0 ≤ t < 1 we have from (3.3)

z (t) ≤ |c1|+ |c2|+ |c3|
∫ t

0

h(s)ϕ (z (s)) ds

and the first inequality of (3.4) follows directly from Bihari’s inequality (The-
orem 1). For t ≥ 1 we have from (3.3) the estimate

z (t)

t
≤ |c1|+ |c2|+ |c3|

∫ t

0

h(s)ϕ (z (s)) ds

≤ |c1|+ |c2|+ |c3|
∫ 1

0

h(s)ϕ (z (s)) ds+ |c3|
∫ t

1

h(s)ϕ (z (s)) ds. (3.5)

Therefore, from the first inequality of (3.4) and (3.5) we have

z (t)

t
≤ A+ |c3|

∫ t

1

h(s)ϕ (z (s)) ds, t ≥ 1. (3.6)

From (3.1), we can write (3.6) in the form

z (t)

t
≤ A+ |c3|

∫ t

1

sh(s)ϕ

(
z (s)

s

)
ds, t ≥ 1.

Now the second inequality of (3.4) follows immediately from Bihari’s inequality
(Theorem 1). ut
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Lemma 11. Let z (t) satisfy

z (t) ≤ c2t+c3t
∫ t

0

[F1 (s, c1+z (s)) + F2 (s, c1 + z (s)) + h (s)] ds, t ≥ 0, (3.7)

where ci > 0, i = 1, 2, 3, h : R+ → R+ is a continuous function and Fi, i = 1, 2,
belong to the space Ψ defined in (3.2). Then

z (t) ≤ tg (t) , t > 0,

where

g (t) =

[
c2 + c3

∫ t

0

[F1 (s, c1) + F2 (s, c1) + h (s)] ds

]
× exp

(
c3

∫ t

0

s [N1 (s) +N2 (s)] ds

)
with N1 and N2 are the functions in the definition (3.2), corresponding to F1

and F2 respectively.

Proof. From (3.7) we have

z (t)

t
≤ c2 + c3

∫ t

0

[F1 (s, c1 + z (s)) + F2 (s, c1 + z (s)) + h (s)] ds

= c2 + c3

∫ t

0

[F1 (s, c1 + z (s))− F1 (s, c1) + F1 (s, c1)

+ F2 (s, c1 + z (s))− F2 (s, c1) + F2 (s, c1) + h (s)] ds

= c2 + c3

∫ t

0

[F1 (s, c1) + F2 (s, c1) + h (s)] ds

+c3

∫ t

0

[F1 (s, c1 + z (s))− F1 (s, c1) + F2 (s, c1 + z (s))− F2 (s, c1)] ds, t > 0.

By (3.2) we obtain

z (t)

t
≤ c2 + c3

∫ t

0

[F1 (s, c1) + F2 (s, c1) + h (s)] ds

+ c3

∫ t

0

[N1 (s) +N2 (s)] z (s) ds, t > 0. (3.8)

Put

g1 (t) = c2 + c3

∫ t

0

[F1 (s, c1) + F2 (s, c1) + h (s)] ds. (3.9)

Then from (3) and (3.9) we obtain

z (t)

t
≤ g1 (t) + c3

∫ t

0

s [N1 (s) +N2 (s)]
z (s)

s
ds, t > 0. (3.10)
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Clearly g1 is a continuous, positive and nondecreasing function defined for all
t ≥ 0. Applying Theorem 2 to (3.10), we get

z (t)

t
≤ g1 (t) exp

(
c3

∫ t

0

s [N1 (s) +N2 (s)] ds

)
, t > 0.

We designate by g2 (t) the expression

g2 (t) = exp

(
c3

∫ t

0

s [N1 (s) +N2 (s)] ds

)
.

Therefore
z (t) ≤ tg (t) , g (t) = g1 (t) g2 (t) , t > 0.

ut

4 Problems with a non-fractional source

In this section, we study the asymptotic behavior of solutions of (1.1) when
β = 0 and 0 < α < 1 :

D1+α
0 y (t) = f(t, y (t)), 0 < α ≤ 1, t > 0 (4.1)

with initial conditions

Dα
0 y (t) |t=0 = b2 and I1−α0 y (t) |t=0 = b1, b1, b2 ∈ R (4.2)

in the space C1+α
1−α [0,∞) defined by

C1+α
1−α [0,∞) =

{
y ∈ C1−α[0,∞) : D1+α

0 y ∈ C1−α[0,∞)
}
. (4.3)

In the sequel, we suppose that the function f(t, y) satisfies the following
conditions

(A) f(t, y) : (0,∞) × R → R such that f(., y (.)) ∈ C1−α[0,∞) for any y ∈
C1−α[0,∞).

(B) There exist continuous functions h, ϕ : R+ → R+ such that

|f(t, y (t))| ≤ h(t)ϕ
(
t1−α |y(t)|

)
, t ≥ 0, (4.4)

where ϕ in the spase Φ defined in (3.1) and th (t) ∈ L1(1,∞).

The next result provides useful estimates for solutions of Problem (4.1)–
(4.2).

Lemma 12. Assume that y ∈ C1−α[0,∞) is a solution of (4.1)–(4.2) and f
satisfies (A) and (B). Then, for all t > 0, we have

t1−α |y (t)| ≤ z (t) ,

where

z (t) =
|b1|
Γ (α)

+
|b2| t

Γ (α+ 1)
+

t

Γ (α+ 1)

∫ t

0

h(s)ϕ
(
s1−α |y(s)|

)
ds, t > 0.
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Proof. Applying I1+α0 to (4.1) we find

I1+α0 D1+α
0 y (t) = I1+α0 f (t, y (t)) , t > 0.

Since f ∈ C1−α[0,∞), (4.1) implies that D1+α
0 y = D2I1−α0 y ∈ C1−α[0,∞),

then by Lemma 3, we have I1−α0 y ∈ C2
1−α[0,∞). As the hypotheses of Lemma

5 are fulfilled, we infer that

y (t) =
b1
Γ (α)

tα−1 +
b2

Γ (α+ 1)
tα + I1+α0 f (t, y (t)) , t > 0, (4.5)

where b1 and b2 come from the initial conditions in (4.2). In view of (4.5) we
deduce

|y (t)| ≤ |b1|
Γ (α)

tα−1+
|b2|

Γ (α+ 1)
tα+

tα

Γ (α+ 1)

∫ t

0

|f (s, y (s))| ds, t > 0. (4.6)

Multiplying both sides of (4.6) by t1−α and using (4.4), we obtain the result.
ut

Theorem 3. Let y ∈ C1−α[0,∞) be a solution of problem (4.1)–(4.2) and f
satisfies (A) and (B). Then

lim
t→∞

y (t)/tα = a ∈ R.

Proof. It follows from Lemmas 10 and 12 that

|y (t)|/tα ≤ H0 =: G−1 (H) , t ≥ 1. (4.7)

By (4.4), we see that∣∣∣∣∫ t

0

f (s, y (s)) ds

∣∣∣∣ ≤ ∫ t

0

|f (s, y (s))| ds ≤
∫ t

0

h(s)ϕ
(
s1−α |y(s)|

)
ds

≤
∫ 1

0

h(s)ϕ
(
s1−α |y(s)|

)
ds+

∫ t

1

h(s)ϕ
(
s1−α |y(s)|

)
ds

≤
∫ 1

0

h(s)ϕ (z (s)) ds+

∫ t

1

sh(s)ϕ

(
|y(s)|
sα

)
ds. (4.8)

Therefore from the first inequality of (3.4), (4.7) and (4.8) we obtain that∣∣∣∣∫ t

0

f (s, y (s)) ds

∣∣∣∣ ≤ ∫ 1

0

h(s)ϕ
(
G−1 (K)

)
ds+

∫ t

1

sh(s)ϕ (H0) ds

≤ ϕ
(
G−1 (K)

) ∫ 1

0

h(s)ds+ ϕ (H0)

∫ t

1

sh(s)ds <∞.

Thus the integral
∫ t
0
f (s, y (s)) ds is absolutely convergent and consequently

lim
t→∞

∫ t

0

f (s, y (s)) ds <∞. (4.9)
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Integrating both sides of (4.1), we find

Dα
0 y (t) = b2 +

∫ t

0

f (s, y (s)) ds, t > 0.

In virtue of (4.9) we deduce that there exists c ∈ R such that

lim
t→∞

Dα
0 y (t) = c.

Further, by Lemma 8, we can write

lim
t→∞

y (t)

tα
= lim
t→∞

Dα
0 y (t)

Γ (α+ 1)
= a

and the proof is now complete. ut

Example 1. Consider the equation

D1+α
0 y (t) = tγe−t (y (t))

r
, t > 0, (4.10)

where 0 < α < 1, 0 < r < 1, and γ + 1 > (1− α) r. Then all solutions
y ∈ C1−α[0,∞) of (4.10) enjoy the property limt→∞ y (t)/tα = a for some real
number a.

Proof. We can rewrite (4.10) as follows

D1+α
0 y (t) = tγ+(α−1)re−t

(
t1−αy (t)

)r
.

Let h (t) = tγ+(α−1)re−t and ϕ (t) = tr. Then∫ ∞
1

sh (s) ds <

∫ ∞
0

sh (s) ds =

∫ ∞
0

sγ+(α−1)r+1e−sds

= Γ (γ + (α− 1) r + 2) <∞.

ϕ is positive, continuous and nondecreasing function such that

uϕ (v) = uvr ≤ (uv)
r

= ϕ (uv) , v > 0, u ≤ 1

and ∫ ∞
r0

ds

ϕ (s)
=

∫ ∞
r0

ds

sr
=∞, r0 > 0.

Consequently, ϕ in the space Φ. Clearly, all conditions of Theorem 3 are satis-
fied and the result follows. ut

Remark 3. When α = 1 in (4.1), we have

y′′ (t) = f(t, y (t)), t > 0

with initial conditions

y′ (0) = b2 and y (0) = b1

in the space C2[0,∞), space of twice continuously differentiable functions, and
the function f(t, y) satisfies the following conditions
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(A”) f(t, y) : [0,∞) × R → R such that f(., y (.)) ∈ C[0,∞) for any y ∈
C[0,∞).

(B”) There exist continuous functions h, ϕ : R+ → R+ such that

|f(t, y (t))| ≤ h(t)ϕ (|y(t)|) , t > 0.

Note that in this case, these assumptions are analogous to those of Philos

[26]. On the other hand the function f (t, y) = t−1.6 (y (t))
1/2

satisfies the
assumptions of Philos [26] but not ours.

Remark 4. When b1 = 0 in Theorem 3, then the condition (B) is replaced by

(B
′
) There exist continuous functions h, ϕ : R+ → R+ such that

|f(t, y (t))| ≤ h(t)ϕ

(
|y(t)|
tα

)
, t > 0,

where ϕ is positive and nondecreasing and h is such that∫ ∞
1

h (s) ds <∞.

5 Equations with fractional source term

Now we consider (1.1), with 0 < β ≤ α < 1

D1+α
0 y (t) = f(t, y (t) , Dβ

0 y (t)), t > 0 (5.1)

with initial conditions

Dα
0 y (t) |t=0 = b2 and I1−α0 y (t) |t=0 = b1, b1, b2 ∈ R (5.2)

in the space C1+α
1−α [0,∞) defined in (4.3).

In the sequel, we suppose that the following conditions hold:

(A1) f(t, u1, u2) : (0,∞) × R2 → R such that f(., u1 (.) , u2 (.)) ∈ C1−α[0,∞)
for any u1, u2 ∈ C1−α[0,∞).

(A2) There exist continuous functions h : R+ → R+, Fi : R+×R+ → R+, i =
1, 2, such that

|f (t, u1, u2)| ≤ F1

(
t, t1−α |u1 (t)|

)
+F2

(
t, t1−(α−β) |u2 (t)|

)
+h (t) , (5.3)

where Fi in the space Ψ defined in (3.2), i = 1, 2.

The next result provides useful estimates for solutions of problem (5.1)–
(5.2).
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Lemma 13. Assume that y ∈ C1+α
1−α [0,∞) is a solution of (5.1)–(5.2). Then,

for all t > 0, we have

t1−(α−β)
∣∣∣Dβ

0 y (t)
∣∣∣ ≤ |b1|

Γ (α−β)
+

t

Γ (1+α−β)

(
|b2|+ I10

∣∣∣f(t, y (t) , Dβ
0 y (t))

∣∣∣) .
Proof. Note that D1+α

0 y=D2I1−α0 y∈C1−α[0,∞) implies I1−α0 y∈C2
1−α[0,∞),

see Lemma 3. Since 0 ≤ β ≤ α < 1, by Lemma 6, we see that

Dβ
0 y (t) =

I1−α0 y (0)

Γ (α− β)
tα−β−1 + Iα−β0 Dα

0 y (t) , t > 0. (5.4)

Integrating both sides of (5.1), we find

Dα
0 y (t) = b2 + I10f(t, y (t) , Dβ

0 y (t)), t > 0. (5.5)

Let us insert the expression (5.5) into (5.4), use Property 1, we have

Dβ
0 y (t) =

b1
Γ (α− β)

tα−β−1 + Iα−β0

(
b2 + I10f

(
s, y (s) , Dβ

0 y (s)
))

(t)

=
b1

Γ (α− β)
tα−β−1 +

b2
Γ (1 + α− β)

tα−β + Iα−β0 I10f
(
t, y (t) , Dβ

0 y (t)
)
, t > 0.

We deduce the bound∣∣∣Dβ
0 y (t)

∣∣∣ ≤ |b1| tα−β−1
Γ (α− β)

+
|b2| tα−β

Γ (1+α−β)
+

tα−β

Γ (1+α−β)
I10

∣∣∣f (t, y (t) , Dβ
0 y (t)

)∣∣∣ .
Multiplying both sides of this inequality by t1−(α−β) and the result follows. ut

Lemma 14. Assume that y ∈ C1−α[0,∞) is a solution of (5.1)–(5.2), f satis-
fies (A1), (A2) with∫ ∞

0

Fi

(
s,
|b1|
Γ (α)

)
ds <∞,

∫ ∞
0

sNi (s) ds <∞, i = 1, 2 (5.6)

and h ∈ L1 (0,∞) where Ni, i = 1, 2, are as in (3.2). Then

lim
t→∞

∫ t

0

f
(
s, y (s) , Dβ

0 y (s)
)
ds <∞.

Proof. Let, for t ≥ 0

z (t) =
t

Γ (1 + α− β)

(
|b2|+

∫ t

0

[
F1

(
s, s1−α |y (s)|

)
+ F2

(
s, s1−(α−β)

∣∣∣Dβ
0 y (s)

∣∣∣)+ h (s)
])
ds. (5.7)

Then from Lemma 13 and the assumption (5.3) we get

t1−(α−β)
∣∣∣Dβ

0 y (t)
∣∣∣ ≤ |b1|

Γ (α− β)
+ z (t) , t > 0. (5.8)
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From (5.8) and (3.2), with β = 0, we have

F1

(
t, t1−α |y (t)|

)
≤ F1 (t, |b1|/Γ (α) + z (t)) , t > 0 (5.9)

and for t > 0

F2

(
t, t1−(α−β)

∣∣∣Dβ
0 y (t)

∣∣∣) ≤ F2

(
t,

|b1|
Γ (α− β)

+ z (t)

)
≤ F2

(
t,
|b1|
Γ (α)

+ z (t)

)
.

(5.10)
Taking into account (5.7), (5.9) and (5.10) we are lead to

z (t) ≤ t

Γ (1 + α− β)

(
|b2|+

∫ t

0

[
F1 (s, |b1|/Γ (α) + z (s))

+ F2 (s, |b1|/Γ (α) + z (s)) + h (s)
]
ds

)
.

Therefore, by Lemma 11, we have

z (t) ≤ Ct, t > 0, (5.11)

where

C =
1

Γ (1 + α− β)

(
|b2|+

∫ ∞
0

[
F1

(
s,
|b1|
Γ (α)

)
+ F2

(
s,
|b1|
Γ (α)

)
+ h (s)

]
ds

)

× exp

(
1

Γ (1 + α− β)

∫ ∞
0

s [N1 (s) +N2 (s)] ds

)
<∞.

It follows from (5.8) and (5.11) that

t1−(α−β)
∣∣∣Dβ

0 y (t)
∣∣∣ ≤ |b1|

Γ (α− β)
+ Ct, t > 0. (5.12)

On the other hand, again by our assumption (5.3) we see that∣∣∣∣∫ t

0

f
(
s, y (s) , Dβ

0 y (s)
)
ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣f (s, y (s) , Dβ
0 y (s)

)∣∣∣ ds
≤
∫ t

0

[
F1

(
s, s1−α |y (s)|

)
+ F2

(
s1−(α−β)

∣∣∣Dβ
0 y (s)

∣∣∣)+ h (s)
]
ds. (5.13)

Therefore from (5.12) and (5.13) we deduce that∣∣∣∣∫ t

0

f
(
s, y (s) , Dβ

0 y (s)
)
ds

∣∣∣∣ ≤ ∫ t

0

[F1 (s, |b1|/Γ (α) + Cs )

+F2 (s, |b1|/Γ (α) + Cs ) + h (s)] ds

=

∫ t

0

[F1 (s, |b1|/Γ (α) + Cs )− F1 (s, |b1|/Γ (α)) + F1 (s, |b1|/Γ (α))

+F2

(
s,
|b1|
Γ (α)

+ Cs

)
− F2

(
s,
|b1|
Γ (α)

)
+ F2

(
s,
|b1|
Γ (α)

)
+ h (s)

]
ds, t > 0.
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As the functions Fi, i = 1, 2, satisfy (3.2), we can write∣∣∣∣∫ t

0

f
(
s, y (s) , Dβ

0 y (s)
)
ds

∣∣∣∣ ≤ C ∫ t

0

s [N1 (s) +N2 (s)] ds

+

∫ t

0

[F1 (s, |b1|/Γ (α) ) + F2 (s, |b1|/Γ (α)) + h (s)] ds.

That is ∣∣∣∣∫ t

0

f
(
s, y (s) , Dβ

0 y (s)
)
ds

∣∣∣∣ <∞, t ≥ 0.

The integral
∫ t
0
f
(
s, y (s) , Dβ

0 y (s)
)
ds is therefore absolutely convergent and

the result follows. ut

Theorem 4. Under the same hypotheses as in Lemma 14 any solution y ∈
C1−α[0,∞) of problem (5.1)–(5.2) has the following property

lim
t→∞

y (t)

tα
= a, a ∈ R.

Proof. It is clear, by virtue of (5.5) and Lemma 14, that there exists b ∈ R
such that

lim
t→∞

Dα
0 y (t) = b.

Noting that Lemma 8 remains true for the new problem, we conclude that

lim
t→∞

y (t)

tα
= lim
t→∞

Dα
0 y (t)

Γ (1 + α)
= a

for some a ∈ R. ut

Remark 5. If b1 = 0 in Theorem 4, then we replace (5.3) and (5.6) by

|f(t, u, v)| ≤ F1

(
t,
|u|
tα

)
+ F2

(
t,
|v|
tα−β

)
,

∫ ∞
0

Ni (s) ds <∞,

respectively.
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tegration of some nonlinear differential equations with fractional time deriva-
tive. Journal of Physics A: Mathematical and Theoretical, 44(5):055203, 2011.
http://dx.doi.org/10.1088/1751-8113/44/5/055203.
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