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Abstract. Cubic spline histopolation with arbitrary placement of histogram knots
and spline knots between them is studied. Classical boundary conditions are used.
Histopolating spline is represented with the help of second moments and particular
integrals. The systems determining these parameters are investigated in different
cases where diagonal dominance in matrices takes place or may be absent.
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1 Introduction

The histopolation problem is more practical than the interpolation problem as,
e.g., the statistical information is rather given in form of histograms. On the
other hand, for any given histopolation problem an equivalent interpolation
problem could be formulated and the derivative of the interpolant is, in fact,
the histopolant [19]. We treat in this paper the histopolation problem with cu-
bic splines. However, instead of that, it is possible to solve the corresponding
interpolation problem with quartic splines and afterwards calculate its deriva-
tive. This additional step in practice accompanies with additional (at least
round-off) errors at calculations. Because of that it is preferable to have direct
algorithms for finding the cubic spline histopolant. In other words, instead
of implicit theory via quartic spline interpolation we develop explicit theory
of cubic spline histopolation. We consider most common boundary conditions
like given values of the spline and its first and second derivatives in endpoints
of given interval.

A wide class at solving differential and integral equations is projection meth-
ods. The collocation method is the interpolation projection method and the
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subdomain method is the histopolating projection method. The application of
these methods requires detailed description of interpolation and histopolation
processes, respectively. It is remarkable that, for the boundary value problem
with second order linear differential equation, on uniform mesh, the collocation
with cubic splines has the rate O(h2) [10, 17, 18] but the subdomain method
has O(h4) [15, 18]. The subdomain method is very natural if, e.g., the free
term function in differential equation is given approximately via mean values
on subintervals. The same idea works well in case of Volterra integral equa-
tions [5]. These circumstances are a great motivation to give a special attention
to histopolation problem with cubic splines.

The histopolation with splines is studied in many papers under different
names like area matching interpolation [2,3,6], interpolation in the mean [4,6,
20], interpolation of mean values [11], histospline [20]. The spline histopolation
on biinfinite knot sequence is treated in [20]. There are several papers by
quartic spline interpolation, e.g., [11,12,13] but the interpolation problem which
is equivalent to the histopolation with cubic splines is not treated in them in
such extent as we do in current paper.

We confirm with numerical examples the known fact that the cubic spline
interpolant and also the cubic spline histopolant (which is, in fact, an inter-
polant in intermediate points) do not preserve geometrical properties. One way
to overcome this disadvantage is to use rational or combined splines [7,8]. But
rational interpolating or histopolating splines do not exist for any data [7, 16],
cubic spline interpolants or histopolants exist always. Another idea to preserve
geometrical properties is to add some auxiliary spline knots (see, e.g., [14]
to preserve monotonicity). In [8] monotonicity is preserved without auxiliary
knots by using quadratic and rational spline pieces. The convexity preserv-
ing combined spline theory similar to [8] should use cubic spline histopolation
which we develop in this paper.

2 The histopolation problem

Let xi be given points on an interval [a, b] such that a = x0 < x1 < . . . < xn = b
and let zi, i = 1, . . . , n, be given real numbers (histogram heights). Denote
hi = xi − xi−1, i = 1, . . . , n. We consider the problem of finding a function
S : [a, b]→ R such that∫ xi

xi−1

S(x)dx = zihi, i = 1, . . . , n (2.1)

and S is a cubic spline from the class C2. Conditions (2.1) are called histopo-
lation conditions.

Since a cubic spline with knots xi, i = 0, . . . , n, has n + 3 free parameters
(dimension of the cubic spline space is n + 3), and this could not be well
combined with (2.1), we choose cubic spline knots as

ξ1 = x0, ξi ∈ (xi−1, xi), i = 2, . . . , n− 1, ξn = xn.

Math. Model. Anal., 22(4):514–527, 2017.
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Then the cubic spline has n+ 2 free parameters. We add to the histopolation
conditions two boundary conditions from

S(a) = α, S′(a) = α, S′′(a) = α,

S(b) = β, S′(b) = β, S′′(b) = β

at different endpoints a and b.

3 Representation of the histopolant

Several representations of cubic spline could be considered, but the one which
uses second moments and particular integrals is appropriate. Thus, on the
interval [ξi, ξi+1] we use four parameters to represent the spline:

Mi = S′′(ξi), Mi+1 = S′′(ξi+1), λi =

∫ xi

ξi

S(x)dx, ρi =

∫ ξi+1

xi

S(x)dx.

Denote εi = xi− ξi, ηi = ξi+1− xi, δi = εi + ηi, i = 1, . . . , n− 1 (see Figure 1).

x0 x1 xi−1 xi xn−1 xn

ξ1 ξ2 ξi ξi+1 ξn−1 ξn

h1 hi hn

δ1 δi δn−1

ε1 η1 εi ηi εn−1 ηn−1

Figure 1. Additional parameters.

Then the spline could be written as

S(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3, x ∈ [ξi, ξi+1],

i = 1, . . . , n− 1, (3.1)

where

ci =
Miηi +Mi+1εi

2δi
, di =

Mi+1 −Mi

6δi
,

ai =
1

δi

(
λi
ηi
εi

+ ρi
εi
ηi

)
− ci

3
εiηi −

di
4

(ηi − εi)εiηi,

bi =
2

δi

(
ρi
ηi
− λi
εi

)
− 2

(
ci
3

(ηi − εi) +
di
4

(η2i − ηiεi + ε2i )

)
.

To determine the parameters Mi, i = 1, . . . , n, λi, ρi, i = 1, . . . , n − 1, we
use smoothness conditions

S(ξi − 0) = S(ξi + 0), i = 2, . . . , n− 1, (3.2)
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S′(ξi − 0) = S′(ξi + 0), i = 2, . . . , n− 1, (3.3)

histopolation conditions

ρi−1 + λi = zihi, i = 1, . . . , n (3.4)

with ρ0 = 0, λn = 0, and two boundary conditions. Equations (3.2) and (3.3)
take the form, respectively,

− ηi−1
δi−1εi−1

λi−1 +
1

δi−1

(
2 +

εi−1
ηi−1

)
ρi−1 −

1

δi

(
2 +

ηi
εi

)
λi +

εi
δiηi

ρi

=
1

24

[
− ηi−1(εi−1 + 2ηi−1)Mi−1

+
(
− ηi−1(3εi−1 + 2ηi−1) + εi(2εi + 3ηi)

)
Mi

+ εi(2εi + ηi)Mi+1

]
, i = 2, . . . , n− 1, (3.5)

− 1

δi−1εi−1
λi−1 +

1

δi−1ηi−1
ρi−1 +

1

δiεi
λi −

1

δiηi
ρi

= − 1

24

[
δ2i−1 + ηi−1δi−1 + η2i−1

δi−1
Mi−1

+

(
3δ2i−1 + 2ηi−1δi−1 + ηi−1εi−1

δi−1
+

3δ2i + 2εiδi + εiηi
δi

)
Mi

+
δ2i + εiδi + ε2i

δi
Mi+1

]
, i = 2, . . . , n− 1. (3.6)

Observe that these equations are linear (homogeneous) with respect to the
unknowns λi−1, ρi−1, λi, ρi, Mi−1, Mi, Mi+1.

4 Systems defining spline parameters

In total, we have to determine 3n − 2 unknowns M1, . . . ,Mn, λ1, . . . , λn−1,
ρ1, . . . , ρn−1 from the system of 3n − 2 equations: (3.4), (3.5), (3.6) and two
boundary conditions. This system is of undetermined form to study. We take
9 equations (3.4,i− 1), (3.5,i− 1), (3.6,i− 1), (3.4,i), (3.5,i), (3.6,i), (3.4,i+ 1),
(3.5,i+ 1), (3.6,i+ 1) containing eight unknowns λi−2, ρi−2, λi−1, ρi−1, λi, ρi,
λi+1, ρi+1. These λj , ρj could be eliminated by using the linear combination
of equations with coefficients indicated below:

(3.4, i− 1) − hi + hi+1

hi−1
, (3.5, i− 1)

hi + hi+1

hi−1
ηi−2,

(3.6, i− 1) − hi + hi+1

hi−1
η2i−2, (3.4, i)

hi−1 + 2hi + hi+1

hi
,

(3.5, i)
εi(hi + hi+1)− ηi−1(hi−1 + hi)

hi
,

(3.6, i)
ε2i (hi + hi+1) + η2i−1(hi−1 + hi)

hi
− (hi−1 + hi)(hi + hi+1),

Math. Model. Anal., 22(4):514–527, 2017.
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(3.4, i+ 1) − hi−1 + hi
hi+1

, (3.5, i+ 1) − hi−1 + hi
hi+1

εi+1,

(3.6, i+ 1) − hi−1 + hi
hi+1

ε2i+1.

For i = 3, . . . , n− 2 we obtain the equation

ci,i−2Mi−2 + ci,i−1Mi−1 + ciiMi + ci,i+1Mi+1 + ci,i+2Mi+2 = Di, (4.1)

where

Di = (hi + hi+1)zi−1 − (hi−1 + 2hi + hi+1)zi + (hi−1 + hi)zi+1, (4.2)

ci,i−2 =
1

24

η4i−2(hi + hi+1)

δi−2hi−1
, (4.3)

ci,i−1 =
1

24

((
ηi−2(3ηi−2 + 2εi−1 + 3ηi−1) + (εi−1 + 2ηi−1)(hi−1 + ηi−1)

+
η2i−2
hi−1

(
εi−2ηi−2
δi−2

+
εi−1ηi−1
δi−1

))
(hi + hi+1)

+
η3i−1εi(hi−1 + hi + hi+1)

δi−1hi
+
η2i−1(hi−1 + ηi−1)(εi + hi+1)

δi−1

)
, (4.4)

cii =
1

24

((
ηi−2(2εi−1 + ηi−1) + (3εi−1 + 2ηi−1)(hi−1 + ηi−1)

+
η2i−2ε

2
i−1

δi−1hi−1

)
(hi + hi+1)

+

(
εi+1(εi + 2ηi) + (2εi + 3ηi)(εi + hi+1) +

η2i ε
2
i+1

δihi+1

)
(hi−1 + hi)

+

((
3 +

εi−1
δi−1

)
ηi−1 +

(
3 +

ηi
δi

)
εi

)(
(hi−1 + ηi−1)(εi + hi+1)

+ ηi−1εi
hi−1 + hi + hi+1

hi

))
, (4.5)

ci,i+1 =
1

24

((
εi+1(3εi + 2ηi + 3εi+1) + (2εi + ηi)(εi + hi+1)

+
ε2i+1

hi+1

(
εiηi
δi

+
εi+1ηi+1

δi+1

))
(hi−1 + hi)

+
ηi−1ε

3
i (hi−1 + hi + hi+1)

δihi
+
ε2i (hi−1 + ηi−1)(εi + hi+1)

δi

)
, (4.6)

ci,i+2 =
1

24

ε4i+1(hi−1 + hi)

δi+1hi+1
. (4.7)

Let us notice certain symmetry in equation (4.1). There are symmetric pairs
of parameters: hi−1 ↔ hi+1, δi−2 ↔ δi+1, δi−1 ↔ δi, ηi−2 ↔ εi+1, εi−1 ↔ ηi,
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ηi−1 ↔ εi. Then we see the symmetry between ci,i−2 and ci,i+2, ci,i−1 and
ci,i+1, inside cii. However, all coefficients (4.3)–(4.7) are positive.

In case of i = 2 we take seven equations (3.4,1), (3.4,2), (3.5,2), (3.6,2),
(3.4,3), (3.5,3), (3.6,3) to eliminate six unknowns λ1, ρ1, λ2, ρ2, λ3, ρ3. The
coefficients of the appropriate linear combination are as in general case. This
leads to the equation

c21M1 + c22M2 + c23M3 + c24M4 = D2,

where D2 is determined by (4.2), c23 and c24 by (4.6) and (4.7), respectively.
There is certain difference in c21 and c22 compared to (4.4) and (4.5), but they
could be calculated similarly to the general case taking into account also the
configuration of the intervals near the endpoint a.

Similar situation takes place in case of i = n− 1.

The simplest boundary equation here is S′′(a) = α or M1 = α. The other
possible boundary conditions, e.g., S(a) = α and S′(a) = α, require the calcu-
lation of S(ξ1 + 0) and S′(ξ1 + 0) as it was done at transformation of (3.2) and
(3.3). This should be followed by the elimination of appearing parameters λj ,
ρj . Both cases give us the equation

c11M1 + c12M2 + c13M3 = D1 (4.8)

with certain expression D1 depending on α and given histogram parameters.
However, (4.8) includes M1 = α.

The boundary conditions at the endpoint b could be treated similarly.

Thus, the spline parametersM1, . . . ,Mn are determined by the five-diagonal
system

c11M1 + c12M2 + c13M3 = D1,

c21M1 + c22M2 + c23M3 + c24M4 = D2,

ci,i−2Mi−2 + ci,i−1Mi−1 + ciiMi + ci,i+1Mi+1 + ci,i+2Mi+2 = Di,

i = 3, . . . , n− 2,

cn−1,n−3Mn−3 + cn−1,n−2Mn−2 + cn−1,n−1Mn−1 + cn−1,nMn

= Dn−1,

cn,n−2Mn−2 + cn,n−1Mn−1 + cnnMn = Dn.

(4.9)

Solving this, the system consisting of all equations (3.5), (3.6) allows to deter-
mine the parameters λj , ρj . Its unique solvability is shown in [9]. Note that
the values λ1 and ρn−1 are known due to the histopolation conditions (3.4,1)
and (3.4,n). We discuss the solvability of (4.9) in next section.

5 Existence and uniqueness of the solution

It is clear that the unique solvability of system (4.9) is equivalent to the ex-
istence of unique solution to the histopolation problem. Let us start with
particular cases.

Math. Model. Anal., 22(4):514–527, 2017.
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Consider the case of spline knots as ξi = (xi−1 + xi)/2, i = 2, . . . , n − 1.
Then ηi−1 = εi = hi/2, i = 2, . . . , n − 1, ε1 = h1, ηn−1 = hn. The coefficients
in (4.1) are (we write them also keeping symmetrical structure)

ci,i−2 =
1

192
(hi + hi+1)

h3i−1
hi−2 + hi−1

,

ci,i−1 =
1

192

(
(hi+hi+1)

(
14h2i−1+17hi−1hi+6h2i+

hi−2h
2
i−1

hi−2 + hi−1

)
+h2ihi+1

)
,

cii =
1

192

(
(hi + hi+1)(17h2i−1 + 30hi−1hi + 10h2i )

+ (hi−1 + hi)(10h2i + 30hihi+1 + 17h2i+1) + 2hi−1hihi+1

)
,

ci,i+1 =
1

192

(
(hi−1+hi)

(
6h2i+17hihi+1+14h2i+1+

h2i+1hi+2

hi+1+hi+2

)
+hi−1h

2
i

)
,

ci,i+2 =
1

192
(hi−1 + hi)

h3i+1

hi+1 + hi+2
.

We see here the diagonal dominance in rows as

cii − (ci,i−2 + ci,i−1 + ci,i+1 + ci,i+2)

=
1

192

(
(hi + hi+1)(2h2i−1 + 13hi−1hi + 3h2i )

+ (hi−1 + hi)(3h
2
i + 13hihi+1 + 2h2i+1) + 2h3i + 2hi−1hihi+1

)
.

Similar calculations give the diagonal dominance in near-boundary equa-
tions which yields the unique solvability of (4.9) in this case.

In case of uniform mesh with hi = h, i = 1, . . . , n, and ξi = (xi−1 + xi)/2,
i = 2, . . . , n− 1, the interior equations of (4.9) are

h3

192
(52M1 + 255M2 + 76M3 +M4) = D2,

h3

576
(2M1 + 229M2 + 690M3 + 228M4 + 3M5) = D3,

h3

192
(Mi−2+76Mi−1+230Mi+76Mi+1+Mi+2) = Di, i = 4, . . . , n− 3,

h3

576
(3Mn−4 + 228Mn−3 + 690Mn−2 + 229Mn−1 + 2Mn) = Dn−2,

h3

192
(Mn−3 + 76Mn−2 + 255Mn−1 + 52Mn) = Dn−1.

The boundary condition S(a) = α gives the equation

1

1152
(386M1 + 379M2 + 3M3) =

1

h2
(2α− 3z1 + z2),

S(b) = β gives

1

1152
(3Mn−2 + 379Mn−1 + 386Mn) =

1

h2
(zn−1 − 3zn + 2β),
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S′(a) = α leads to

1

1152
(706M1 + 443M2 + 3M3) =

1

h2
(z2 − z1 − αh),

S′(b) = β to

1

1152
(3Mn−2 + 443Mn−1 + 706Mn) =

1

h2
(hβ + zn−1 − zn).

In general case, there may be no diagonal dominance in equations (4.1).
Let us prove that. Consider in coefficients (4.3)–(4.7) the situation where
ηi−2 = const > 0 and other used parameters ηj , εj are equal to ε → 0. Then
ci,i−2 is of order η2i−2ε but cii has the order ηi−2ε

2.
The unique solvability of system (4.9) follows from the next result.

Proposition 1. The histopolation problem posed in Section 2 has the unique
solution.

Proof. It is sufficient to prove that the corresponding homogeneous problem
has only trivial solution. Suppose a cubic spline S satisfies∫ xi

xi−1

S(x)dx = 0, i = 1, . . . , n (5.1)

and two of the boundary conditions S(a) = 0, S(b) = 0, S′(a) = 0, S′(b) = 0,
S′′(a) = 0, S′′(b) = 0 at different endpoints a and b. By (5.1) it exists
ηi ∈ (xi−1, xi) such that S(ηi) = 0, i = 1, . . . , n.

If S(a) = S(b) = 0 then there are ηi ∈ (ηi−1, ηi), i = 2, . . . , n, η1 ∈ (a, η1),
ηn+1 ∈ (ηn, b) such that S′(ηi) = 0, i = 1, . . . , n + 1. Therefore, there are
ηi ∈ (ηi, ηi+1), i = 1, . . . , n, such that S′′(ηi) = 0. Consequently, an interval
[ξk, ξk+1] contains two (distinct) zeros of S′′ which means that S′′(x) = 0,
x ∈ [ξk, ξk+1].

If S′(a) = S′(b) = 0 then again there are n+ 1 zeros of S′ in [x0, xn] and n
zeros of S′′ in (x0, xn). If S′′(a) = S′′(b) = 0 then S′′ has n zeros in [x0, xn].
Using different kind boundary conditions at different endpoints we also arrive
at the situation with S′′(x) = 0, x ∈ [ξk, ξk+1].

Let us make some observations about the situation of S′′(x) = 0,
x ∈ [ξk, ξk+1]. Then S is at most first degree polynomial on [ξk, ξk+1]. If S

keeps the sign in [ξk, xk] then due to

∫ xk

xk−1

S(x)dx = 0 we have ηk ∈ (xk−1, ξk)

with S(ηk) = 0. We call this case suitable for the left. If S keeps the sign in
[xk, ξk+1] then S has a zero in (ξk+1, xk+1) and this case is called suitable for
the right. If, e.g., k = 1, then S has a zero in (x0, x1), S keeps the sign in

[x1, ξ2], due to

∫ x2

x1

S(x)dx = 0 there is a zero of S in [ξ2, x2) and this case is

suitable for the right. Similarly, k = n − 1 (i.e., k + 1 = n) is a case suitable
for the left.

Consider now the case of [ξk, ξk+1] suitable for the left. The interval [a, ξk]
contains k − 1 subintervals [ξ1, ξ2], . . . , [ξk−1, ξk]. We know that S(ηi) = 0,
ηi ∈ (xi−1, xi), i = 1, . . . , k − 1, and S(ηk) = 0, ηk ∈ (xk−1, ξk]. We have:

Math. Model. Anal., 22(4):514–527, 2017.
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1) case S(a) = 0, then S has k + 1 zeros a, η1, . . . , ηk, S′ has k zeros, S′′ has
k − 1 zeros in (a, ξk) and S′′(ξk) = 0;

2) case S′(a) = 0, then S has k zeros η1, . . . , ηk, S′ has k − 1 zeros in (a, ξk)
and S′(a) = 0, S′′ has k − 1 zeros in (a, ξk) and S′′(ξk) = 0;

3) case S′′(a) = 0, then S has k zeros in (a, ξk], S′ has k − 1 zeros, S′′ has
k − 2 zeros in (a, ξk) and S′′(a) = 0, S′′(ξk) = 0.

Anyway, S′′ has k zeros in k − 1 subintervals and, thus, S′′ is again equal to
zero in some of them.

Observe that receiving S′′(x) = 0, x ∈ [ξk−1, ξk+1], first degree polynomial

S on [ξk−1, ξk+1], due to

∫ xk

xk−1

S(x)dx = 0, has a zero in (xk−1, xk) and keeps

the sign in [ξk−1, xk−1], consequently, [ξk−1, ξk] is suitable for the left. At the
same time, S keeps the sign in [xk, ξk+1] and [ξk, ξk+1] is suitable for the right.

Presented reasonings allow to assert that during the process there are always
adjacent subintervals [ξj , ξj+1], . . . , [ξk−1, ξk] where the nullity of S′′ is not yet
established, but [ξj−1, ξj ] is suitable for the right and [ξk, ξk+1] is suitable for
the left which yields that S′′ is equal to zero on one of them. However, it may
be as well j = 1 or k = n. The process ends at S′′(x) = 0, x ∈ [a, b], and
then S(x) = 0, x ∈ [a, b], by histopolation and boundary conditions. Naturally,
suppose that n ≥ 2 if we use S′′(a) = α and S′′(b) = β. ut

6 Another representation

Consider the histopolation problem posed in Section 2. A classical representa-
tion of cubic spline is the use of Si = S(ξi), Mi = S′′(ξi), i = 1, . . . , n.
Any cubic spline satisfies the internal equations (continuity of S′ at knots ξi)

δi−1
δi−1 + δi

Mi−1+2Mi+
δi

δi−1 + δi
Mi+1 = 6

Si+1−Si

δi
− Si−Si−1

δi−1

δi−1 + δi
, i = 2, . . . , n−1.

(6.1)
For definiteness, add boundary conditions M1 = α (first equation) and Mn = β
(last equation). We obtain the system

AM = BS + d, (6.2)

where M = (M1, . . . ,Mn), S = (S1, . . . , Sn), first and last rows of B are zero
rows, d = (α, 0, . . . , 0, β). The matrix A has diagonal dominance in rows which
gives its invertibility. Note that the diagonal dominance of A in rows takes
place also in case of other boundary conditions.

Basing on (3.1) we have

Si = ai − biεi + ciε
2
i − diε3i ,

Si+1 = ai + biηi + ciη
2
i + diη

3
i .

From them we obtain

ai =
ηiSi + εiSi+1

δi
− ciεiηi + di(εi − ηi)εiηi,



Cubic Spline Histopolation 523

bi =
Si+1 − Si

δi
+ ci(εi − ηi)− di(η2i − εiηi + ε2i ).

The coefficients ci and di were expressed via Mi and Mi+1 in Section 3. Using
(3.1) the histopolation conditions could be written

ai−1ηi−1 +
bi−1

2
η2i−1 +

ci−1
3
η3i−1 +

di−1
4

η4i−1 + aiεi −
bi
2
ε2i +

ci
3
ε3i −

di
4
ε4i = zihi

or

η2i−1
2δi−1

Si−1 +

(
εi−1ηi−1
δi−1

+
η2i−1
2δi−1

+
εiηi
δi

+
ε2i
2δi

)
Si +

ε2i
2δi

Si+1

−
η2i−1

24δi−1
(2ε2i−1 + 4εi−1ηi−1 + η2i−1)Mi−1

−
(

η2i−1
24δi−1

(4ε2i−1 + 4εi−1ηi−1 + η2i−1) +
ε2i

24δi
(ε2i + 4εiηi + 4η2i )

)
Mi

− ε2i
24δi

(ε2i + 4εiηi + 2η2i )Mi+1 = zihi, i = 2, . . . , n− 1. (6.3)

Near the boundary we get(
η1h1
δ1

+
h21
2δ1

)
S1 +

h21
2δ1

S2

− h21
24δ1

(4η21 + 4η1h1 + h21)M1 −
h21

24δ1
(2η21 + 4η1h1 + h21)M2 = z1h1 (6.4)

with the counterpart containing znhn. These equations together form the sys-
tem

CS = DM + Ez. (6.5)

Note that in matrices C and D the diagonal dominates in rows, E is diag-
onal matrix with entries hi and z = (z1, . . . , zn). Clearly, to construct the
cubic spline histopolant it is necessary and sufficient to solve the system (6.2),
(6.5). An opportunity to solve it is the following. Take, e.g., a guess value
M0 = (M1,M

0
2 , . . . ,M

0
n−1,Mn), M0

i = Di/2h
3
i , i = 2, . . . , n− 1 (note that, in

uniform grid case, Di/2 is close to h3f ′′(xi) if the values zi are determined as in
Section 7), then find S0 from CS0 = DM0 +Ez, M1 from AM1 = BS0 +d, S1

from CS1 = DM1 +Ez, in general, the iteration process is AMk = BSk−1 +d,
CSk = DMk + Ez, k = 1, 2, . . . . It may be deduced here also the process

Mk = A−1BC−1DMk−1 +A−1BC−1Ez +A−1d

and the convergence is defined by the spectrum of A−1BC−1D. Another op-
portunity is to take a guess value S0 = (S0

1 , . . . , S
0
n), e.g., S0

i = zi, i = 1, . . . , n,
then find M0 from AM0 = BS0 + d, in general, AMk−1 = BSk−1 + d,
CSk = DMk−1 + Ez, k = 1, 2, . . . . This process could be described as

Sk = C−1DA−1BSk−1 + C−1DA−1d+ C−1Ez.

Math. Model. Anal., 22(4):514–527, 2017.
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It is immediate to check that the eigenvalues of C−1DA−1B and A−1BC−1D
coincide.

We will give examples of spectrum in some particular cases in next section.
Let us consider now the uniform mesh with central spline knots, i.e., hi = h,

i = 1, . . . , n, ξi = (xi−1 + xi)/2, i = 2, . . . , n − 1. Equation (6.1) is well
known in treatments about cubic splines, it should be taken into account that
δ1 = δn−1 = 3h/2, δi = h, i = 2, . . . , n− 2. Equation (6.3) is

Si−1 + 6Si + Si+1 =
h2

48
(7Mi−1 + 18Mi + 7Mi+1) + 8zi, i = 3, . . . , n− 2,

2S1 + 19S2 + 3S3 =
h2

48
(34M1 + 77M2 + 21M3) + 24z2

and (6.4) is now

2S1 + S2 =
h2

24
(8M1 + 7M2) + 3z1.

7 Numerical tests

We histopolated the function f(x) = 1/x2, x ∈ [−2,−0.1], on uniform grid
for n = 8 and central spline knots ξi = (xi−1 + xi)/2, i = 2, . . . , n − 1. His-

togram heights were computed as zi =
1

h

∫ xi

xi−1

f(x)dx, i = 1, . . . , n. Resulting

histopolants S are given in Figures 2–4.
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Figure 2. Cubic spline histopolant and interpolant for n = 8

In Figure 2 the histopolant with boundary conditions S′′(a) = f ′′(a),
S′′(b) = f ′′(b); in Figure 3 the histopolant with boundary conditions S′(a) =
f ′(a), S′(b) = f ′(b); in Figure 4 the histopolant with boundary conditions
S(a) = f(a), S(b) = f(b). In comparison also cubic spline interpolants are
given satisfying interpolation conditions S(xi) = f(xi), i = 0, . . . , n.

Considering the representation used in Section 6 we tested the dependence
of eigenvalues of matrix A−1BC−1D on grid points xi and spline knots ξi.
Again the case n = 8 is analysed for different meshes.
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Figure 3. Cubic spline histopolant and interpolant for n = 8
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Figure 4. Cubic spline histopolant and interpolant for n = 8

1) Uniform grid xi = a + ih, i = 0, . . . , n, and central spline knots ξi =
(xi−1 + xi)/2, i = 2, . . . , n − 1, give the maximal by modulus eigenvalue
|λmax| = 0.271.

2) For uniform histogram grid xi = a + ih, i = 0, . . . , n, spline knots ξi =
(xi−1 + xi)/2, i = 2, 3, 6, 7, ξ4 = 0.1x3 + 0.9x4, ξ5 = 0.9x4 + 0.1x5 (ξ4 and
ξ5 are close to x4) it holds |λmax| = 2.388.

3) For uniform grid xi = a+ ih, i = 0, . . . , n, spline knots ξi = (xi−1 + xi)/2,
i = 2, 3, 6, 7, ξ4 = 0.9x3 + 0.1x4, ξ5 = 0.1x4 + 0.9x5 (ξ4 and ξ5 are close to
x3 and x5, respectively) it holds |λmax| = 0.803.

4) Take h = (b − a)/n, hi = 0.1h, i = 1, 3, 5, 7, hi = 1.9h, i = 2, 4, 6, 8, and
central spline knots ξi = (xi−1+xi)/2, i = 2, . . . , n−1, then |λmax| = 0.241.

Math. Model. Anal., 22(4):514–527, 2017.
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Figure 5. Cubic spline histopolant for n = 32

8 Concluding remarks

Construction of histopolating cubic spline could be done using second deriva-
tives Mi and particular integrals λi, ρi. The crucial moment here is the solution
of system (4.9). In case of diagonal dominance in the matrix of (4.9) standard
methods (e.g., Gaussian elimination) are stable. In absence of diagonal domi-
nance it may be that other methods should be applied. One way to continue is
to solve the system determining parameters λi, ρi. Another natural way is to
solve system (6.5) where the matrix C has diagonal dominance. An opportunity
is to use an iteration process described in Section 6 to determine either second
derivatives or spline values and then the others by (6.2) or (6.5) with a matrix
having diagonal dominance. We have seen in Section 7 that the convergence
may be slow or be absent at all. In return, in the presence of convergence, the
calculations at iteration are stable.

Numerical tests with the function 1/x2 confirmed the known fact that poly-
nomial splines (at interpolation or histopolation) do not preserve geometrical
properties like positivity, monotonicity, convexity. However, increasing the
number n of knots, the cubic spline histopolant (and cubic spline interpolant)
occurs to have these properties because of the uniform convergence of values,
first and second derivatives (see Figure 5). For the cubic spline histopolant this
follows from the uniform convergence (see, e.g., [1]) of first, second and third
derivatives of interpolating quartic splines in equivalent problem as described
in Introduction.
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https://doi.org/10.1007/978-3-0348-6656-9 5.

[4] F.-J. Delvos. Optimal periodic interpolation in the mean. In Numerical methods
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