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Abstract. We consider the Emden-Fowler equation z”/ = —q(t)|z|*z, ¢ > 0,
in the interval [a,b]. The coefficient ¢(t) is a positive valued continuous function.
The Nehari characteristic number )\, associated with the Emden—Fowler equation

c f: 2'?(t) dt over all solutions

coincides with a minimal value of the functional T
€

of the boundary value problem

"

" = —q(t)|z|*z, x(a)=x(b) =0, x(t) has exactly (n — 1) zeros in (a,b).

The respective solution is called the Nehari solution. We construct an example which
shows that the Nehari extremal problem may have more than one solution.
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1. Nehari’s Solutions

Behavior of solutions of the Emden—Fowler type equation
" = —q(t)|x[*x, >0, (1.1)

where ¢(t) is a positive valued continuous function, may be complicated if ¢(t)
is a non-monotone function.

Some regularity to the theory of the Emden—Fowler type equations of the
form (1.1) is brought by the so called Nehari’s solutions. The Nehari theory
applies to equations of the type (1.1). The general theorem by Nehari (]2,
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Theorem 3.2]) when adapted to the case under consideration states that the
extremal problem.

b
H(z) = / [x’z -1+ 5)_1q(t)952+25} dt —inf, x€ I, (1.2)

has a solution. Here I, consists of all functions z(t¢), which are continuous
and piece-wise continuously differentiable in [a, b], also there exist numbers a,,
such that

a=ap<ay <...<ap="b

forv=0,...,n, z(a,) =0, but = £ 0 in any [a,_1,a,], and

/ 22 (t)dt = / q(t)2?|x|* dt. (1.3)
a 1 a 1

v— v—

A respective extremal function x,,(¢) must be twice continuously differen-
tiable solution of equation (1.1), which vanishes at the points t = a and t = b
and has exactly (n — 1) zeros in (a,b). Any such solution of equation (1.1)
satisfies condition (1.3).

By combining (1.3) with (1.2) one gets that

b b
e e
n = 1 = n) = 2+42¢ = / /2 .
An(a,b) := min H(z) = H(zn) 1+€/a q(t)a;, = dt ey () dt

Thus the characteristic number A, (a, b) is (up to a multiplicative constant)

a minimal value of the functional f: 2"2(t) dt over the set of all solutions of
the boundary value problem

2" = —q(t)|z|*z, x(a) =x(b) =0, x(t)has (n— 1) zeros in (a,b).

The characteristic numbers \,, are called the Nehari numbers and the re-
spective solutions of the differential equation are called the Nehari solutions.

Remark 1. Nehari’s numbers \,(a,b) are uniquely defined by the interval
(a,b). In [2] Nehari mentioned that the theory could be developed much easier
if the associated Nehari’s solution be unique. It was shown theoretically in [3]
that this is not the case. There exist equations of the type (1.1), which have
more than one Nehari’s solution for certain parameters a, b and n.

2. Nonuniqueness of the Nehari’s Solutions
In this section we construct the Emden—Fowler equation of the form (2.2)

which possesses three solutions which obey conditions (2.3). Two of them are
Nehari’s solutions.
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2.1. Lemniscatic functions

We use in our considerations the so called lemniscatic functions which can be
defined as solutions of the equation

a" = —223. (2.1)

The functions slt and clt solve equation (2.1) and satisfy respectively the
following initial conditions

z(0)=0, 2'(0)=1 and =z(0)=1, 2'(0)=0.
The lemniscatic sine and cosine functions are periodic with a minimal period

1
ds
4A, where A = / ——— =~ 1.311. For convenience of reference we mention
) V1—st

the following properties of these functions:
sl0=s124A=0, slA=1,
cd0=1,clA=0, cl2A = —1,

1t
s/t =clt(145s1%t), co't=—slt(l+cl?t), tlin(l)ST = 1.

More properties and useful formula of these functions are given in [1].
Equation. Consider the boundary value problem

" = —q(t) 2®, (2.2)
=1 =0, 2(1)=0, 2(t)>0,te(~1,1). (2.3)
Let q(t) = 2/£%(t), where
" _{ &(t) = ht +, -1<t<0,
&(t) = —ht +n, 0<t<1.

Thus £(t) is a “A-shaped” piece-wise linear function, which depends on a
positive valued parameter h, n :=h + 1.

Solutions. A solution (solutions) of problem (2.2)—(2.3) can be composed
of solutions of the following two problems

k 3
o= RO 21(=1) =0, 21(0) =7, 21(t) >0, t € (=1,0), (2.4)
x”:_LxB 22(0) =7, 22(1) =0, z2(t) >0, t € (0,1)
2 (—ht+77)6 25 2 y L2 3 2 3 s 4)s

where 7 > 0. The function

ai(t), if —1<t<0,
z(t) = .
xzo(t), if 0<t<1
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is a C?-solution of problem (2.2)—(2.3) if additionally the smoothness condition

is satisfied. Problem (2.4) has a solution

x1(t, 1) = ﬁﬁ(ht +n) sl <61 ht—:—ln)

where 8; = a{(—1) > 0 is such that z1(0;3;) = 7. The derivative of x; is
given by

wi(t;ﬂl)zﬁﬁhs1<5l +1) g, =hEn (/31 t+1)

ht + ht+ 1 ht+ 1
Similar formulas are valid for x4 (¢). Notice that

xé(l) =—02 < 0.

In order to get explicit formula for a solution of the BVP (2.2)—(2.3) one has
to solve a system of two equations with respect to (51, 52)

{ 21(0; 1) = 22(0; B2),
x1(0; B1) = 25(0; B2).

This system after replacements and simplifications looks as

. f (2.5)
2 2
gine (PL) 2 O g (PL) _ gdpa(PL) - B2y ,
n n n
b gl .
where 0 < ﬂ—l, pi < 2A. In new variables u := ﬂl v = 6; the system
n
takes the form
b(u) = P(v), 0<u, v<2A4,
(2.6)
() = —Wy(v), h>0,

where
D(2):=zslz, Wu(2):=hzslz+ 228l 2.

Notice that if a solution (@, ) of system (2.6) exists, then a solution x(t)
of the BVP (2.2)—(2.3) can be constructed such that

P(=1) =0 =u*(h+ 1) /(1) =By = —0*(h+1)°
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Proposition 1. For h large enough system (2.6) has exactly three solutions:

1. There exists a unique solution of the form (ug,ug). One has that
(ug,ug) — (24,24), h — +oo.

2. In the triangle {0 < u,v < 2A, v > u)} there ezists a unique solution
(u1,v1) such that

(u1,v1) — (0,24) h — +oc.

3. In the triangle {0 < u,v < 2A, v < u)} there ezists a unique solution
(ug,v2). Solutions (u1,v1) and (u2,v2) are symmetric, that is, (va,us) =
(ul,vl).

2.2. Investigation of a system

D, Py
75 -7 h=6

5 =35
25/ oo hE2

ez~ )
1 \

05 1 15 2:1325 3
—25 [ \\\\\
5
75! 24p2

Figure 1. Functions @(u) (solid line) and ¥, (u) (dashed lines).

Standard analysis shows that function @(z) = z sl z has the following prop-
erties (see Fig. 1):

D(0) = ®(24) =0, @(z) >0, Vz € (0,24),
' (2) =slz+ zsl' 2,

Dpar = P(20) = 1.47233 at the unique point of maximum zg ~ 1.61879.

Consider a set of zeros of a function @(u)—®(v) in the square @ = {(u,v) :
0 < u,v < 2A4}. It consists of the diagonal segment Iy (v = v) and two
symmetric branches Iy and I, which are shown in Fig. 2.

Lemma 1. The relation F(u,v) = ®(u) — &(v) = 0 defines a function v =
f(u) for w € [0,2A]. One has that
P(u)
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Figure 2. Zeros of ¢(u) —P(v)) (solid line) and ¥y, (u) +W (v) (dashed line), h = 12.

Proof. A set of zeros of F(u,v) for v > w (branch Iy in Fig. 2) can be
parameterized by the equalities &(u) = p, $(v) = p, where p € [0, Pras]. If
p changes from 0 to @,,,,, variables u and v respectively increase from 0 to
zo and decrease from 2A to zp. One gets by using Implicit Function Theorem
that there exists function v = f(u), u € (0, 29) such that F(u, f(u)) = 0 for
u € (0,20) and

v=F(u) v=f ()

Since @'(u) > 0 for u € (0, 2) and &'(v) < 0 for v € (29,2A) one has that
fi(u) < 0. The graph of f(u) is the set I'}.

The same type of arguments can be applied for (u, v) in the lower triangle,
u > v. Thus a decreasing function v = f(u) exists for u € [0,2A]. The graph
of this function is the union of Iy and I'_. B

Consider function ¥, (z). We mention the following properties:
7,(0) =0, W,(24) = —44? VYh >0,
U, (2) = hd' (2) + 28" (2).

Function ¥y, (z) increases for z € (0, zmaz(h)) and decreases for z € (zmaz, 24).
It is easy to show that

(g/h)mar = Lph(zmar) — +00, Zmaz(h) — 20, h — 4o00.

Lemma 2. For large h a set Z of zeros of the function ¥y (u) + ¥y, (v) in the
square @) consists of three mutually disjointed sets

Zy C{(z,y): 0< <9, 24—0<y<24},
Zo C{(z,y): 24— <ax <24, 24— <y <24},
Z_ C{(z,y): 2A-6 <z <24, 0<y<d}.
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It is also true that 6 — 0 as h — +o0.

Proof. Let z; be a unique zero of ¥, (z) in the interval (0,2A). Let 2, and
z* be the level points defined by the relations

U (2) = W (2%) = 4A%, 2, < 2%

It is clear that the equality ¥y, (z) + ¥, (y) = 0 implies the inclusion (x,y) €
(0, z¢) U(2*,2A). Indeed, if = € (24, 2*) then ¥),(x) > 4A? and ¥}, (z)+¥n(y) >
0 for any y. If ¥,,(z) + ¥, (y) = 0 then either = or y belongs to (z1,2A4).

Consider the case x € (z1,2A). Then there are two values of y, say, y1 and
Y2, such that

Wh(x) +¢h(y) = 07 U1 € (072*)7 Y2 € (Z*azl)'

Similarly, if y € (21,2A), then there are two values of x, x; and z3, such
that z1 € (0,24) and x2 € (2%, 2z1). Therefore any point (z,y) € @ such that
U, () + ¥ (y) = 0 belongs to one of the sets Z,, Zy or Z_.

Let us show that z, — 0 and z* — 24 as h — +o00. Both values of z satisfy

the relation ¥, (z) = hzslz+ 2z%sl' z = 4A%. Then zslz + lz2 sl'z = %4142. If

h — 400 then zsl z — 0 and the level points z,(h) and 2*(h) tend respectively
to 0 and 24. W

Lemma 3. The relation Gp(u,v) = ¥p(u) + ¥n(v) = 0 defines a function
!

v =g(u) for u € [0,4]. One has that g,, = _W}’L—Evugh_g(“) > 0 for u € [0,0].
h

Proof. (of Proposition 2.1) Consider the set Z,. The function v = f(u)
strictly decreases and satisfies the relation f(0) = 2A. The function v = g(u)
strictly increases and satisfies the relations ¢g(0) < 24, g(ux) = 2A for some
ux € (0,9). Therefore there exists a unique point of intersection of the graphs
of both functions in Z, . By symmetry with respect to the diagonal, the same
is true for the set Z_. Thus two solutions of the system (2.6). For u = v
the system (2.6) reduces to a single equation W, (z) = 0, which has a unique
solution, tending to 24 as h — +oc. Thus exactly three solutions of the system
(2.6).

We also give an alternative proof. Let us parameterize the upper left branch
I'y (for this branch v > u) by @(u) = &(v) = p, where 0 < p < ps, px =
maxpo 24){P(u)}. Function @(u) attains its maximal value p, ~ 1.47233 at the
point m, &~ 1.61879. This branch is then defined parametrically as u = u(p),
v = v(p). Notice that (u(0),v(0)) = (0,2A4) and (u(p«),v(ps)) = (M, my).

Suppose that & > 1 and consider the one argument function

w(p) := hu(p) slu(p) + v (p) sl u(p) + ho(p) slv(p) + v*(p) sl v(p)

in the interval [0, p.]. Our intent is to show that this function changes sign
only once. Then there exists a unique solution of the system (2.6) on Iy and
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as a consequence, there exist exactly three solutions of the system (2.6) for
0<u,v<2A.
Since u(p) slu(p) = v(p)slv(p) = p, the function w takes the form

w(p) = 2hp +u*(p) s1' u(p) + v*(p) s'v(p).

The problem is to show that function w(p) strictly increases on the interval
(0,p+), where u(p) is defined parametrically as u slu = p, u € (0,m,), and
v(p) is defined by v slv = p, v € (m.,2A4). Consider the first equation in
(2.6). Define two functions z(p) and y(p) parametrically using the equalities

zslzx =ysly=p (2.7

where p € [0,p.], = : [0,p.] — [0,m.], ¥ : [0,ps] — [Mmx, 2A]. The functions
x(p) and y(p) are well defined, continuous, but may have infinite derivatives.
One has from (2.7) that

dx 1 dy 1

d_p Csle4azsl'z’ dp sly+asl'y’
Thus z(p) has infinite derivatives at p = 0 and p = p., and y(p) has infinite
derivative at p = p..
Consider now the second equation in (2.6). We will show that the function

wp) =hasle+a2sl'z +hysly +y?sl'y
=h(zsla +ysly) +22sl’z + +y%sl'y
=2hp+ 22sl' x4+ +y%sl'y
is strictly increasing in p for h large enough. One has that

dw

e (p) = 2h +2za’ sl' x + 2%sl” x 2’ + 2yy’ sl y + y?sl” yy/

(2.8)
=2h+ a2’ (2s' x +xsl”" z) + yy' (28" y +ysl” ).

Since slz is a bounded periodic function together with the derivatives sl’
and sl” z, the expressions in parentheses are bounded.
Let us evaluate the products z(p)x’(p) and y(p)y'(p). One has for the
1
second one that the value of derivative - = —— — at p = 0 is given by
dp sly+asl'y
dy 1 1 dy 1
= = —— 0)—(0)=2A4-(—=—) =—1.
dp - azavzasrza - e Y030 Y
Using the I’Hospital’s rule to evaluate the limit yields
/ 11
z Ep) i 2 P)

1
p—0 =0 s PO s x'(p)

28’z +zsl” x

= lim 2 ’ ! 1
p=0 (sl 428l -sl'w - o +22sl'z) - =

2sl'z — 2zsl®x 2s1'0 1

lim = ==
p=0 (L2)2 4 ()l w4 sl'w 1+2s'0+81'0 2
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Similarly can be shown that lim,,_,,, z(p)z’(p) and lim,_,,, y(p)y'(p) are finite.
Then the last two addends in (2.8) are finite in the interval [0, p.] and for h
w(p)
dp
can change sign only once. Thus only one zero of the system (2.6) in the upper
triangle. Totally we have exactly three solutions. B

large enough is positive. Since w(0) < 0 and w(p.) > 0, this function

2.3. Integrals

The Nehari number A(—1,1) we are looking for is the minimal value of the
functional

-1
over all solutions of the BVP. Notice that

0 1
H(z) :% /ql(t)x‘ll(t)dt—i—% /qg(t)x;‘(t)dt = Ji+J, qi(t):giﬁl(t), i=1,2
—1 0

Computation yields

H(x)zﬁ 6 (BN (% B (8, (5
oL " U Tl 1 n )|’

where 81 and (35 solves the system (2.5), n = h + 1.
If 2(t) is a “symmetric” solution, then 51 = (2 = (o, and the above formula
looks as

50%/77 . A X
@ =25 [ wa=20 [5_0_51/ <5_> . <ﬂ_>]

n n n
0

3

B3
T3

ﬂ% ﬂ% 3
’]7 h—+o00 ’I7 h—+o00 ’I7 h— 400
Hsym

lim ———— =
h—+o00 Hysym

lim T 1 1 3 2 :
T [ (B ()] 4t [ - () (2
e P EDAE

5 [ o (22)a ()]
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3. Conclusion

We have shown that the boundary value problem (2.2)-(2.3) for sufficiently
large values of parameter h has exactly three nontrivial solutions. One of those
solutions is symmetric with respect to ¢ = 0 and two others are asymmetric
as shown in Fig. 3. Both asymmetric solutions are the Nehari solutions.

Figure 3. Three solutions of problem (2.2)—(2.3)

Computations show that the system (2.6) has exactly three solutions for
h > 1. The respective three solutions of the boundary value problem looks like
shown in Fig. 3. The value of the functional H(x) for any of two asymmetric
solutions is less than that of the symmetric solution.
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