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Abstract. This note emphasizes the application of the moving-boundary metho-
dology in the modelling of two processes of particular industrial relevance. The first
model explains the application of the Stefan and Signorini type boundary condi-
tions in the modelling of the thermal cutting of metals by a plasma beam, while the
second model shows how interface kinetic conditions, employed within the frame-
work of a two-phase Stefan-like model, can describe the dynamics of an aggressive
reaction front in concrete-based materials. Qur formulations provide a conceptually
new approach towards the understanding of the involved physical processes. The
connection between the two models is discussed as well. It relies on the presence of
non-equilibrium conditions driving the moving interface.

Key words: plasma cutting, concrete carbonation, moving boundaries, Stefan-Sig-
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1. Introduction

In the practice of mathematical modelling, the study of moving-boundary
problems occupies a significant position, mainly because of the importance
which it assumes for various questions in the modelling and numerical simu-
lation of several real-world problems. In this work, we present two different
phenomena modelled via a moving-boundary approach.

Our first model (see Section 2) is dealing with a thermal cutting process
using a plasma beam, while the second one (see Section 3) is concerned with
the carbonation of concrete. We develop a new model including physical and
mathematical modelling of thermal plasma cutting, which may serve as an im-
portant tool for understanding the observable industrial problems. We model
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these problems by employing the homogeneous heat-conduction equation ac-
companied with Signorini-type boundary conditions for the computation of
temperature distribution in the workpiece and Stefan-type boundary condi-
tion for describing the evolution of the geometry of cutting front. Afterwards,
we report on a conceptually new way of modelling the carbonation penetra-
tion in concrete-based materials. The resulting model consists of a two-phase
moving-boundary system of parabolic partial differential equations coupled
with a non-local differential equation which drives the motion of the reaction
front. The final aim is twofold:

(a) we want to contribute to the basic understanding of the complex dy-
namics of a fast reaction in non-saturated reactive porous media;

(b) we intend to formulate a complete model which allows the simultaneous
determination of the position of the reaction front and of the fields of the active
concentrations.

The results contained in sections 2 and 3 have been partially reported in
[25] and [21], respectively. We conclude the paper with a discussion on the
connection of the two given problems.

2. Problem 1: Mathematical Modelling of Thermal
Cutting

2.1. Problem statement

There is a wide range of thermal cutting techniques available for the shaping
of materials. One example is the plasma cutting. The origin of the plasma-
arc process goes back to 1941. In an effort to improve the joining of light
metals for the production of aircraft, a new method of welding was born that
used an electric arc to melt the material and a shield of inert gas around the
electric arc to protect the molten metal from oxidation. Figure 1(a) ! gives
an impression on some typical applications of plasma cutting.

The essential idea of cutting is to focus a lot of power onto a small area of
surface of the material producing intense surface heating. First the material
on the surface melts and then evaporates. As the vapour is puffed away or the
molten metal is removed by the high speed gas flow, so a hole develops in the
material. As the plasma cutting advances by melting, a characteristic feature
is the greater degree of melting towards the top of the workpiece resulting in
top edge rounding and poor edge squareness. Top edge rounding is a slight
rounding of the metal along the top edge of the cut and it is mostly effected
by material thickness. This effect is more apparent in thinner metals. The
poor edge squareness causes additional difficulties on the next step in the
manufacturing process (see Figure 1(b)). If the cut piece has to be welded, a
high quality cut with square edges is especially important for the integrity of
the weld.

! Pictures are taken from www.torchmate.com/automate/cncdemo.html and
www.rtgstore.com/art
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Figure 1. (a) An applications of plasma cutting. (b) Some typical industrial prob-
lems.

One of the characteristics of the cut is the speed with which the plasma
jet moves with respect to the workpiece. This speed is the main responsible
for another problem in industry, namely, dross formation, see figure 1(b) and
[26] for detailed discussions.

Investigations are needed for the prediction and control of the above men-
tioned phenomena concerning the plasma arc cutting process. To get a quan-
titative description of the process, one requires a mathematical model for
it. It must involve the different physical phenomena occurring in the work-
piece during the cut, i.e. heat conduction, convection and radiation effects,
mechanical deformations, phase transition, etc. The model has then to be nu-
merically simulated, and the results of the simulations have to be verified by
experiments. We do not cope with these issues here and refer the reader to
[25].

2.2. Mathematical modelling

There is a vast number of scientific publications concerning the different as-
pects of mathematical modelling of thermal cutting. In his pioneering work [31]
on the mathematical theory of heat distribution during welding and cutting,
Rosenthal outlines the fundamentals of the theory and derives analytical solu-
tions for linear two- and three-dimensional flow of heat in solids. In their paper
[9] Friedman and Jiang formulated the melting problem of an one-dimensional
slab as a Stefan problem with Signorini boundary conditions at the moving
boundary. Thereby they established existence and uniqueness theorems for the
solution of the problem as well as studied the regularity and some geometric
features of the free boundary. In [40] Bui An Ton considered Stefan-Signorini
problem with set-valued mappings in bounded domains where he imposed in-
tersecting fixed and free boundary conditions. He proved the existence of a
weak solution of Stefan-Signorini problem and showed the continuity of the
moving interface. For further readings we refer to [9, 13, 15, 19, 36, 37, 39, 40].

Let consider a high-power plasma beam striking a small area of metal sur-
face. Figure 2 provides a schematic illustration of the plasma cutting process.
It shows the plasma beam penetrating through the workpiece, the advancing
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Figure 2. Schematic picture of thermal cutting.

hole and different physical phenomena taking place in the material. The first
phenomenon we can observe is the absorption of the energy by the mate-
rial. The absorption takes place within a thickness usually much less than a
millimeter, so we can consider surface heating only. The temperature of the
material surface does not rise infinitely. Part of the heat input from the plasma
beam melts the metal resulting in solid-liquid phase change in the areas close
to the source. When a material melts, latent heat is absorbed without any
further rise in temperature. The second part of the heat is transfered into the
workpiece by conduction from hotter to colder metal resulting in rise of the
temperature in the material. Another physical process is due to the fact that
the plasma beam pierces through the workpiece with some constant velocity,
while the high velocity gas flow removes the molten material from the bottom
of the cut, or the kerf. We do not take into account the effects of the solid-solid
phase change, but this can be included in the model by adding supplementary
equations describing the phase change in the material. Some earlier publica-
tions by A. Schmidt et al. [34, 35] and works cited therein are good references
on the matter.

Before we present the mathematical model, several modelling assumptions
need to be taken into account. Assumptions are made as follows:

e The workpiece is homogeneous and isotropic;

e The material parameters (density, heat capacity, conductivity, etc.) of the
workpiece are constant;

e If the piece is large, then the heat exchange through the surface to the
surrounding can be neglected with respect to the heat flow in the material
itself. This assumption makes sense because the heat conductivity of metals
is much greater than the heat transmission through the surface;

e The plasma beam has a cylindrical shape, and the heat flux from the
plasma beam is emitted only in the normal direction to the surface of the
cylinder.
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e The plasma device moves at a constant velocity with respect to the work-

piece;

The heat flux density emitted by the plasma beam is constant and given;

The heat lost by radiation is negligible;

The effects of gravity and surface tension are negligible;

We neglect the thermal and mechanical effects caused by solid-solid phase

changes;

e We do not consider the side effects caused by the smoke of the vaporizing
metal. By side effects we mean that, for example, the evaporated material
does not interfere with the incident plasma beam.

Now we state the assumptions that are necessary to consider in order
to give sense to our model. Let {2 be an open and bounded domain in R"”,
n = 2,3, occupied by the workpiece. The boundary 0f2 of the domain is
assumed to be of class C%!. Let 0 < T < +oo be given, denote by 0(z,t)
the temperature of the workpiece and I the time interval (0,7"). The initial
temperature distribution of the workpiece is given by 6y(z), which is less
than the melting temperature at all points. For every ¢t € I the domain {2 is
assumed to consist of two non-intersecting parts, namely 2 = £2,(t) U 2.(t),
where (2,(t) and §2.(t) are the domains occupied by the solid part of the
workpiece and cut cavity at a time instant ¢, respectively. Let 942,(¢) be the
boundary of the time dependent domain (2,(t) at time ¢ (free interface)and we
assume that 02,(t) is also a smooth curve. By v we denote the unit outward
normal vector of the domain (2,(¢). Let jubs be the heat flux density (heat
flux per unit surface) absorbed by the melting interface due to the plasma
beam radiation. In addition to the terms defined above we use the following
notations: p is the density of the workpiece, ¢, is the specific heat, k is the
heat conductivity of the material, L,, is the latent heat of melting, 6,, is the
melting temperature, v > 0 is the velocity of the melting front.

Assuming that no heat exchange can happen between the workpiece and
the exterior through 9f2;(¢), the mathematical model governing the cutting
process is the following:

Problem 1. Find the function 6(z,t) € C3(£25 x I) N C(£2s x I), representing
the temperature of the body, and the piecewise smooth surface 9f2;(t) repre-
senting the free boundary of the solid domain 2,(¢) = {z; 6(z,t) < ,,}, such
that the heat conduction equation is fulfilled

pcs% =V-(kVO), wzeci(t), tel, (2.1)

with the following boundary conditions on 9£2,(t):

0 < ema jabs —kVo-v > 07 (22)
(0 — 0.)(Jabs — kVO -v) =0,

called the Signorini-type boundary conditions and

kVO-v— pLyv-v = japs, (2.3)
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named the Stefan-type boundary condition. As for the initial conditions, we
set

0(z,0) =0p(z) < b, z€82, £2:0) =12 (2.4)

In the following we discuss the boundary conditions (2.2) by considering two
sets of points on the boundary 0£2,(t):

1. Select all points = on the boundary, for which the condition
0(z,t) < b, (2.5)

holds, i.e. the temperature on some part of the boundary is less than the
melting temperature. Cut edges behind the plasma jet or boundary surface,
where no direct heat input takes place, are two sets of boundary points at
which the strict inequality (2.5) is satisfied. At these points of the material the
surface absorbs energy coming from the heat source and completely conducts
it into the workpiece. As a result, surface heating takes place. The condition
of complete conduction can be written as

jabs — kVO-v ZO,

meaning that the heat input from the plasma jet is equal to the heat conducted
into the material.

2. Select all points x on the boundary, for which the condition
0(x,t) = O, (2.6)

holds, i.e. the temperature at the points of boundary is equal to the melting
temperature. The area of the cut edges very close to the plasma jet is a good
candidate for being part of the boundary fulfilling (2.6). The melting of the
material takes place on this part of the boundary. The boundary condition
for melting can be expressed as

Jabs — kVO -1 > 0,

meaning that the energy input from the heat source is greater than the amount
of heat conducted. This is indeed clear, while part of the heat input is used
for melting the material (latent heat is absorbed) and only a part of it is
conducted.

Summing up both cases, we obtain the following conditions on the bound-
ary of the workpiece

O(x,t) <O = Jabs —kVO-v =0,
O(x,t) =0 = Jabs —kVO-v >0,

which yields the Signorini-type boundary conditions (2.2).

The boundary condition (2.3) is referred to as the Stefan-type condition
and follows from the energy conservation law by its application to elementary
volumes that contain both sides of the boundary at the same time. More
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precisely, let us consider an element d~y of interface that moves with velocity
v, and denote by j.ps the heat flux (per unit surface) absorbed by the solid
boundary and by ¢. the heat flux conducted in the solid phase. Latent heat is
absorbed at a rate —pL,,,v - vdy. The heat exchanged by the interface 942;(t)
itself through d~y is equal to (jabs — gc - V)dy. Applying the energy conservation
law to the elementary surface dv, we obtain

(jabs —dqc- V) d7 = _meU : Vd7 (27)

Dividing both sides of (2.7) by dv and using Fourier’s law leads to the Stefan-
type condition on the moving interface

kVO-v — pLyv-v = japs, (2.8)
which is nothing else but the condition (2.3).

Remark 1. The heat flux density j.ps and v are equal to zero on the part of
boundary where no heat input takes place. Therefore, on that part of the
boundary we have homogeneous Neumann conditions.

Remark 2. The idea behind the Stefan-type boundary condition is relatively
simple; the total heat flux absorbed by the interface is divided into two parts:
one part is conducted and the other part is used to melt the material.

Remark 3. Problem (2.1)—(2.4) could be referred to as an one phase Stefan
problem, although there are some important differences between them. The
one-phase Stefan problem represents a special case of the classical two-phase
formulation, with the temperature being constant in one of the phases, as-
suming the melting value. Here we have a different situation. First of all, we
can not assume the value of the temperature in the cavity (where the melt is
removed) equal to the melting temperature of the solid, because otherwise the
cut edges will continue to melt and move forward, which does not correspond
to the real situation of plasma cutting. Secondly, in our problem an additional
heat source (plasma beam) is applied on the surface of the moving front and
the heat flux at the interface enters the Stefan type boundary condition which
is not the case in classical one-phase Stefan problem.

Note that the Signorini boundary condition is non-linear. At each fixed in-
stant ¢ there exist two regions: in one region we a have heating phase, while
in the other a melting phase is present. Moreover, these regions are not pre-
scribed and have to be computed together, resulting in a moving boundary
problem. The melting front 042,(t) is the unknown moving boundary under
consideration.

We call problem (2.1)—(2.4) the thermal-cutting model and note that the
developed mathematical model is rather general and does not depend on the
type of cutting. The main difference between different cuttings is the amount
of energy absorbed by the workpiece, which depends on the thermo-physical
properties of the material as well as on the several parameters of the heat
source. Therefore, the heat flux density j.ps is an additional important object
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for modelling. A simple way to calculate the flux density at every point of the
cutting front is described in [25].

Note that in the model we are mainly concerned with the problem of heat
transfer and temperature distribution in the workpiece during the thermal
plasma cutting. The problem is solved, if any moment the temperature of
every point of the workpiece and the geometry of the workpiece are identified.

Remark 4. Analysis of the cutting model. In [33] the weak formulation
of the cutting model is derived by rewriting the classical model in terms of
variational inequalities and level set method. Analytical results concerning
the existence and uniqueness of weak solutions of the model are presented in
[25] (see Lemma 6.2.2 and Lemma 6.2.4). In the latter work the author also
presents a numerical scheme for solving the cutting problem using the adap-
tive finite element method. The convergence of the implemented numerical
algorithm is obtained as well (see section 7.2 in [25]).

3. Problem 2: Mathematical Modelling of Concrete
Carbonation

3.1. Problem statement

It is generally accepted that the steel reinforcement in concrete is protected
from corrosion by a passive film formed by the alkali pore solution in contact
with the steel bars. Once the alkalinity is altered as a result of carbonation,
that is

CO5(g — aq) + Ca(OH)3(aqg — s) — CaCO3(aq — s) + H2O, (3.1)

the environment in concrete at the micro- and meso-scales near the bars
becomes corrosive in the presence of pore water and oxygen. We propose
a moving-reaction layer model in order to describe the carbonation process
based upon (3.1). The corner stones of this approach are the typical pictures
of sliced partially carbonated specimens after spraying a pH indicator (e.g.
phenolphthalein), see figure 3 (a). Such pictures show a reacted zone sepa-
rated by a transition-reaction layer from the not reacted part. Having this
observation in mind, we intend to identify what determines the progress of
the reaction layer into the sample and what penetration speeds can actually
be physically permitted. Employing a concept used in the modelling of melt-
ing problems (cf. [1, 20, 32], e.g.), this separating layer remotely resembles
to a mushy region. In this area connecting the carbonated and uncarbonated
parts, the reactants and products may not be segregated.

Specifically, we may consider that the chemistry of the specimen is known
and the environmental (boundary) conditions can be perfectly controlled. A
correct description of layer’s motion contributes to a better prediction of corro-
sion. The general motivation of such investigation lies in the usual tendency of
replacing the transition layer by a moving singular surface where the reaction
is supposed to take place. We focus our attention on the solid-solid interfacial
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Figure 3. (a) Typical result of the phenolphthalein test on a partially carbon-
ated sample (Courtesy of U. Dahme (AG Setzer), University of Duisburg-Essen,
Germany). The dark region shows the uncarbonated part, while the brighter one
points out the carbonated part. The two regions are separated by a thin front. (b)
Definition of the front position. Note that (a) and (b) are macroscopic pictures.

phenomena that occur between distinct carbonated and non-carbonated parts.
The phases are present in the system and are separated one from another by
a very thin reaction layer, which we call inter-phase layer. On this way, the
bulk reactant concentrations are prevented from being abruptly consumed
and the model formally receives some more regularity. The reactants rather
have a smoother fast variation over the width of the narrow transition reaction
zone. A moving-boundary modelling of the carbonation process is particularly
motivated by the success demonstrated by alike formulations in the fields of
chemical-reaction engineering [10] and geochemistry [27]. Also see [22, 23]
(sharp-interface problems), [24] (thin reaction layers or zones). In the case of
reactive porous media, we mention [4] (sulfate attack on sewer pipes), hydra-
tion of concrete [29], chloride attack [18] and [30] (dissolution reactions), e.g.
The classical multi-phase Stefan problem arising in the modelling of freezing
and melting scenarios constitutes a well-founded starting point of our mod-
elling, too. See [8, 20, 32], e.g., for basic analytic facts around these issues.
Having this classical example in mind, we have formulated the carbonation
process within the framework of moving-reaction layer (or interface) prob-
lems in [5] and [21]. We also owe some ideas sustaining a moving-boundary
modelling of aggressive reactions in the limited-diffusion regime to a note by
Brieger and Wittmann [6] and to the book by Ortoleva [27]. An overview of
the physical and chemical phenomena appearing when the carbonation reac-
tion occurs in concrete-based materials may be found in the survey papers
by Chaussadent [7] and Kropp [16]. The collection of papers [2] provides an
overview of contributions, spanning the last decades, to the continuum the-
ories of evolving-phase interfaces and layers in solids. For specific details on
the dynamics of two-phase systems given within the framework of continuum
thermodynamics or when a sharp interface separating the bulk phases is as-
sumed, see the book by Gurtin [12]. A setting in which instead of the sharp
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interface, the bulk fields are divided by a transition layer, may be noticed in
[11].

3.2. Geometry. Basic processes. Choice of porosities

We consider a part of a concrete member that is exposed to ingress of gaseous
CO2 and humidity from the environment. Figure 4 shows a typical control
volume (box A) in such a structure. We denote by {2 the whole box A (or
part of it) for which we model the carbonation process under natural exposure
conditions. The typical situation in the process of concrete carbonation can

o
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Figure 4. (a) Typical corner of a concrete structure. The box A is the region to
which our model refers when dealing with natural exposure conditions. (b) Reaction
(3.1) is assumed to happen in (2.(t) with the reaction rate 7.

be summarised as follows: Generally, the concrete matrix is made of a mixture
of water, cement and aggregate. Such mixtures, once they are hardened, have
a definite porous structure. The grains (gravel, sand, etc.) have different sizes,
hold together by compressing and cementing material and form a multi-phase
composite with complex chemistry. To describe reaction-diffusion processes
in such multi-phase materials, we make use of a few specific notations and
definitions. Let {2(¢) denote a representative control volume within the con-
crete sample at the time ¢t € .S, where S represents a given time interval. The
dependence of {2 on the time ¢ shows that possible changes in the shape and
volume could be allowed. The size and shape of this region is assumed to be
constant. Therefore, we may account for 2 = (2(t) for all ¢ € S. The region
{2 consists of two distinct parts (2, and {25;. The part {2, represents the inner
pores space, and (2 is the part occupied by the consolidated aggregate and
mortar.

We denote by ¢ the volumetric total porosity. By [3, 14], e.g., when (2,
is the total pore space, regardless of whether the pores are interconnected or
not, or whether dead-end pores and fractures are present, the porosity ¢ is
referred to as total porosity. This quantity is defined as the ratio of volume
of the pores space, which we denote by [£2,|, and the bulk volume |{2| of the
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control concrete region. Note also that for most usual cement-based materials
(like Ordinary Portland Concrete (OPC), cf. [28]), the porosity ¢ := ||Q(;’I| has
a value about 0.2. Furthermore, we introduce the notion of material fractions,

namely, we define the quantities

|$2a|
Ga = »
|42, |

_ [l

1925
P = ,
192

2]

(bs =

(3.2)

to be the air, water and solid fractions, respectively. In (3.2), |2, is the volume
of the air-filled parts of the pores space, |{2,,] is the volume of the respective
water-filled parts and |f2,| denotes the volume of the solid matrix. It holds
that

¢a+¢w:15 ¢¢a+¢¢w+¢s:1
Let us now establish a law for the time evolution of the concrete porosity
during carbonation, see also [17]. We begin with assuming that

¢=¢() for allt € S. (3.3)

Therefore, we restrict our attention to the case for which variations in the
space position do not alter the porosity. In the literature, we often find the
following ansatz for describing the porosity of a porous medium

B(t) := poe” ™, (3.4)

where ¢ is a given initial porosity and « is usually a fitting parameter. In
the following we identify the meaning of « for a carbonation scenario.

3.2.1. Identification of the parameter o arising in (3.4)

We introduce some auxiliary notation. Let M} and M; be the molecular
weights of Ca(OHs) and CaCOs. Set pn, py, h and b to be the densities, and
the molar concentrations of Ca(OH2) and CaCOs, respectively. Note that

3

Mg] =gmol™, [E] =molem™3, [n] = gem™3day™", [t] = day.

Here E is h and b. Let 77 = 7(z, t) be the carbonation reaction rate. Specifically,
we have the following proportionality relations 7 ~ a and 7 ~ b.

We argue in the following manner: consider the carbonation process simply
described by the replacement mechanism

Ca(OH)y(s) — CaCOs(s). (3.5)

We assume that at time to there is no carbonation inside 2’ C 2 and that no
calcium carbonates have been yet produced. Thus, it holds

i(z,t0) =0, x€ 2.

h(x,t
At time ¢, the volume occupied by Ca(OH3) is [, (z,t0)

M, dz. To account

for the change of the pore structure produced by carbonation, we consider that
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in the carbonated region within (2’ the reaction carbonation is complete. Let ¢
be an instant at which carbonation happens. The volume occupied by CaCOs3

b(x’t)/\/lbdx. We assume that all Ca(OH)z(s) is completely

at time ¢ is [,

available for reaction via various physiochemical mechanisms. The total con-
tent of Ca(OH)2(s) transforms (by carbonation) into the total content of
CaCOs3(s) after a time t; — to, if losses of carbonates or of alkaline species
via leaching are excluded. The time t; —to can be defined as the time needed
to obtain the complete replacement in (3.5). On this way, we expect that the
change in porosity is mainly determined by the difference in the densities (or
in the molar volumes) of the two species. We introduce the molar contents

H(t) := » h(z,t)dx, B(t):= » b(x,t) dx

of the species Ca(OH)z and CaCOs at a given time ¢. If the transport does
not affect the reaction, then after a given time t — ¢y the content H(to) — H(t)
of moles of Ca(OH )2 produced the content B(t) of moles of CaCOs. Thus
the equality

H(to) — H(t) = B(t)
holds for each to < ¢ < t;. Trivially, it also results that B(tg) = H(tf) = 0.
We then have

[ =stw)dr— [ (1-o)ds 36)

:/ (h(a:,to)—h(a:,t))Mh da:—/ b(m,t)Mbdm

’ Ph 4 Pb
My, My (./\/lh ./\/lb>
=—(H(ty) —H(t)) ——B({t)=|———— ) B(t
UL (1) — H() — ZLB() = (2 = L) B
By (3.4) and (3.6), it yields that
1 My, ./\/lb>
t) — d(to) = V) B, t€lto,tyl. 3.7
o) = ott0) = g (20 - ) B, et @)
Denote by (§ the quantity
M, M
Bai=t 00 (3.8)
Ph Pb

If B > 0, then the porosity is enhanced. If 5 < 0, then the porosity is decreased.
For the case of (3.5), we have § = —4.1857. Hence, a decrease in the concrete
porosity induced by (3.5) is to be expected?. Furthermore, since b is produced
via 7, we can write

bz, ) = /t (F)i(z, ) dr- (3.9)

2 This fact agrees with the experimental evidence that OPC samples usually suffer
a decrease in porosity induced by carbonation.
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Dividing (3.7) by At := t — ¢ in which ¢y < ¢ < ty and owing to (3.9), we
obtain that

Ap B N Y AP
_— = 1 .
3 57 = 7 [, B, 7 ), ety

The latter equation leads to

L dp B

—_— = — 1l for all . 1
ORI Q,n(x,t)dx or all t € (to,t5) (3.10)

Furthermore, if we assume now that
0 < 7min < (7, 1) < max < 400, (3.11)
then by (3.10) and (3.11) the estimates
poe Mt < (1) < goelMmint for all t € (to,ty)

hold. Therefore, possible candidates for o are S7max, 57min, Or SOmMe mean
value, for instance.

Remark 5. (a) If the active concentrations are small, then the constant poros-
ity assumption ¢ := ¢y is valid, see [17], p.164.

(b) If the transformation Ca(OH)a(s) — Ca(OH)2(aq) can be considered
complete and the reverse transformation Ca(OH)s2(aq) — Ca(OH)2(s) has
no time to happen, then, as in the case of non-catalytic gas-solid reactions, the
total porosity may be assumed to depend linearly on the solid reactant con-
version. This translates in our setting as follows: the evolution of the concrete
porosity depends linearly on the concentration of Ca(OH)2(aq), or equiva-

lently, B

— 9Ny — My, h
6= o+ o T (1), (3.12)

42| ho
where hy and h are molar concentrations of Ca(OH )2(aq) in the points (x,0)
and (z,t), respectively, ¢¢ is the initial porosity, 01, and 9, are the reactant
and product molar volumes. Here 9y, := Mcaom), and My = Meaco,- It
can be seen from (3.12) that the porosity ¢ is now a function of = and ¢. If the
product b has a lower molar volume than the reactant /, then the porosity

increases, otherwise it decreases.

3.3. Moving reaction layer model

The problem is posed in the time interval St =]0,T[, T €]0, 0c0] and refers
to the geometry described in section 3.2. We select and fix ¢ > 0 sufficiently
small, and consider at an arbitrarily given time ¢ € St the domain () #
2 C Ry, i.e. a part of the concrete sample (see [38]), which is divided by
the planes x = s(t) = § into three distinct sub-domains. At time ¢ the sub-
domain (41(¢) := 2N {x < s(t) — %} denotes a partially carbonated part,
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while 25(¢) := 2N {z > s(t) + %} represents the uncarbonated part. The
third sub-domain is the layer

Qc(t) == 20 {s(t) — % <z <s(t)+ %, teSr},

that separates the two regions (21 (¢) and (25(¢). Within this layer takes place
the bulk?® of the carbonation reaction. We denote by

Ii(t) == 002n{z = s(t)—g cte S}, In(t):=onn{z= s(t)—&—% : teSr}
the planes, which separate these domains, and let the surface I'(t) := 92 N
{z = s(t),t € St} be located in the middle of the layer, see figure 4. Within
this framework, we do not include any surface reaction at I7(t), I.(¢) or I'(t).
By Figure 4, we remark a restriction on the choice of ¢, that is € € (0, Lo — 1)
with p € (0, Lg). For real-world problems, the value of € is sufficiently small,
i.e. € < L. Finally, we have

Q2= (t) UL(H) U NR(t) UL (t) U a(t),
or 2 = clos(Q1(t) UQ(t)) UQa(t). The region (22(t) can be also defined by
() ={x € 2: ¢ppyui(z,t) =0,i € {1,2}},t € Sp,
while 2;(¢) U £2.(¢) is given by
Q@)U NR(t) := 02— 2(t),t € Sp.

We denote the mass concentration of the active species by 41 := [CO2(aq)],
U == [CO2(g)], t4 := [CaCO3(aq)], us := [H20] the chemical species present
in the domain £2; () U£2(t). Other active species are present in 25(¢), namely
a3 := Ca(OH)z(aq) and ug := [H20]. We assume that CaCOs is not trans-
ported in (2.

The following set of indices is used: 7 := Z; U {4} U I, where the set
T, :={1,2,5} points out the diffusive active concentrations in 2;(¢) and the
set Ty := {3,6} refers to the diffusive active concentrations present in 25(¢).
Thus we are led to consider the moving-boundary problem for determining
u;(x,t),7 € T and s = s(t) which satisfy for all ¢t € St the equations

(pbwtr) ; — (D1¢dwl1,z), = fHenry — fReaces T € S1(t) U L2e(1),
(ppatiz2)  — (D2ddaline), = — [Henry, @ € 21(1) U 2(2),
(ppwiis) ; — (D39Puwiise), = [Diss — fReaces T € (2(t),
(0Pwla) ; = fPrec + fReace, @ € £21(1) U £2(t),

(pPwiis) ; — (D5pPuwiise), = —fReace; T € 21(t) U 2e(2),
(pdwitie)  — (Depduwiiez), =0, x € 22(t).

(3.13)

3 The domain £2.(t) is referred to as the reaction layer. It is supposed to be the
place where the carbonation production term applies.
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The initial and boundary conditions are the following

¢¢w1/i2ﬂi(x,0) =, 1€ZL, x€ 9(0)7
qf)(bwl/izﬂi(o,t) =X, 1€Iy, te Sy,
ﬂi)r(L,t) =0, 1€Iy teSy.

The interface and transmission conditions imposed across I'.(t) are defined in
the following way:

i - nlr.) = 08 (t)[pdwriztia] ror), @€ Iy UTs, (3.14)

S e, 1)) dz

s'(t) = cq(e - , te Sy, s(0) =sg, 3.15
where
1 —= S
1% = U = s vV = y % = = 5
12 32 22 ¢w 52 62 (bw

vip:=1, i€ el — {2}, ji = —Dyvipdd,t;, 1,6 €y ULy

are the corresponding diffusive fluxes, and 6 € {0,1}.If = 1, condition (3.14)
points out a small adsorption term acting at the interface I'.(¢). However, in
most of the situations the physical relevant case corresponds to # = 0. Hence,
the whole production by reaction is included in the volume term freqce. At
I;(t) the concentrations and their gradients are continuous and no changes
in the model parameters occur. Moreover, we have that cs(¢), D; (i € I3 U
7Iy), L and sp are strictly positive constants. The boundary data \;(: € 7)
are prescribed in agreement with the environmental conditions to which (2
is exposed. The initial conditions ;0 > 0 (¢ € Z) are determined by the
chemistry of the cement. The concrete porosity ¢ > 0 and also for the water
and air fractions, ¢,, > 0 and ¢, > 0, are assumed to be given cf. section 3.2.
An important aspect of this model is that we assume the speed of the layer
2.(t) to satisfy (3.15). However, relation (3.15) is not based on first principles.
It is rather an ad hoc ansatz that we a priori impose to describe the dynamics
of the layer 2.(t). Numerical simulations will show in a further publication
that our choice of (3.15) is close to what happens in reality. To define the
involved carbonation-reaction rate, we introduce the function

fle : RO x My, — Ry, fic(y, t) = G (@, t) + A1), Ac),x € 2:(t),  (3.16)
fe(u(z,t), Ae) = ket (z, t)ud (z,t), te Sr,

where p. > 1, g > 1.

The production terms frrenry, fDiss, fPrec and freace denote sources and
sinks by Henry-like transfer mechanisms, dissolution, precipitation and car-
bonation reactions. Within this framework, we assume
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fz}Henry = (_]-)l-Pz((b¢wﬂl - Qi¢¢aﬂ2)a PiaQi > Oa 1€ {]-a2}v

fDiss = _537diss(¢¢wﬂ3 - u37eq)a SB,diss > 01 us > 07 (317)
fPrec = Oa
fReace = ﬁe-

The reaction layer (2.(t) is constantly receiving solute reactants from (2;(¢)
and (22(t). Also it looses aqueous reaction products and gains precipitated
minerals. Thus this moving-reaction zone is manipulated out of equilibrium
and generally sustains a host of non-equilibrium phenomena.

Finally, we call the formulation (3.13)-(3.17) the moving-reaction-layer
carbonation model. This problem consists of a non-local coupled strongly non-
linear system of parabolic equations which has a moving a priori unknown
internal layer. The coupling between the equations and the non-linearities
come from the influences of the chemical reaction on the transport part, the
porosity ¢, and from the dependence of the moving regions (2;(t), {22(t) and
£2:(t) on s(t). Other non-linearities may be introduced by different assump-
tions on the production terms. The non-locality property stems from equation
(3.15) and is essentially related to the dynamics of (2.(t).

Remark 6. (Well-posedness of (3.13)-(3.15)) Local and global existence,
uniqueness and stability of positive weak solutions with respect to the initial
data and parameters are shown in [21] (see Theorem 3.5.4, Theorem 3.5.5 and
Theorem 3.5.10). Furthermore, useful upper and lower bounds, for instance on
the velocity of the reaction front and on the time to complete the carbonation
of a given part of a concrete sample, are also obtained.

4. Discussion on the connection between the two models

Our models for the plasma cutting (Problem 1) and concrete carbonation
(Problem 2) are from both mathematical and modelling points of view non
standard. They only remotely resemble to the classical Stefan problem of ice
melting, which is a standard equilibrium model.

The main aim of the paper has been to show that the moving-boundary
methodology can be used in a similar manner for tackling two different real-
world problems. In Problem 1 several inequalities govern the evolution of the
unknown interface, while in Problem 2 a non-local kinetic condition makes
the reaction front to penetrate the concrete. In both situations, similar in-
terface conditions drive the involved processes far from equilibrium configu-
rations. This is a major difference with respect to the equilibrium condition
defining the Stefan problem, namely the temperature field is continuous when
crossing the interface and equal to the melting temperature. The strong non-
equilibrium feature intimately connects Problem 1 and Problem 2. It is worth
mentioning that the employed modelling strategies, dealing with two real-life
problems, can essentially interplay. Instead of imposing unilateral conditions
for advancing the cutting front, we could imagine a kinetic law acting as a
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driving force. This law refers to the evolution of the normal component of the
interface velocity v - v. It can be obtained for simple geometries via balancing
the mass within a shrinking pillbox that contains the moving interface (see
Gurtin’s Pillbox Lemma [12]). This kind of argument (cf. [21], section 2.3.1)
formally yields

v-v = f(p, L, jabs, 0, X, 0525(t)),

where y represents the amount of solid component which clings on locally flat
parts of the cutting interface and waits to be melt. The precise expression of
f is essential for the correctness of the approach.

Now let us see in which way unilateral conditions may play a role when
modelling the concrete carbonation. In order to do this, we assume for a
moment that the reaction layer (2 (¢) can be replaced by a sharp interface I'(t)
and concentrate on the behavior of the most aggressive species (i.e. CO2(g)
or uy) near I'(¢). Firstly, we assume a kinetic condition like

s'(t) = nr(s(t),1),
where s(t) is the reference position of the interface I'(t) at time ¢ and 7 repre-
sents the corresponding surface-reaction rate on I'(t). Instead of the classical
form of the Rankine-Hugoniot jump conditions which need to be imposed at
x = s(t), we might consider unilateral conditions like

ul(s(t)7t) Z 07
— Dyu o (s(t),) — 8" (t)ua(s(t), t) — nr(s(t),t) = 0,
(s" = nr(s(t), 1)) (—=Drurx(s(t),t) = 8'(Hua (s(t), t) = nr(s(t),t)) = 0.

The latter relations allow the interface I'(t) to be stationary until sufficient
COs arrive at the reaction locus, and therefore, its motion is then allowed to
continue. This feature can not be covered by the use of a kinetic condition.
Similar inequalities can be enforced for the other active concentrations.

The foregoing discussion has attempted to indicate issues connected with
moving boundaries which are driven by two industrial applications. An effort
has been made to identify some connection points and create a background
where further co-operation between mathematicians and engineers is most
desirable.
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