ON SOME NEW PARANORMED SEQUENCE SPACES OF FUZZY NUMBERS DEFINED BY ORLICZ FUNCTIONS AND STATISTICAL CONVERGENCE

A. ESI

Adiyaman University, Science and Art Faculty, Department of Mathematics 02040, Adiyaman, Turkey

E-mail: aesi23@hotmail.com

Received August 24, 2005; revised September 2, 2006; published online December 15, 2006

Abstract. In this paper we introduce the concept of strongly $\lambda(p)$ convergence of fuzzy numbers with respect to an Orlicz function and examine some properties of the resulting sequence spaces and $\lambda(p)$ – statistical convergence. It is also shown that if a sequence of fuzzy numbers is strong $\lambda(p)$ convergent with respect to an Orlicz function then it is $\lambda(p)$ - statistically convergent.

Key words: Orlicz function, paranorm, de la Vallee-Poussin means, fuzzy numbers

1. Introduction and Preliminaries

The concept of paranorm is closely related to linear metric spaces. It is a generalization of an absolute value definition. Let X be a linear space. A function $g: X \to R$ is called paranorm, if

- i) g(0) = 0,
- ii) $g(x) \ge 0$, for all $x \in X$,
- iii) g(-x) = g(x), for all $x \in X$,
- iv) $g(x+y) \le g(x) + g(y)$, for all $x, y \in X$,
- v) if (α_n) is a sequence of scalars with $\alpha_n \to \alpha$ $(n \to \infty)$ and $\{x_n\}$ a sequence of vectors with $g(x_n-x) \to 0$ $(n \to \infty)$, then $g(\alpha_n x_n \alpha x) \to 0$ $(n \to \infty)$.

The last property is called continuity of multiplication by scalars. The space is called the paranormed space X with the paranorm g.

A function $M: [0,\infty[\to [0,\infty[$ is an Orlicz function if it is continuous, non-decreasing and convex with

$$M(0) = 0$$
, $M(x) > 0$ for $x > 0$, $M(x) \to \infty$ as $x \to \infty$.

An Orlicz function is said to satisfy Δ_2 -condition for all values of u, if there exists a constant K > 0, such that

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to construct the sequence space

$$l_M = \left\{ x = (x_k) : \sum_k M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space l_M with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}$$

becomes a Banach space which is called an Orlicz sequence space. The space l_M is closely related to the space l_p which is an Orlicz sequence space with $M(x) = x^p$, $1 \le p < \infty$.

In the later stage different Orlicz sequence spaces were introduced and studied by Parashar and Choudhary [10], Esi, Isik and Esi [4], Esi [2], Esi and Et [3], and many others.

The purpose of this paper is to introduce and study the concepts of $\lambda(p)$ – strong convergence of fuzzy numbers with respect to an Orlicz function and $\lambda(p)$ –statistical convergence and some relations between them.

Let $p = (p_k) \in l_{\infty}$, then the following well-known inequality will be used in the paper: for sequences (a_k) and (b_k) of complex numbers we have

$$\left|a_k + b_k\right|^{p_k} \le K\left(\left|a_k\right|^{p_k} + \left|b_k\right|^{p_k}\right)$$

where $K = \max(1, 2^{H-1})$ and $H = \sup_k p_k$.

We now give here a brief introduction about the sequences of fuzzy numbers (see [1] and [12]). Let D denote the set of all bounded intervals $A = [\underline{A}, \overline{A}]$ on the real line R. For $A, B \in D$, define

$$A \leq B$$
 if and only if $\underline{A} \leq \underline{B}$ and $\overline{A} \leq \overline{B}$,

$$d(A, B) = \max \{ |\underline{A} - \underline{B}|, |\overline{A} - \overline{B}| \}.$$

Then it can be easily seen that d defines a metric on D and (D, d) is a complete metric space [1]. Also the relation \leq is a partial order on D.

A fuzzy number is a fuzzy subset of the real line R which is bounded, convex and normal. Let L(R) denote the set of all fuzzy numbers which are upper semicontinuous and have compact support, i.e. if $X \in L(R)$ then for any $\alpha \in [0,1]$, X^{α} is compact, where

$$X^{\alpha} = \left\{ t : X(t) \ge \alpha, \quad \text{if } \alpha \in (0,1] \right\}$$
$$X^{0} = cl(\left\{ t \in R : X(t) > \alpha, \quad \text{if } \alpha = 0 \right\}).$$

where cl(A) is the closure of A. The set R of real numbers can be embedded in L(R) if we define $\bar{r} \in L(R)$ by

$$\bar{r}(t) = \begin{cases} 1, & \text{if } t = r, \\ 0, & \text{if } t \neq r. \end{cases}$$

The additive identity and multiplicative identity of L(R) are denoted by $\bar{0}$ and $\bar{1}$, respectively. Then the arithmetic operations on L(R) are defined as follows:

$$(X \oplus Y)(t) = \sup \{X(s) \land Y(t-s)\}, \quad t \in R,$$

$$(X \ominus Y)(t) = \sup \{X(s) \land Y(s-t)\}, \quad t \in R,$$

$$(X \otimes Y)(t) = \sup \{X(s) \land Y(t/s)\}, \quad t \in R,$$

$$(X/Y)(t) = \sup \{X(st) \land Y(s)\}, \quad t \in R,$$

These operations can be defined in terms of α -level sets as follows:

$$\begin{split} \left[X \oplus Y\right]^{\alpha} &= \left[a_1^{\alpha} + b_1^{\alpha}, a_2^{\alpha} + b_2^{\alpha}\right], \\ \left[X \Theta Y\right]^{\alpha} &= \left[a_1^{\alpha} - b_1^{\alpha}, a_2^{\alpha} - b_2^{\alpha}\right], \\ \left[X \otimes Y\right]^{\alpha} &= \left[\min_{i \in \left\{1,2\right\}} a_i^{\alpha} b_i^{\alpha}, \max_{i \in \left\{1,2\right\}} a_i^{\alpha} b_i^{\alpha}\right], \\ \left[X^{-1}\right]^{\alpha} &= \left[\left(a_2^{\alpha}\right)^{-1}, \left(a_1^{\alpha}\right)^{-1}\right], a_i^{\alpha} > 0 \end{split}$$

for each $0 < \alpha \le 1$.

For $r \in R$ and $X \in L(R)$, the product rX is defined as follows:

$$rX(t) = \begin{cases} X(r^{-1}t), & \text{if } r \neq 0\\ 0, & \text{if } r = 0. \end{cases}$$

Define a map

$$\bar{d}: L(R) \times L(R) \to R_+ \cup \{0\}$$

by $\bar{d}(X,Y) = \sup_{0 \le \alpha \le 1} d(X^{\alpha}, Y^{\alpha})$. For $X,Y \in L(R)$ define $X \le Y$ if and only if $X^{\alpha} \le Y^{\alpha}$ for any $\alpha \in [0,1]$. It is known that $(L(R), \bar{d})$ is a complete metric space [6].

A metric on L(R) is said to be a translation invariant if

$$\bar{d}(X+Z,Y+Z) = \bar{d}(X,Y), \text{ for } X,Y,Z \in L(R).$$

Lemma 1. [7]. If \bar{d} is a translation invariant metric on L(R) then

$$i) \ \bar{d}(X+Y,\bar{0}) \le \bar{d}(X,\bar{0}) + \bar{d}(Y,\bar{0}),$$

$$ii)$$
 $\bar{d}(\lambda X, \bar{0}) \le |\lambda| \bar{d}(X, \bar{0}), |\lambda| > 1.$

A sequence $X = (X_k)$ of fuzzy numbers is a function X from the set N of natural numbers into L(R). The fuzzy number X_k denotes the value of the function at $k \in N$.

A sequence $X = (X_k)$ of fuzzy numbers is said to be bounded if the set $\{X_k : k \in N\}$ of fuzzy numbers is bounded.

A sequence $X = (X_k)$ of fuzzy numbers is said to be converge to a fuzzy number X_0 if for every $\varepsilon > 0$ there is a positive integer N such that $\bar{d}(X_k, X_0) < \varepsilon$ for k > N.

2. Some New Sequence Spaces

Recently, Nuray and Savaş [9] have defined the following space of fuzzy numbers:

$$l(p) = \{X = (X_k) : \sum_{k} \bar{d}(X_k, \bar{0})^{p_k} < \infty\},$$

where $p = (p_k)$ is a bounded sequence of strictly positive real numbers. If $p_k = p$ for all k, then $l(p) = l_p$, the space due to Nanda [8]. Lately, Mursaleen and Basarir [7] have defined the following spaces of sequences of fuzzy numbers:

$$F(p) = \{X = (X_k) : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \bar{d}(X_k, X)^{p_k} = 0\},$$

$$F_0(p) = \{X = (X_k) : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \bar{d}(X_k, \bar{0})^{p_k} = 0\},$$

$$F_{\infty}(p) = \{X = (X_k) : \sup_{n} \frac{1}{n} \sum_{k=1}^{n} \bar{d}(X_k, \bar{0})^{p_k} < \infty\}$$

and called them the spaces of sequences of fuzzy numbers which are strongly convergent to X_0 , strongly convergent to zero and strongly bounded, respectively.

In this paper, we define the following spaces:

DEFINITION 1. Let $\Lambda = (\lambda_n)$ be a non-decreasing sequence of positive real numbers tending to infinity and $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$ and let M be an Orlicz function, $p = (p_k)$ be any sequence of strictly positive real numbers and $X = (X_k)$ be sequence of fuzzy numbers, then for some ρ

$$F[M, \lambda, p] = \left\{ X = (X_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M(\frac{d(X_k, X_0)}{\rho}) \right]^{p_k} = 0 \right\},$$

$$F_0[M,\lambda,p] = \left\{ X = (X_k) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M(\frac{\bar{d}(X_k,\bar{0})}{\rho}) \right]^{p_k} = 0 \right\},$$

$$F_{\infty}\big[M,\lambda,p\big] = \Big\{X = \big(X_k\big): \sup_{n} \frac{1}{\lambda_n} \sum_{k \in I} \Big[M\big(\frac{\bar{d}(X_k,\bar{0})}{\rho}\big)\Big]^{p_k} < \infty\Big\},\,$$

where $I_n = [n - \lambda_n + 1, n]$.

We denote $F[M, \lambda, p]$, $F_0[M, \lambda, p]$ and $F_{\infty}[M, \lambda, p]$ as $F[M, \lambda]$, $F_0[M, \lambda]$ and $F_{\infty}[M, \lambda]$ when $p_k = 1$ for all k. If $X = (X_k) \in F[M, \lambda, p]$, we say that $X = (X_k)$ is strongly $\lambda(p)$ -convergent to fuzzy number X_0 with respect to the Orlicz function M. If M(x) = x and $\lambda_n = n$ then

$$F[M, \lambda, p] = F(p), F_0[M, \lambda, p] = F_0(p), F_\infty[M, \lambda, p] = F_\infty(p),$$

which were defined by Mursaleen and Basarir [7].

3. Main Results

In this section we examine some topological properties of spaces $F[M, \lambda, p]$, $F_0[M, \lambda, p]$ and $F_{\infty}[M, \lambda, p]$. If d is a translation invariant, we have the following theorem.

Theorem 1. For any Orlicz function M and any sequence $p = (p_k)$ of strictly positive real numbers, $F[M, \lambda, p]$, $F_0[M, \lambda, p]$ and $F_{\infty}[M, \lambda, p]$ are linear spaces over the set of complex numbers.

Proof. We shall prove the theorem only for $F_0[M, \lambda, p]$. The other cases can be treated similarly. Let $X = (X_k)$, $Y = (Y_k) \in F_0[M, \lambda, p]$ and $\alpha, \beta \in C$. In order to prove the result we need to find some $\rho_3 > 0$ such that

$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{\bar{d}(\alpha X_k + \beta Y_k, \bar{0})}{\rho_3}\right) \right]^{p_k} = 0.$$

Since $X = (X_k)$, $Y = (Y_k) \in F_0[M, \lambda, p]$, there exist some $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{\bar{d}(X_k, \bar{0})}{\rho_1}\right) \right]^{p_k} = 0, \quad \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{\bar{d}(Y_k, \bar{0})}{\rho_2}\right) \right]^{p_k} = 0.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is non decreasing and convex, we get

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M \left(\frac{\bar{d}(\alpha X_k + \beta Y_k, \bar{0})}{\rho_3} \right) \right]^{p_k} \leq \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M \left(\frac{\bar{d}(\alpha X_k, \bar{0})}{\rho_3} + \frac{\bar{d}(\beta Y_k, \bar{0})}{\rho_3} \right) \right]^{p_k}$$

$$\leq \frac{1}{\lambda_n} \sum_{k \in I_n} \frac{1}{2^{p_k}} \left[M\left(\frac{\bar{d}(X_k, \bar{0})}{\rho_1}\right) + M\left(\frac{\bar{d}(Y_k, \bar{0})}{\rho_2}\right) \right]^{p_k}$$

$$\leq \frac{1}{\lambda_n} \sum_{k \in I_n} \frac{1}{2^{p_k}} \left[M\left(\frac{\bar{d}(X_k, \bar{0})}{\rho_1}\right) + M\left(\frac{\bar{d}(Y_k, \bar{0})}{\rho_2}\right) \right]^{p_k}$$

$$\leq \frac{K}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{\bar{d}(X_k, \bar{0})}{\rho_1}\right) \right]^{p_k} + \frac{K}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{\bar{d}(Y_k, \bar{0})}{\rho_2}\right) \right]^{p_k} \to 0 \text{ as } n \to \infty,$$

where $K = \max(1, 2^{H-1})$, $H = \sup_k p_k$, so that $\alpha X + \beta Y \in F_0[M, \lambda, p]$. This completes the proof. \blacksquare

Theorem 2. For any Orlicz function M and a bounded sequence $p = (p_k)$ of strictly positive real numbers, $F[M, \lambda, p]$ and $F_0[M, \lambda, p]$ are paranormed spaces with

$$g(X) = \inf \left\{ \rho^{p_n/H} : \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{\bar{d}(X_k, \bar{0})}{\rho_1} \right) \right]^{p_k} \right)^{1/M} \le 1, \quad n \ge 1 \right\},$$

where $M = \max(1, H)$.

Proof. Clearly $g(\bar{0}) = 0$ and g(X) = g(-X). Since \bar{d} is a translation invariant, it can be seen easily that

$$g(X + Y) \le g(X) + g(Y)$$
, for $X = (X_k), Y = (Y_k) \in F_0[M, \lambda, p]$.

Since M(0) = 0, we get $\inf \{\rho^{p_n/H}\} = 0$ for $X = \bar{0}$. Conversely, suppose that g(X) = 0, then

$$\inf\left\{\rho^{p_n/H}: \left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\Big(\frac{\bar{d}(X_k,\bar{0})}{\rho}\Big)\right]^{p_k}\right)^{1/M} \leq 1, \ n\geq 1\right\} = 0.$$

This implies that for a given $\varepsilon > 0$, there exists some $\rho_{\varepsilon}(0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\left(\frac{\bar{d}(X_k,\bar{0})}{\rho_\varepsilon}\right)\right]^{p_k}\right)^{1/M}\leq 1.$$

Thus for each n we get

$$\left(\frac{1}{\lambda_n}\sum_{k\in I}\left[M\left(\frac{\bar{d}(X_k,\bar{0})}{\varepsilon}\right)\right]^{p_k}\right)^{1/M}\leq \left(\frac{1}{\lambda_n}\sum_{k\in I}\left[M\left(\frac{\bar{d}(X_k,\bar{0})}{\rho_\varepsilon}\right)\right]^{p_k}\right)^{1/M}\leq 1.$$

Suppose that $\bar{d}(X_{n_m}, 0) \neq 0$ for some $m \in I_n$. Let $\varepsilon \to 0$, then $\left(\frac{\bar{d}(X_{n_m}, \bar{0})}{\varepsilon}\right) \to \infty$. It follows that

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\left(\frac{\bar{d}(X_{n_m},\bar{0})}{\varepsilon}\right)\right]^{p_k}\right)^{1/M}\to\infty,$$

which is a contradiction. Therefore $X_{n_m} \neq 0$. Finally, we prove that scalar multiplication is continuous. Let γ be any complex number. By definition

$$g(\gamma X) = \inf \left\{ \rho^{p_n/H} : \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{\bar{d}(\gamma X_k, \bar{0})}{\rho} \right) \right]^{p_k} \right)^{1/M} \le 1, \ n \ge 1 \right\}.$$

Then

$$g(\gamma X) = \inf \Big\{ \big(\big| \gamma \big| t \big)^{p_n/H} \colon \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M \Big(\frac{\bar{d}(X_k, \bar{0})}{t} \Big) \right]^{p_k} \right)^{1/M} \le 1, \ n \ge 1 \Big\},$$

where $t = \frac{\rho}{|\gamma|}$. Since $|\gamma|^{p_k} \le \max(1, |\gamma|^H)$, we have

$$g(\gamma X) \leq \left(\max\left(1,\left|\gamma\right|^{H}\right)\right)^{1/M}\inf\left\{t^{p_{n}/H}:\right.$$

$$\Big(\frac{1}{\lambda_n}\sum_{k\in I_n}\Big[M\Big(\frac{\bar{d}(X_k,\bar{0})}{t}\Big)\Big]^{p_k}\Big)^{1/M}\leq 1,\ n\geq 1\Big\}.$$

So, the fact that a scalar multiplication is continuous follows from the above inequality. \blacksquare

Theorem 3. Let $0 < h = \inf_k p_k \le \sup_k p_k = H < \infty$. For any Orlicz function M which satisfies Δ_2 -condition, we have $F[\lambda, p] \subset F[M, \lambda, p]$, where

$$F\left[\lambda,p\right] = \left\{X = \left(X_k\right): \lim_n \frac{1}{\lambda_n} \sum_{k \in I} \left[M\left(\frac{\bar{d}(X_k,X_0)}{\rho}\right)\right]^{p_k} = 0\right\}$$

for some $\rho > 0$.

Proof. Let $X = (X_k) \in F[\lambda, p]$ so that

$$\lim_n \frac{1}{\lambda_n} \sum_{k \in I} \left[M \Big(\frac{\bar{d}(X_k, X_0)}{\rho} \Big) \right]^{p_k} = 0, \text{ for some } \rho > 0.$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M(t) < \varepsilon$ for $0 \le t \le \delta$. Denote $y_k = \frac{\bar{d}(X_k, X_0)}{\rho}$ and consider

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M(y_k) \right]^{p_k} < \lambda_n \max \left(\varepsilon, \varepsilon^h \right)$$

by using continuity of M. For the second summation, we will make the following procedure. We have

$$y_k \le \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta}$$
.

Since M is non-decreasing and convex, it follows that

$$M(y_k) < M\left(1 + \frac{y_k}{\delta}\right) \le \frac{1}{2}M(2) + \frac{1}{2}M\left(\frac{2y_k}{\delta}\right).$$

Since M satisfies Δ_2 -condition, we can write

$$M(y_k) \le \frac{L}{2} \frac{y_k}{\delta} M(2) + \frac{L}{2} \frac{y_k}{\delta} M(2) = L \frac{y_k}{\delta} M(2).$$

We get the following estimates

$$\sum_{\substack{k \in I_n \\ y_k > \delta}} \left[M(y_k) \right]^{p_k} \le \max \left(1, \left[LM(2) \, \delta^{-1} \right]^H \right) \lambda_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[(y_k) \right]^{p_k},$$

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M(y_k) \right]^{p_k} \le \max \left(\varepsilon, \varepsilon^h \right) + \max \left(1, \left[\frac{L}{\delta} M(2) \right]^H \right) \frac{1}{\lambda_n} \sum_{k \in I_n} \left[(y_k) \right]^{p_k}.$$

Taking the limits $\varepsilon \to 0$ and $n \to \infty$, it follows that $X = (X_k) \in F[M, \lambda, p]$.

Theorem 4. Let $0 \le p_k \le q_k$ and $(\frac{q_k}{p_k})$ be bounded. Then

$$F\big[M,\lambda,q\big]\subset F\big[M,\lambda,p\big].$$

Proof. The theorem is proved by using the same technique as in the proof of Theorem 3.3 by Murseleen and Basarir [7]. \blacksquare

Now, we give some well-known definitions:

Definition 2. A sequence $X = (X_k)$ of fuzzy numbers is said to be statistically convergent to a fuzzy number X_0 if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \le n : \bar{d}(X_k, X_0) \ge \varepsilon\}| = 0.$$

We note that if a sequence $X = (X_k)$ of fuzzy numbers converges to a fuzzy number X_0 , then it statistically converges to X_0 . But the converse statement is not necessarily valid.

Definition 3. A sequence $X=(X_k)$ of fuzzy numbers is said to be $\lambda(p)$ -statistically convergent or $S_{\lambda(p)}$ convergent to a fuzzy number X_0 if for every $\varepsilon>0$

$$\lim_{n} \frac{1}{n} \left| \left\{ k \in I_n : \left[\bar{d}(X_k, X_0) \right]^{p_k} \ge \varepsilon \right\} \right| = 0,$$

where the vertical bars indicate the number of elements in the enclosed set. In this case, we write

$$S_{\lambda(p)} = \left\{ X = \left(X_k \right) : \lim_{n} \frac{1}{\lambda_n} \left| \left\{ k \in I_n : \left[\bar{d} \left(X_k, X_0 \right) \right]^{p_k} \ge \varepsilon \right\} \right| = 0 \right\}.$$

In the case $p_k = 1$ for all k, we obtain λ -statistically convergent sequence spaces S_{λ} , which was defined and studied by Savas [11].

Theorem 5. The following statements are valid:

a)
$$F[\lambda, p] \subset S_{\lambda(p)}$$
,

b) if
$$X = (X_k) \in l_{\infty}(p) \cap S_{\lambda(p)}$$
, then $X = (X_k) \in F[\lambda, p]$,

c)
$$l_{\infty}(p) \cap S_{\lambda(p)} = l_{\infty}(p) \cap F[\lambda, p],$$

where
$$l_{\infty}(p) = \{X = (X_k) : \sup_k \left[\bar{d}(X_k, X_0)\right]^{p_k} \le K, K > 0\}.$$

Proof.

a) Let $\varepsilon > 0$ and $X = (X_k) \in F[\lambda, p]$. Then we have

$$\sum_{k\in I_n} \left[\bar{d}(X_k,X_0) \right]^{p_k} \geq \varepsilon^H \big| \big\{ k \in I_n : \left[\bar{d}(X_k,X_0) \right]^{p_k} \geq \varepsilon \big\} \big|.$$

Hence $X = (X_k) \in S_{\lambda(p)}$.

b) Suppose that $X=\left(X_k\right)\in S_{\lambda(p)}$ and $X=\left(X_k\right)\in l_\infty(p)$. Since $X=\left(X_k\right)$ is bounded, we write $\left[\bar{d}\left(X_k,X_0\right)\right]^{p_k}\leq T$ for all k. Given $\varepsilon>0$, let

$$A_n = \left| \left\{ k \in I_n : \left[\bar{d}(X_k, X_0) \right]^{p_k} \ge \varepsilon \right\} \right|,$$

$$B_n = \left| \left\{ k \in I_n : \left[\bar{d}(X_k, X_0) \right]^{p_k} < \varepsilon \right\} \right|.$$

Then we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[\bar{d}(X_k, X_0) \right]^{p_k} = \frac{1}{\lambda_n} \sum_{k \in A_n} \left[\bar{d}(X_k, X_0) \right]^{p_k} + \frac{1}{\lambda_n} \sum_{k \in B_n} \left[\bar{d}(X_k, X_0) \right]^{p_k} \\
\leq \frac{T}{\lambda_n} |A_n| + \varepsilon^H.$$

Hence $X = (X_k) \in F[\lambda, p]$.

c) This proof follows from (a) and (b). \blacksquare

Theorem 6. If $\liminf_n \frac{\lambda_n}{n} > 0$, then $S_{(p)} \subset S_{\lambda(p)}$, where

$$S_{(p)} = \{X = (X_k) : \lim_{n \to \infty} \frac{1}{n} | \{k \in I_n : [\bar{d}(X_k, X_0)]^{p_k} \ge \varepsilon\} | = 0 \}.$$

Proof. Let $X = (X_k) \in S_{(p)}$. For given $\varepsilon > 0$, we get

$$\{k \le n : \left[\bar{d}(X_k, X_0)\right]^{p_k} \ge \varepsilon\} \supset A_n,$$

where A_n is the same as in Theorem 5. Thus,

$$\frac{1}{n} |\{k \le I_n : \left[\bar{d}(X_k, X_0) \right]^{p_k} \ge \varepsilon\}| \ge \frac{1}{n} |A_n| = \frac{\lambda_n}{n} \frac{1}{\lambda_n} |A_n|.$$

Taking limit as $n \to \infty$ and using $\liminf_n \frac{\lambda_n}{n} > 0$, we get $X = (X_k) \in S_{\lambda(p)}$.

Acknowledgements

The author wishes to thank Professor Binod Chandra Tripathy, Mathematical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781-035 India, for his kind help and friendship and also author likes to express his indebtedness to the referee for his/her comments and suggestions which improved the paper.

References

- [1] P. Diamond and Kloeden P. Metric spaces of fuzzy sets. Fuzzy Sets and Systems, **35**, 241–249, 1990.
- [2] A. Esi. Some new sequence spaces defined by Orlicz functions. Bulletin of The Institute of Mathematics, Academia Sinica, 27(1), 71-76, 1999.
- [3] A. Esi and M. Et. Some new sequence spaces defined by a sequence of Orlicz functions. *Indian J. pure appl. Math.*, **31**(8), 967–972, 2000.
- [4] A. Esi, M. Isik and A. Esi. On some new sequence spaces defined by Orlicz functions. *Indian J. pure appl. Math.*, **35**(1), 31–36, 2004.
- [5] J. Lindenstrauss and L. Tzafriri. On Orlicz sequence spaces. *Israel J. Math.*, 10(3), 379–390, 1971.
- [6] M. Matloka. Sequences of fuzzy numbers. BUSEFAL, 28, 28-37, 1986.
- [7] Mursaleen and M. Basarir. On some new sequence spaces of fuzzy numbers. Indian J. pure appl. Math., 34(9), 1351–1357, 2003.
- [8] S. Nanda. On sequences of fuzzy numbers. Fuzzy Sets and Systems, 33, 123–126, 1989.
- [9] F. Nuray and E. Savas. Statistical convergence of sequences of fuzzy numbers. Math. Slovaca, 45, 269–273, 1995.
- [10] S.D. Parashar and B. Choundhary. Sequence spaces defined by Orlicz functions. Indian J. pure appl. Math., 25(14), 419–428, 1994.
- [11] E. Savas. On strongly λ -summable sequences of fuzzy numbers. Information Sciences, 125, 181–186, 2000.
- [12] L.A. Zadeh. Fuzzy sets. Inform Control, 8, 338-353, 1965.