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Abstract. In this paper we consider a hierarchy of the first Painlevé equation’s
higher order analogues. For these equations three types of power expansions, i.e.
holomorphic, polar and asymptotic are found. As an example the equation of the
fourth order is considered.
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1. Introduction

The first Painlevé equation found by Painlevé and Gambier [7] arises as the
result of self-similar reduction of Korteweg-de Vries, Boussinesq, Kadomtsev-
Petviashvili equations [4]. It defines new functions in terms of which some
solutions of the mentioned and other important PDEs can be expressed. This
has aroused the interest in the ODEs of higher order with the Painlevé prop-
erty which can also define new functions. However, as checking all possible
equations with increased order becomes more and more complicated, other
approaches should be used.

Building hierarchies of analogues of Painlevé equations is one of the ways
to find higher order ordinary differential equations with the Painlevé prop-
erty. There are several approaches to do this. Historically, the first one is the
self-similar reduction of the Korteweg-de Vries hierarchy. In this case 2, P
hierarchy occurs [6] (see also [4]):

d" " (w) + 4z =0, (1.1)
where
d'(w) = —4w,
d d3 d
— (@™ (w)) = (- — 8w— — 4w’ )d" f . 1.2
dz( (w)) (dz3 8wdz w) (w), for neN (1.2)

For n =1, n = 2 and n = 3 the following examples (all equations are reduced
by —4) can be given:

W —6w? —z=0, w? —20ww” —10(w')? + 40uw® — 2 =0,
w® —42(w")? = 56w w" —28ww™® + 280w (w')? + 280ww” — 280w* — z = 0.

In this paper all local power expansions of the solutions of equations (1.1) are
found.

2. The Method Overview
We are looking for power expansions of the solutions of (1.1) in the form

w=c2z" + chzs, (2.1)

where r, s are considered to be rational numbers. For this purpose we use
power geometry method developed by A. D. Bruno [1] and successfully applied
to a similar problem [2] and in recent work [3] to the particular case n = 2 of
the current problem. The following facts will be used.

Let us consider the equation

dk
F(w,z):= ;czqud—;: =0,
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where c = const € C,q € Q, p,k € Z>o and r > s when z — oo or r < s when
z — 0. Here we hold to the notation, introduced in [2]. Power expansions of
the solutions in the neighborhood of z = zy € C can be obtained by changing
the independent variable z = Z + z.

An expression m = z%wP Cfi% is called a differential monomial. Vector
exponent of the differential monomial R(m) € Q? is calculated by the rule

d*w
R(w’z?) = (p,a), R()=(1,-k), R(mimz)= R(m1)+ R(m2)

for a product of any monomials m and my. A differential polynomial F'(w, )
is a sum of some differential monomials with coefficients.

The carrier of differential polynomial is a set of vector exponents of its
monomials S(f) = {R(m): m € F(w,z)}. Consider the convex hull of the
carrier I'(F') = Conv(S(F)). A boundary of the polygon I'(F') consists of
apices FJ-(O) and edges Fj(l), which are called (generalized) bounds, where the
subscript means a number and the superscript means a dimension of a bound.
By extracting from differential polynomial only the monomials with vector
exponents on some bound Fj(d) we get the shortened equation Fj(d) (w,z) =0.

This equation is easier to solve as it has the solution nj(-d)(z) of the form ¢, 2"
from (2.1), that is used for a change of independent variable w = nj(»d) +uin
the initial equation. The given algorithm is applied to all the bounds of I'(F')
until the equations, we get after the change of variable, satisfy the conditions
described in in theorems 2.1, 2.2 and 2.3 in [2], which give the second part of

the expansion (2.1) — the term ) _ ¢;2® and the conditions for its convergence.

3. Power Expansions

Let us denote
folw,z) = —(d" T (w) + 42) /4. (3.1)

Here we multiply equation (1.1) by (—1) for convenience.
First, we need to find the carrier of this differential polynomial. After
integration by parts the Lenard operator (1.2) has the representation:

2
d'(w) = 4w, d"H(w)= d

= A (w) — Swd"(w) + 4 / d"(w) dw. (3.2)

Theorem 1. The carrier of the power sum defined by operator (1.2) is given
by
S(d"(w)) = {(p,q) = (n+1—2k,k), k=0,1,...,n}. (3.3)

Proof. The fact S(d'(w)) = S(—4w) = (1,0) is the basis of mathematical
induction. Next we investigate how the points of the carrier move when the
order of the operator (3.2) is increased from d” to d"*1.

Consider first, how differentiation influences a vector exponent of a dif-
ferential monomial. It is clear, that differentiation of the monomial my = w}
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gives m{, = powP°~lw’, so the vector exponent (pg,0) moves by (0,—1) to
(po, —1). If we assume, that this rule holds for monomials of the form

— wPa PP k
my, = whwPwy? ... (wk))Pr

then by differentiation of my 1 = whwPwiy? ... (wF+D)Pr+1 we get the differ-
ential polynomial

gy =l (D) g (D e 42),
The vector exponents of the monomials of this polynomial are shifted by
(0, —1). So it is proved, that

S(my,) = S(mg) + (0, —1). (3.4)
Here a plus sign means parallel shifting. Hence the first term of (3.2) gives

2
S (45 d"(w) = S(d"(w)) + (0, -2).

The second term clearly gives S(wd"™(w)) = S(d"™(w)) + (1,0). Consider the
last term. By differentiation we get

(/d" (w) dw)l =d"(w)w’

Hence S(( fd" ) dw)') = S(d"( )) + (1, —1). So due to (3.4) the last term
gives S( [ d"(w) dw) = S(d"(w)) + (1,0). Combining the carriers found for
all the summands of (3.2) we prove the theorem:

S(d" () = ($(d" () + 0, -2)} | (S(@"(w) + (1,0)).

The direct implication of the theorem is that I'(f) = Conv(S(fn(w,2)))
is a triangle. Figure 1 presents examples of the carriers of equation (3.1) for
n=1,n=2,n=3,n=4and n=>5.It also could be a good illustration to
the proof of Theorem 1.

Let us consider the apex (0,1). The corresponding shortened equation
z = 0 cannot define a solution. Similar situation arises from considering the
apex (n + 1,0). In this case the shortened equation w"™* = 0 leads only to
the solution w = 0 that cannot be the origin of power expansion.

Theorem 2. The apex (1, —2n) gives 2n-parametric family of power expan-
sions of holomorphic solutions.

Proof. Theorem 2.3 from [2] shows a way how to find the explicit form of the

power expansion. Let us divide the differential polynomial f,,(w, z) from (3.1)
2n

into three terms, where L(w) = T
z

w corresponds to the apex (1, —2n),



The Power Expansions of the Solutions of the 1st Painlevé Hierarchy 393

N
I\
4V

-8 o o

-10 ¢

Figure 1.I'(f)forn=1,n=2,n=3, n=4and n =5.

1
h(z) = —z is independent of w, and g(w, z) = —Zd"H(w) — w®" contains

the remaining terms. The characteristic equation

2n—1

v(q) = 271N L2 = H (g—k)=0
k=0

has the roots ¢, = k, k= 0,1,...,(2n—1). The differences of the coordinates
of the carrier’s points give the lattice K = {(—=k+1; 2n+ 1)k +21) : k,l € Z}
with the base vectors By = (—1,2n 4+ 1) and By = (1,2). The exponents
which take part in the expansion (2.1) are defined by the intersection of the
lattice K and the axis p = —1 while ¢ > 0. So by substituting —k+ 1= —1in
(2n+1)k+2l = g we get ¢ = (2n+3)k — 2, where k£ > 0. The power expansion
with these exponents is

w(z) = Z cpz2nTRR=2 _ 20+l chz(2n+3)l. (3.5)
k=1 =0

As all conditions of Theorem 2.2 from [2] hold, this series converges and defines
a holomorphic solution in some circle |z| < p near z = 0. The coefficients ¢,
are uniquely defined by equation (3.1) with the fixed order n. So (3.5) is a
power expansion of the solution with zero initial conditions.

The roots of the characteristic equation define the exponents in the initial
condition wy(z) = Ziﬁgl ayz*, where oy, are arbitrary constants. A new
lattice defined by the set S(f,(w,z))JS(wo(z)) has the basis vectors By =
(1,0) and By = (0,1). Hence any integer numbers greater than (2n — 1) can
appear as an exponent in the power expansion of such solution

2n—1 00

w(z) = Z a2t 22 Z crzt. (3.6)
k=0 k

=0

The existence of this solution corresponds the Cauchy theorem. B
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We have analyzed all three apices of I'(f). Now let us consider the edges.
We start with the edge [(0,1); (1, —2n)]. The corresponding shortened equa-
tion is

w® — 2 =0.
1

It has the solution w(z) = mz

power expansion of some solution of (3.1). The direction vector of the edge’s
normal cone is (—2n — 1, —1). As the second coordinate is negative, so the
corresponding power expansion contains only integer exponents greater than
(2n+1). Therefore according to the Cauchy theorem this expansion coincides
with (3.5).

2n+1  This is the first member of a

Theorem 3. The edge [(0,1); (n+ 1,0)] gives n + 1 formal series.

Proof. The shortened equation ¢, w"*! — 2 = 0, where ¢, is a corresponding
coeflicient, defined by this edge has n + 1 solutions n»+1/ ¢in corresponding to
different branches of the root. Taking into account that the direction vector

of the edge’s normal cone is (1,n+ 1) and (n + 1) > O we conclude, that the
exponents in the power expansion are less than ¢ < —. Now we can change

the independent variable in (3.1) following the rule w( ) = "R/E +u(z)
Considering the changes in the carrier by the substitution we conclude, that
all the points in the segment [(1, —2n); (n + 1,0)] remain, the point (0,1)
disappears (due to the shortened equation), and the point (0, =5 — 2n) is
added due to the term w®"(z) = (/= + u(z))(zn). Other new points
do not influence the result, i.e. new lattice defined by this carrier has basis
vectors B; = (—1, n+1) and By = (1,2). It intersects the axis p = —1 at the

points with ¢ = (1+ (2n+3)k)/(n+ 1) where k < 0. So the power expansion
for equation (3.1) is

o
2n+3 z _o9_2n+t3
w(z) = - Z N Vb DL Ea N €
" =0

Where the coefficients ¢; are uniquely defined by choosing the branch of the
n+1 .

Note 1. Coeflicient ¢,, in this theorem are found from (3.2). For example,
¢1 = —6, ¢p2 = 40, ¢3 = —280 and generally

(2n + 1)

fn=—(-4)" (n+ 1)

(3.8)

Unfortunately, expansion (3.7) does not meet the conditions of conver-
gence of Theorem 2.2 from [2]. However one can prove that these series give
asymptotic approximation of the solutions. For the first Painlevé equation it
was done in [5] (see also [4]). Let us consider the problem for the fourth order
equation (i.e. n =2 in (3.1)) within the following proposition.
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Proposition 1. For any sector of 2 opening by less than w/3 with apex at
the origin there exists a solution of (3.1) for n = 2:

w® = 20ww” — 10(w')? + 40w® — 2z = 0, (3.9)

the asymptotic behavior of which as z — oo, z € (2 is given by asymptotic
series (3.7) for n = 2:

w(z) = (4%2)% + kZ:OCkz_Z_%’“. (3.10)

Proof. The proof is based on the Wasow theorem [8] (Theorem 12.1, page
75). It’s conditions require us to change the variables

_ 9. w1
5_72: ) U’l(g)_% \3/4—07

then (3.10) becomes u1(£) = % So2, @é73 where ¢ = V/40(7/9)3¢;—1 and
equation (3.9) becomes

/ / /
U2 = Uy, U3 = Uy, Uqg = Ug,

Uy = U2,
/I
Uy = U3,
!
Uz = Uy,
/140 14 /25 80 ¢—2 70 ¢, 2 | 140
uy = 5-&uruz + —g=8uz + 35§ “uz + §&us + 5-Eurusg
160 +—3 1425 1960 ¢2,,3 1962542, 2  30¢—1,,2
—ag & Tu2 + U — St — S ETul — LT g
98 /5 +2 625 —1 6480 +—4 35,1 _ 64825 +—4
— S5 — R + g — T — s

2401 2401

So the Wasow theorem holds with the following parameters r = 4, ¢ =
2, bj = V/40(7/9)3¢c;_1, and the eigenvalues of the matrix of the linear part
are nonzero and equal to the four different values of 5'/12y/7{/—2/27. Conse-
quently, the series (3.10) is asymptotic for some solution of (3.9). B

One can definitely expect the behaviour of the type described from expan-
sion (3.7) for any n. However as there is no explicit form of equation (3.1),
this fact is hard to prove in general.

Theorem 4. The edge [(1,—2n); (n + 1,0)] gives n families of polar power
eTpansions.

Proof. The edge defines the shortened equation d"™!(w) = 0. The normal
cone for this edge is the ray with the direction vector (—2,1). Therefore we
look for a solution in the form 7 = bz~2. The coefficient b can be found from
the polynomial equation d"*1(bz=2) = 0.

Lemma 1. The equation d" "1 (bz=2) = 0 has the following roots:

m(m + 1)

by, = 5 , m=0,1,---,n. (3.11)
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Proof. From the definition (1.2) we obtain d!(bz=2) = —4bz=2 = 0, s0 by =
0. It follows from the structure of operator d"*! (3.2) that for any b the
equality d™(bz~2) = 0 necessitates d"*!(bz~2) = 0. However, due to the term
—8wd™(w) in (3.2) the order of d"*!(hz=2) = 0 as an algebraic equation is
higher than the order of d"(bz=2) = 0 and there can be some other roots.

. . drt (6272 —2 -2
Hence let us consider the equation (7). =0. Asd™(bz7%) = ¢(b) 27",
@ dn(hz=2) [dr(b="2)d(b="2) b,

then <= = 2n(2n — 1)z~2 and

, SO

dn(bz2) dn(bz—2) Con+1
the equation has the following form
d"t(bz72)
——— =2n(2n—1)z"% - 8bz % +4 2 =0.
(02D n(2n — 1)z 27+ Tr i’

We get only one root b=n(n+1)/2. R

To finish the proof of Theorem 4 we need another important fact.

Lemma 2. Changing the variable w = b,,272 + u in equation (3.1) does not
affect its carrier (see Fig. 1).

Proof. Let us consider the result of changing variable for the expression
(w®)*. We get

k
S((u(t) _’_6272716)1@) _ S(chk(u(t))l(zf27t)k7l)
=0

={(l,~tl—2+t)(k—-1): 1=0,1,...,k}
={0,—2+)k)+ (1,2)l: 1=0,...,k}.

The differential polynomial d"*!(w) contains only the monomials of the type
m = C(wt))k (wlt2))kz  (w*))Fr where the orders of the derivatives t; <
2n. As by multiplication of monomials their carriers sum up, we get after
changing the variables

S(m) = {(0, —2n—2)+(1,2)(11—|—12+- . —|—lr) L, =0,1,... k;,i=1,2,.. .77’}.

In case of (I1 + 12+ ---+ 1) > 0 we get only the points from the edge
[(1,—2n); (n 4+ 1,0)]. And in case of (I; + I3 + -+ 4+ 1,) = 0 we get the point
(0, —2n—2), but due to the shortened equation d"*! (b 2=2) = 0 the coefficient
of the summand C z~2"~2 corresponding to the point (0, —2n —2) equals zero.
Hence the point must be excluded from the equation carrier. B

Now let us finish the proof of Theorem 4. Although the carrier of the
equation (3.1) within the change of the variable remains the same, the op-
erator £ is changing (following the proof of Lemma 2) and hence there will
be another characteristic equation v(q) = z=972"L29 for every b,, chosen. As
all the apices and edges of I'(f) have been considered, we conclude that the
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next summand in power expansion will have the exponent 2n + 1 due to the
direction vector (—2n—1, —1) of the normal cone of the edge [(0, 1); (1, —2n)].
This summand also will have a constantly defined coefficient, because the cor-
responding shortened equation leads to a first order algebraic equation. So we
have n families of polar power expansions:

Wi (2) =bmz 2+ Y emi?, (3.12)
1=2n+1

where ¢,;, 2,41 is constant and some of ¢,,, ; are parameters. This series matches
the conditions of Theorems 2.2 and 2.3 from [2] therefore they converge in
some deleted neighborhood |z| < pof 2z =0. B

This result can be illustrated with the following example. Let us consider
n=2.

Proposition 2. The equation 4P, (defined by (3.1) with n = 2) has one-
parametric (3.13) and two-parametric (3.14) families of polar solutions defined
by series (3.12).

Proof. For by = 1 after the change of variable w = 272 + u we have the
equation

"

/ 2
u® — 20uu’ — 205 — 10(u')? + 402 + 40u® + 12055 — z = 0.
z z z

It defines ” L2 L4
S R T, e
£ dz* 22 dz? + 23 dz
and the characteristic equation v(q) = ¢(54 —9¢—6¢>+¢*) = 0 with the roots
g1 = —3,q2 =0, g3 = 3, g4 = 6. The shortened equation corresponding to the
edge [(07 ]-)7 (]-a _4)} is
i

"
u® —202‘—2 +40:—3 —2=0

and within the substitution u = 32° it gives 3 = —g5. While 2n+ 1 =5 and
only g4 > 5, we get one-parametric family of power expansions

1 o0
wy(z) =272 — %25 +azb + ;cuzl, (3.13)

where « is an arbitrary constant, that uniquely defines coeflicients c; ;.
For by = 3 after the change of variable w = 3272 4w we have the equation:
"

/ 2
u® — 20uu’ — 6055 — 10(u)? + 1207 + 40u® + 360 + 720 — 2 =0
z z z z

It has characteristic equation
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v(q) = —720 — 174q + 49¢> + 64> — ¢* =0
with the roots ¢ = —5, g2 = —3, g3 = 6, g4 = 8. The shortened equation

" I
u® — 6055 + 120 4 720 — 2 =0
z z z
by the substitution u = $2° gives § = —ﬁ. As this time g3, g4 > 5 we have

the two-parametric family of power expansions:

1 o0
wy(z) = 272 274025 + o128 + a2 + Z czylzl (3.14)
1=9

where again a3 and as are arbitrary constants, which uniquely define coeffi-
cients cy,;. The proposition is proved. Bl

Thus all the generalized bounds of the carrier of the equation (3.1) (see
Fig. 1) have been considered, so the adduced analysis is complete and proves
the following result.

Theorem 5. The equation (3.1) has only the following power expansions of
solutions:

1. 2n-parametric family of holomorphic solutions (3.6) near z = 0,
2. n families of polar solutions (3.12) near z = 0,
3. n+ 1 formal power series (3.7) near z = co.

Let us note, that the power expansions found in the neighborhood of z = 0
can be also used while looking for the solutions near an arbitrary point zg € C
within the substitution z = Z + 2g.

4. Conclusion

The three types power expansions of found for 5, P; hierarchy completely
coincide with the ones found for the first Painlevé equation. This is another
corroboration of the deep analogy of these equations and another argument
for the hypothesis, that all the 9, P; hierarchy has the Painlevé property.

Another important conclusion is that the power geometry method can be
used to find higher order analogues. As follows from Theorem 1 and Fig. 1
scaling a carrier of an equation could uncover the structure of other equations
with the Painlevé property.
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