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Abstract. We consider two second order autonomous differential equations with
critical points, which allow the detection of an exact number of solutions to the
Dirichlet boundary value problem. Non-autonomous equations with similar be-
haviour of solutions also are considered. Estimations from below of the number
of solutions to the Dirichlet boundary value problem are given.

Key words: singular points, multiple solutions, heteroclinic solutions, homoclinic
solutions

1. Introduction

Main issues in the theory of boundary value problems for ordinary differential
equations are the existence and uniqueness of solutions. A lot of practically
important problems possess however multiple solutions. There is intensive li-
terature devoted to multiplicity of solutions. Let us mention the works [1, 6, 7]
and references therein.

In our research we are motivated by the method proposed by A.I. Perov
[4, 5] (the respective results can be found also in the book [2, Ch. 15]). His
method results in estimation of the number of solutions of the boundary value
problem

h(t, @, y),
y' = ft2y),

1.1
ayz(a) — byz'(a) =0, (L1)
agz(b) — baz!(b) = 0.

These estimations are based on comparison of the behaviour of solutions in
some neighbourhood of the zero solution and at infinity. Notice that the zero
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solution exists since h(t,0,0) = f(¢,0,0) = 0. It is convenient to explain the
result of Perov in terms of the angular function ((¢), which can be introduced
by the following relations

z=psing, y=pcosp, p’=xz"+y>
We get the following equations for the functions ¢ and p :
1
¢ == (hcosp— fsiny),
p (1.2)
P =hsinp+ f cosp.
In the polar coordinates the first boundary condition may be written as
b
arctan —1, if a; #0,
— — al
pla) =a:=4q _
2 )

The second boundary condition takes the form

if ay = 0.

b
arctan —2, if ag #£ 0,
a2
™
27

o(b) = B(mod 7), where =
if as = 0.

Set
po = £/72(@) + ().

Suppose that a solution ¢(¢; pp) of the system (1.2), which is defined by the
initial condition ¢(a) = « for small py > 0, takes exactly m values of the form
B(mod 7). Moreover, assume that a solution ¢(¢; po), which is defined by the
initial condition ¢(a) = « for large values of py > 0, takes n values of the
form fG(mod ). If n is, say, greater than m, then there exist at least n —m
values of pg, which give rise to solutions of the BVP. Another at least n — m
solutions are obtained for py € (—00,0). Then there exist at least 2|n — m)|

nontrivial solutions of the problem.

Figure 1 visualizes the case of « = 0, § = g (the Dirichlet boundary

conditions z(a) = 0, z(b) = 0) and n = 0, m = 1. Two possible solutions of
the BVP are represented by two semicircles. Due to different rates of whirling
of solutions near the zero and at infinity multiple solutions of the problem
appear.

The above mentioned result by Perov is more general than that described
by Fig. 1, since equations in (1.1) are non-autonomous.

Our aim in this paper is the following. We consider the second order equa-
tions, which are equivalent to two-dimensional systems, which are similar to
those treated by Perov and which, moreover, can have hetero- and homoclinic
type solutions. First, we consider autonomous equations which have singu-
lar points of the type saddle-center-saddle. This equation has a heteroclinic
solution and it may have multiple solutions of the Dirichlet problem.
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Figure 1. Perov’s result (m = 1, n = 0), bold-orbits of solutions to BVP; normal-
orbits at zero; dashed-orbits at infinity.

Then, these results are generalized to the case of non-autonomous equa-
tion, which has a solution, defined on a finite interval and which possesses some
properties of a heteroclinic solution. Similar situation is considered for au-
tonomous equations which have singular points in combination center-saddle.
This equation has a homoclinic solution and it may also have multiple solu-
tions of the Dirichlet problem.

2. Autonomous Equations, I

Consider the problem

2" = —ax + 23,
{ (2.1)

z(0)=0, z(1)=0,

where « is a positive parameter. Equation (2.1) describes, for instance, the
stationary solutions of the Fisher — Kolmogorov equation:

@ — @ 4 P
ot~ arr T
Many examples of this kind can be found in the book [3].

The equivalent system
=y,
{ , (2.2)

y' = —az + 23

has a center at (0;0) and two saddle points at (—/«; 0) and (v/«; 0). The hete-
roclinic orbit connects two saddle points. The respective heteroclinic solution
has “an infinite” period [8].
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Figure 2. Phase portrait of solutions of equation "/ = —z + z°.

Proposition 1. Let the condition

mn? < a <7?(n+1)> (2.3)
hold, where n is a non-negative integer. Then problem (2.1) has exactly 2n
nontrivial solutions.

Proof. Consider solutions x(¢;v) of equation (2.1), which satisfy the initial
conditions
z(0) =0, 2'(0)=~. (2.4)

The phase portrait for the system (2.2) is well known (see [8], for example)
and is depicted in Fig.2. Consider the region on a phase plane bounded by
two heteroclinic solutions. Any phase orbit in this region satisfies the relation

1
"+ ax? = 5;164 +2, (2.5)

or
1 1
2% + a2 = §m4 +aA? - §A4, (2.6)

where A stands for the maximal value of the respective solution x(t;y). There-
fore v> = aA? — $A*. Notice that the maximum of a heteroclinic solution
(which is attained at t = +00) is A = y/a. Thus the respective value z’'(0) = o

is equal to @ a.

Let v € (0,70). Then any solution x(¢;7) is periodic. We claim that the
period T'(vy) is a monotonically increasing function of v. Indeed, one has from
(2.6) that

d 1 1

d—f = \/—04952 + 5964 + ad? — §A4

in the interval [0, T'4], where T4 stands for a quarter of the period of a solution
x(t;7). One has that
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- /A dx
A =
0 \/(aA2 — 3A%) — (aa2? — 1z4)

oy e
§=7) =
( A) /0 \/(a . %AQ) — (o2 — %54,42)

A -
0 \Jo(l—€2) - Lax(1—gb).

It is clear that T4 increases as A increases. Therefore T'4(y) monotonically
increases as a function of 7. Since the half-period of an upper (2’ > 0) het-
eroclinic solution is infinite and orbits are symmetric with respect to both =
and z’ axes it is true that lim,_,,, Ta(y) = +oc.

On the other hand, T4 for small v > 0 is defined by a quarter-period of
a solution of the respective equation of variations (with respect to the trivial
solution of (2.1))

y'=—ay, y(0)=0,y(0)=1
1
Since y(t) = 7 sin(y/at) one gets that T4(y) — % as vy — 0.

Due to the conditions (2.3) the function y(¢) has exactly n zeros in the
interval (0;1) and does not vanish at ¢ = 1. The same is true for solutions of
the problem (2.1), (2.4) for small enough ~ > 0.

The zeros of solutions z(¢; v) monotonically increase and leave the interval
(0; 1] passing through the right end point as v — ~g. If for some ~ a solution
x(t;7y) has a zero at ¢t = 1, then z(¢;y) is a solution to the boundary value
problem (2.1). Thus there exist exactly n nontrivial solutions of the problem
for v € (0,70).

Similarly n solutions to the boundary value problem appear for v €
(—70,0). Solutions z(¢, ) of the initial value problem (2.1), (2.4) do not vanish
for || > [l -

So far we have considered two regions on a phase plane: one is a region H
bounded by two symmetric heteroclinic orbits and the exterior region H,: =
R\ H. There are exactly 2n nontrivial solutions of the problem (2.1) in H.
The H.,; does not contain solutions of the boundary value problem. Therefore
problem (2.1) has exactly 2n nontrivial solutions (the total number of solutions
is 2n + 1, when the trivial solution included). W

3. Non-Autonomous Equations, 1

Consider the problem
= f(t, ),

z(0) =z(1) =0,

(3.1)

where function f satisfies the the following conditions:
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(A1) f and f, are C(I x R)-functions;
(A2) f(t,0) = 0;
(A3) zf(t,x) >0for ¢t € I,|z| > M, where M > 0 is a constant;

(A4) there exists a solution 7(t) of the problem (3.1), n(0) = 0,7'(0) >0
such that n(t) does not vanish in the interval (0;1];

(A5) there exists a solution £(¢) of the problem (3.1), £(0) = 0,£'(0) <0
such that £(t) does not vanish in the interval (0; 1J;

(A6) solutions of equation (3.1) extend to the interval (0;1].

Theorem 1. Let conditions (Al) — (A6) hold. Assume also that a solution
y(t) of the Cauchy problem

y" = fu(t,0)y,
y(0) =0, y'(0)=1

has ezxactly n zeros (n = 0,1,...) in the interval (0,1) and y(1) # 0. Then
problem (3.1) has at least 2n nontrivial solutions.

(3.2)

Proof. Consider solutions z(t;v) of equation (3.1), which satisfy the initial
conditions (2.4). Let us introduce the polar coordinates by

x =psing, ' = pcosp. (3.3)

Notice that p(t) cannot vanish for nontrivial solutions since = 0 is a solution.
Equation (3.1) in polar coordinates takes the form

@' = cos® p — %f(t, psin ) sin @,
p' = psinpcosp + f(t, psinp)cosp.
Consider functions ¢(t;v) and p(t;y) which satisfy the initial conditions
©(0;7) =0, p(0;7) =l (34)
We write linear equation of variations (3.2) in polar coordinates
y=rsin®@, y =rcos6O,
it takes the following form
O = cos? O — f4(t,0)sin* O,
' =rsin@cosO + f,(t,0)rsin O cos O.

Due to conditions (A1), (A2) and (A6) the results of [2, Ch. 3, § 15] are
applicable. Since a solution y(t) of problem (3.2) has exactly n zeros in (0, 1)
and y(1) # 0 one has that mn < O(1) < w(n + 1). It follows from the proof of
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Theorem 15.11 in [2] that the same inequalities hold for the angular function
p, i.e.
™ < ¢(1;7v) < m(n+1), (3.5)

if v > 0 is small enough. On the other hand, by condition (A4) we have
0 < (l;7y) <, (3.6)

where 7, := 7/(0). Taking into account the continuous dependence of solutions
of the equation on initial data and since there exists a trivial solution x = 0
we get that function ¢(1;+) is continuous. Comparison of (3.5) and (3.6) gives
that there exist at least n solutions for vy € (0, ;).

Another n solutions are obtained by considering x(¢;y) for v € (v¢,0).
Thus there exist at least 2n nontrivial solutions of the problem. H

4. Autonomous Equations, 11

Consider the problem

2 = —ax + 22,
z(0)=0, z(1)=0,

where « is a positive parameter.
The equivalent system
=y,
Y = —ax + 2?2

has a center at (0;0) and a saddle point at («;0) as depicted in Fig. 3. The
homoclinic orbit connects the saddle point to itself. It has “an infinite” period
[8]-

Consider equation (4.1) with the following initial conditions
2(0) =0, 2/(0)=~. (4.2)

Denote the respective solution by z(t;7). The region bounded by the ho-
moclinic solution is filled by closed orbits which can be parameterized by
v. Let Yo = ) oimoctinic(0) > 0, where the homoclinic solution is such that
x(0) = 0. Let A and —m stand for respectively maximum and minimum of
x(t;y), v € (0,70). For all such solutions x(t; ) the relations

2
2% 4 ax? = 3333 + 2, (4.3)

2 2
2% + a2 = §$3 +aA? - §A3, (4.4)

2 2
2 +ax? = §x3 +am? + §m3 (4.5)
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Figure 3. Phase portrait of solutions of equation z”/ = —z + z°.

are satisfied for any ¢t > 0. Let T4, T», T3, Ty be respectively the times needed
for a point to move along the closed orbit from the point (0, ) to (A4, 0), from
(A,0) to (0,—7), from (0, —v) to (—m,0) and from (—m, 0) to (0, ). It follows
that T3 = T» and T3 = T} since any orbit is symmetric with respect to the
x-axis. The entire period of a solution x(t;~) is the sum T + T5 + T35 + T4 or
2Ty + 2T5.

Lemma 1. T; is given by

T s
ne Je—e)—2a0-e)

and it is an increasing function of v € (0,70). Moreover, Ty — +00 asy — .

(4.6)

Proof. Let us integrate (4.4) in the interval (0,77). Then
/A dx
0 \/aA2 — 243 —qz? + 243
== &
AT a2 - 2a0 - )

Evidently, T} increases as A increases. It follows from (4.3) and (4.4) that

n =

(4.7)

v =aA? - %A?’.

Therefore v(A) is an increasing function for A € (0,«). Thus Ti(v) is an
increasing function in the interval (0,79) and the homoclinic solution has an
infinite period T1(y) — 400 as vy — 7. B
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Lemma 2. Suppose that ' (0) = v € (0,+00). Let Ty be the time needed for
a point to move along the trajectory (x(t;7y),2'(t;7)) from the point (—m,0)
to the point (0,7), here m > 0. The value of Ty is given by

dg

1
ne Jal—€) + 2m(1—e)

and it is a decreasing function of v. Moreover, Ty — 0 as v — +o0.

(4.8)

Proof. Let us notice that for trajectories which are located in a half-plane
x < 0 the formulas (4.3) and (4.5) are valid. Consider a solution x(¢) of
equation (4.1) which satisfies the initial conditions x(0) = —m, z'(0) = 0.
One gets by integrating (4.5) that

dx

/0
—m \/amQ + 2m? — ax? + 223

m dz
(2 =—2) = /0 \/am2+2m3—0422—§23
(4.9)
f= )=
( m) / \/oc—i- m — —mef

dg

/0 Jall =€)+ Zm1— ¢

Therefore T, monotonically decreases as a function of m. Since m and v due
o0 (4.3) and (4.5) relate as

2
A2 = am? + §m3

and m — +o00 as v — 400 we get the proof. B
Corollary 1. The time T_, needed for a point (—v,0) to move to a position

(0,7) along the orbit on a phase plane, decreases as -y increases and 7 () — 0
as y — +o0.

Proof. The proof follows from Lemma 2 and observations that T = T35+ T}
and T3 = T4. |
Proposition 2. Suppose that the following condition

°n? < a < 7?(n+1)? (4.10)

holds, where n is a positive integer. Then problem (4.1) has at least (2n — 1)
nontrivial solutions.
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Proof. Consider the initial value problem (4.1). If the parameter v > 0 is
small enough, then solutions z(¢;+) have exactly n zeros. If v = ~ then
x(t;y0) does not vanish in the interval (0;1]. Hence there exist at least n
solutions of problem (4.1).

If the parameter v < 0 is small enough then solutions z(¢;y) have exactly
n zeros. If v tends to —oo then by Lemma 2 solutions x(¢; 7o) have exactly
1 zero in the interval (0;1). Hence there exist at least (n — 1) solutions of
problem (4.1) for v < 0. Totally we get at least (2n — 1) solutions of the given
problem. W

5. Non-Autonomous Equations, IT

Consider the problem
a’ = f(t,x),

z(0) =xz(1) =0,

(5.1)

where function f satisfies the following conditions:

(A1) f and f, are C(I x R)-functions;

(A2) f(¢,0) = 0;

(B1) f(t,z) > clz|P fort € I, x < —M, where ¢ >0, p>1, M > 0 are
constants;

(B2) f(t,x) >0fort eI, x> M;
(A6) solutions of equation (5.1) can extend to the interval (0;1].

Theorem 2. Let the conditions (Al), (A2),(B1),(B2) and (A6) hold. Sup-
pose that a solution y(t) of the Cauchy problem

y" = fz(t,0)y,
y(0) =0, y'(0)=1

has exactly n > 1 zeros in the interval (0,1) and y(1) # 0. Then problem (5.1)
has at least (2n — 1) solutions.

(5.2)

Lemma 3. There exists a solution £(t) of problem (5.1), £(0) =0, £'(0) <0
such that £(t) has ezactly one zero in the interval (0;1].

This can be proved, using conditions (B1), (B2) and the technique of
Section 4 of the work [1].
Now we can prove Theorem 2.

Proof. First we note that there exists a solution 7(t) of problem (5.1), n(0) =
0, 7’ (0) > 0 such that n(t) does not vanish in the interval (0;1]. This follows
from conditions (B2) and (A6).

Let £(t) be a solution which is described in Lemma 3. Behaviuors of 7(t)
and £(t) are shown in Fig. 4. The rest of the proof is similar to that of Theorem
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Figure 4. Visualization of Theorem 2.

1. Consider solutions z(t; ) of equation (5.1), which satisfy initial conditions
(2.4). We use the polar coordinates given by formulas (3.3). Consider the
functions ¢(¢;y) and p(¢;y) which satisfy initial conditions (3.4).
The linear equation of variations (5.2), converted into polar coordinates
using the formulas
y=rsin®@, y =rcos6O,

is given by
O = cos? O — f4(t,0)sin* O,
7' =rsin@cos @ + f.(t,0)rsin O cos 6.

Since a solution y(t) of problem (5.2) has exactly n zeros in (0,1) and y(1) # 0
one has that mn < ©(1) < w(n + 1). It follows from the proof of Theorem
15.11 in [2] that the same inequalities hold for the angular function ¢, that is,

™ < p(1;7y) < 7(n+1), (5.3)
if v > 0 is small enough. On the other hand
0<o(l;v,) <m, (5.4)

where 7, := 1'(0). Comparison of (5.3) and (5.4) gives that there exist at least
n solutions for v € (0,~,).

Consider the functions ¢(¢;7) and p(t;~) which satisfy the initial condi-
tions

0(0;7) =7, p0;7) = [v]. (5.5)

The linear equation of variations (5.2) turns to
O = cos? O — f4(t,0)sin* O,
' =rsin@cosO + f,(t,0)rsin O cos O.

Consider O(t), defined by the initial condition ©(0) = x. Since a solution y(t)
of equation (5.2), which satisfies initial conditions y(0) = 0, 3’(0) = —1, has
exactly n zeros in (0, 1) and y(1) # 0, one has that 7(n+1) < O(1) < 7(n+2).
The same inequalities hold for the angular function ¢, that is,
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7(n+1) < p(1;7v) < w(n+2), (5.6)
if v < 0 is small enough. On the other hand
21 < p(1;7¢) < 3m, (5.7)

where ¢ := ¢'(0). Comparison of (5.6) and (5.7) gives that there exist at least
mntl)—2n = (n — 1) solutions for v € (¢, 0). Totally the problem has at

least n +n — 1 = 2n — 1 nontrivial solutions. W

Example 1. Consider the problem

{x” = —40(t> + D)x + (t + 1)a?, (5.8)

z(0) =xz(1) = 0.

Figure 5 shows solutions of the equation satisfying the initial conditions
x(0) = 0, 2'(0) = 7, where v is small and positive. This solution has 2 zeros.
Figures 5 a) b) show that zeros move to the right as v increases. Figures 5
c) show that the second zero has escaped the interval while the first zero
still belongs to the interval. Figure 5 d) shows that all zeros have escaped the
interval. Therefore there exist two solutions of the given BVP if v > 0 changes
from zero to large enough values.

0.2 04 ~0E o 1 0.2 0.4 0.6 0.8
-10
-0.05

a) b)

¢) d)
Figure 5.a) 2/(0) =0.1 b)2/(0)=100 c) 2'(0) =125.65 d) 2'(0) = 128.
Figure 6 shows solutions of the equation with x(0) = 0, 2/(0) = v < 0,

for v small enough. Parts a) and b) of the figure show that the zeros move
to the right if ~ decreases. Figures 6 c), d) show that all zeros except one
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0.1
20
0.05 10
2 06 0.8 ~< 02 0/4 06 0.8
0.05 -10
-20
0.1
a) b)
40 80
60
20
40
0.2 406 08 1 20
20 0.2 &4 0.6 08 1
-20
-40 -40
c) d)

Figure 6.a) z'(0) = —0.1 b)z'(0) = —114 c¢)2'(0) = —141 d)z'(0) = —149.

have escaped the interval. Therefore there exists one solution of the given
BVP if v < 0 changes from zero to —oo. Then problem (5.8) has 3 nontrivial
solutions.
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