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Abstract. There are considered some aspects for numerical solvingbfgm with Robin’s
boundary conditions arising in the gyrotron theory. Themode case is carefully investi-
gated. The obtained observations make possible to offeuiteble strategy for the numerical
solving of the problem for general system of nonstationampigon oscillations.
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1. Introduction and Formulation of the Mathematical Model

In recent papers [1, 2, 3] we have presented the experierta@et by numerical

solving of partial cases of certain problem for time-depamdyyrotron equations.
Now we are considering a more general situation of invet@areviously prob-

lems. Using the obtained as well as previous results we g®pauitable strategy
for solving the problem for full system of nonstationary giyon oscillations.

A competition between the amplitudes of nonstationary tygrooscillationsf,
and the transverse momentum of electrpnis different modess = 1,...,m)
is described by the corresponding nonlinear system of cexnpértial differential
equations (see, [6])
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Herei is the imaginary unity € [0, L] andt > 0 are the normalized axial and time
coordinates, for every number of modeorrespondingly; is the frequency mis-
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match,d; = 05(x) describes variation of critical frequencids,s the dimensionless
currentWs = ast+mgep is the phase of the mode,, m are the physical constants,
0 < ¢ < 2. The initial conditions for momentum

Pla=0 = exp(ibp)

depend on parameteér< 6, < 2.

In order to study properties of numerical methods we ingas$#i the single mode
case having also in mind special restrictions on the vagiplf

p2P=1+C, C=const<0, m=1, fi=f

the nonlinear system of gyrotron equations for determamadif functionf (¢, ) re-
duces to the linearized complex integro-differential eouma
Of _9*f P iAL
zg—@ﬁ-éf—zle /0 ft,8)e dg, (1.2)
whereA, = A + C. We formulate boundary conditions of Robin’s type for the
function f (¢, ) in the following form

of(t, L ,
soy=o0, TEB _ iypo ) 12)
X
with some positive constant The initial condition is presented in the form
f(0,z) = ¢(z), (1.3)

where¢(z) is a given complex function.
Using the notation

y(t,x) = / St €A dg

and the transformatiofi = ¢*4+* f, the integro-differential equation (1.1) can be
written in the form of two partial differential equations.

of .(82f . Of 2 )
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e f(t ),
and conditions (1.2), (1.3) are formulated as follows
. - afe, L)y . g

F(0,2) = "7 (a).

In section 2 the cas& = const is considered. We reduce the main problem to
the boundary-value problem for the ordinary differentiqliations considering the
quasistationary solutions. In sections 3-5 we apply thenowbf lines and finite-
difference schemes for the more general case. Finallygiiose6 we present results
of numerical experiments. The main conclusions of our dgvalent are gathered in
section 7.
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2. The Quasistationary Solution of the Differential Problem

We represent the quasistationary solution of the proble#)((1.5) in the following
form

f(t,x) = g(z)exp(iat), y(t,z) = w(z)exp(iat), (2.1)

wherea is a complex numbett = «; + iag, as is a temporal damping factor: if
ag > 0, the solution of (1.4) decreases in timeqif < 0, the solution increases, and
for ap = 0 the solution is oscillating in time.

Substituting functions (2.1) into equation (1.4) and baamydconditions (1.5),
we obtain the boundary-value problem of Sturm-Liouvillpayfor the system of two
ordinary differential equations

g"(x) = 2iA.g' () + Ag(x) — Tiw(z) =0
w'(x) = g() (2.2)
9(0) = w(0) =0, g¢'(L) = —i(y — A.)g(L),

where) = o + 6§ — A? is a complex eigenvalue.

If § = const, then applying a standard scheme in order to solve thisrlinea
boundary-value problem we obtain a transcendental cormgaexation for the cal-
culation of eigenvalues

paks (e — p1) + poko (1 — p3) + pakr(us — p2) =0, (2.3)

wherer; = (n; —i(As — 7)) exp(p;L), pj, j = 1,2,3 are the three roots of the
following complex cubic equation:

P = 2iA 0% + X\ —Ti = 0.

The roots of equation (2.3)*), k = 1,2, ... are sorted in increasing order of their
real parts.

The corresponding complex eigenfunctign® (z), w®) (z) are obtained from
problem (2.2) forA = \(*) and the quasistationary solution of the problem (1.4),
(1.5) for every eigenvalue™® = \*¥) — § + A2 is given in the form

F®(t, x) = exp(—iA,x) g™ (2) exp(ia®)t).
Particularly, ifozgk) = Im (A\(®)) > 0 than these solutions asymptotically tend to
zero, ift tends to infinity.
3. Discrete Grids and Approximation of Derivatives

For approximation of derivatives we consider two types stdéte grids.
1) A uniform grid is defined by grid points

zj=jh, j=0,...,n, h=—, (3.2)
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whereh is the space step.
2) A nonuniform grid, grid points of which are the roots of tBeebyshev poly-
nomials of the second kind [2]

T = O.5L(1 — cos(wj/n)), j=0,...,n. (3.2

2
Using grid points (3.1) or (3.2) we can approximate parteivhtives 4

oz’ 922
in equations (1.4) for a fixed time momentvith matrixesD, D? of derivatives in
the form
fi=Dfn, fi =D?fn, yi, = Dyn, fr,=Dfn, fii =D*fn,
where
fh = (anfla"'afn)a f}lz = (f(l)af{77ffrl7,)a }/II:( (l)/a 117"'af7/11)7
Ynh = (yanla e ayn)a y;z = (y67ylla e 73/47,)1 Th = (,To,l'l, cee 71;77,)1

are the vector—columns of the corresponding values of tideagnd grid functions

of(t,x; O?f(t,x;
f= Sy, gy= 200 T

It follows from the Lagrange interpolation formula (see])[3hat the elements of
matrix D are given in the form
dly(x;)

Dj_’k: dr 5 j,k:O,...,TL,

where

lk(x)zLx) WZH(UC—U%)

W (xp)(x — )’

are the elementary Lagrange multipliers.

It must be mentioned that for the nonuniform grid (3.2) if gra&l points are cho-
sen as the roots of the Chebyshev polynomials of the secafithke interpolation
error is small [5].

Next we define a uniform temporal grid:
tmm=m1, m=1,2,..., M,

where a corresponding time—stefs used. We substitute the continuous functfon
on this grid by the discrete valug$® ~ f(tm, ;). The corresponding derivatives
are approximated by finite-differences

f(tm,y)  Fa —20" 1" 0f(tmowy) =g
0x? h? ’ ot T ’

Of twnwy) _ S — 1T Of(tan) _ f— ity
Ox 2h ’ ox h ’

j=1,...,n—1.
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4. Method of Lines for Solving Differential Problems

Considering only the spatial discretization of problen#{1(1.5), when the variable

x is discretized and the variabids continuous, and using the matrix®s D? of
derivatives in the grids (3.1) or (3.2) we obtain for grid ¢étions f;, = fi.(t), yn =
yn(t) the system ofn — 1) complex ordinary differential equations (the boundary
conditions (1.2) are taken into account during construatiomatrixesD, D?)

d _
% =Bfy—IE yn, Dyn=E"fn, (4.1)

whereB = —i(D?*+6E), E* = diag(exp(+iA.x;)) are quadratién—1)x (n—1)
matrixes,E+, E are the corresponding diagonal matrixes and the unit mathie
initial conditions are defined' in the form
fh(o) = (bhv
where
On = (b1, In-1), ¢ =d(z;), j=1,...,n—1

Excluding the vectoy,, in (4.1) we derive the initial-value problem:

o Gp po)= 0 (4.2)

whereG = B— IE~(D'E™).
The solutionfy,(¢) of the problem (4.2) can be obtained in two forms:
1) by using matrix-exponent function

In(t) = exp(Gt)dn,

2) by using the spectral decomposition of mattix= RDyR~!, whereDy is
the diagonal matrix of eigenvalueR,is the eigenvectors matrix with corresponding
eigenvectors as columns of the matrix

fn(t) = Rexp(Dot) (R~ ¢p,). (4.3)

Using matrixesD, D? and the approximation of integrajst, ;) we obtain for
solving the integro-differential equation (1.1) the systgt.2), where the elements
of matrix G are given in the following form

Gk,j = Bk,j — IeXp(—iA*CL'k)(thj eXp(iA*CL'j_l)

+hjp14jexp(id,zy)), j=1,....k—1, (4.4)

Gr.r = Brx — Thy exp(—iA.hy) B,
whereBy, ; are elements of matrig;
Bj = exp(iA*hj)((A*hj)72 =+ (ZA*hJ)il) - (A*hj)727
Aj = (Auhy) ™2 = (iAuhy) ™ — exp(idihy)(Achy) ™2
are coefficients of the quadrature formutg,= z; — 2;_1, k=1,...,n.
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5. Discrete Approximations in Time and Finite-Difference
Schemes
Using the uniform time—grid,,, = m7, m = 0,1,2,..., M we can consider fol-
lowing approximation of the system (4.1):
}';n+1 _ f}»;n
-

Dy =E*fi', [ = ¢n,

whereo € [0, 1] is the weight coefficient of the scheme,

= B(ofy" " + (L= o) fi") = IE (oyp ™ + (1 = o)yi),

= fultm), m=0,1,..., M.

By eliminating vectory;" from the system we obtain the two level finite—difference
scheme B
w=Gh (5.1)

where the transition matri& has the form
G=(r'E-o(B-IE D 'E") Y (r7'E+(1-0)(B-IE D 'ET)).

It follows from (5.1) thatf;™ = (G)™ .

The discrete approximation in time for the integro-difigial equations (1.1) is
given by

m+1 fm
dh I Gofrt 4 (1 - o) ), (5.2)

wherefp = ¢, m = 0,1,..., M and the elements of matri% are written in the
form (4.4),0 € [0,1].

In this case we can rewrite (5.2) in the form (5.1), where

G=(r"'"E-e@) ' (r'E+ (1 -0)G). (5.3)

For the finite-difference approximation of integro-ditatial equation (1.1) us-
ing the uniform grid (3.1) we apply the method of lines in tbenf (4.2) with matrix
G written in three-diagonal and left-triangle forms. The nero elements of this
matrix are defined as

Gk,k = ’L'(2h72 — 5) — IheXp(—iA*h)Bl, Gk_’kJrl = —ihiQ,
Gr,j = —(ih™28; -1 + Th(By exp(—iA.(k — j + 1)h) (5.4)
+ Ay exp(—id.(k = ))h))),

whered; ,—1 is the Kronecker delta functios;, B; are coefficients of the quadra-
ture formulawithh; =h, j=1,...,k—1,k=1,...,n— 1L

Boundary conditions (1.2) are approximated in the form
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fn _hfn—l _ _i’an,

thus the elementr,,_, ,,—; of matrix G must be supplemented with additional term
—ih™2/(1 + ih7).

For finite-difference approximations in space coordinatausing the uniform
grid (3.1) and time we can consider a two level finite-diffeze scheme (5.2), where
elements of matrixi are given in the form (5.4). The transition mattixis defined
by (5.3).

In the case of = 0 the stability condition of this schemeds> 0.5 (see, [3]).
This condition is valid fod # 0.

A similar finite-difference scheme for solving differentéguations (1.1) can be
obtained from (4.1), where matrixds, B are defined using the finite differences
in space. Difference equations approximate the diffeaéatjuation with the second
order both in space and timedf= 1/2, and with the first order in time, i # 1/2
(see, [4]). Boundary conditions (1.2) are approximated avith the first order in
space. Therefore, problem (1.1) - (1.3) is approximateg wiith the first order of
accuracy.

6. Numerical Experiments with Different Methods

All numerical results are obtained by means of computer yarmg MATLAB and
MAPLE for the following parameters:

1 B
v=2, L=15, 6=0, 5—5(17)—@511111(56—7.5), C =0,

I=0, 1=001, A==+10, ¢=sin(rz/L).

The first 15 eigenvalues®), & =1,...,15 of matrix G(n = 25) in (4.2) are
presented in Tab. 14 = 10).

For the nonuniform grid (3.2) with = 25, § = 0 the first 15 eigenvalues’® of
matrix G of the differential equations (4.2) are equai (a*) + A2?) and numerical
approximations have the accuracy of 4 decimal digits, whéfe are the roots of
equation (2.3). The maximal valuk/; = Im (\("")) of eigenvalues of matrixy
increase, bub/y = —Re (A\()) decrease if the number of grid pointss enlarged.
As an example, if

I=1, A, =2 6§=0,

then for the nonuniform grid (3.2)

M; = 331.13, My = 0.050, (n=25),
My = 5271.6, My = 0.0001, (n = 50).

These values depend little ah, andI. Therefore, functiorxp ((—Mo + M )t)
slowly decreases and rapidly oscillates in time. The cattahs show that

Re(A®) <0, k=1,...,n
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Table 1.The first 15 eigenvalues*) for matrix G.

ko 6=1=0 §(x), I=0 §=0,1=001 6(z),1=0.01
1 -0029+0437i  -.0147-0387i  -.0039+.0336i -.0145-7128
2 -0118+.1748i  -.0350-.1678i  -.0129+.1689i -.0364-5i61
3 -.0272+.3933i  -.0565+.3912i  -.0305+.3856i -.0597-2383
4 -.0497+.6989i  -.0853+7024i  -.0556+.6926i -.0916+895
5  -.0808+1.091i  -.1249+1.099i  -.0898+1.088i -.1343+5i09
6  -1230+1.570i  -.1809+1.580i  -.1310+1.571i -.1891+1i58
7 -1807+2.133i  -.2664+2.140i  -.1849+2.137i -.2707+8i14
8  -.2636+2.773i  -.4141+2.736i  -.2632+2.776i -4141+Qi74
9  -.3863+3.458i  -.4775+3.253i  -.3847+3.457i - AT54+3i25
10 -.4749+4.116i  -.3912+3.970i  -.4779+4.112i -.393568i9
11 -.4268+4.886i  -.3487+4.839i  -.4324+4.888i -.354740i8
12 -3780+5.822i  -.3266+5.802i  -.3802+5.826i -.328966i8
13 -.3497+6.866i  -.3132+6.854i  -.3487+6.866i -.312256i8
14 -3319+8.002i  -.3041+7.994i  -.3339+8.000i -.306092i9
15  -.3197+9.228i  -.2976+9.223i  -.3230+9.229i -.300928i2

for all parameters and methods. At first the val{Rs(\(*))| increase, ik enlarged,
then those reach the maximum and then asymptotically tenertm

The algorithm of method of lines can be improved, if the lageevalues with
large M, are eliminated. Ii» = 100, 6 = 0, then the firstv; = 60 eigenvalues of
matrix G coincide with the roots of equation (2.3), but the last= 40 eigenvalues
are not close to the roots of equation (2.3). Fig/1= 0.01, 6 = 0, A = 10)
shows the first 80 eigenvalues®) = —ix*) k = 1,...,80 with 20 "parasitic"
eigenvalues.

Eigenvalues of 8=0,1=0.01,A=10,n=100(20)
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Figure 1.Eigenvalues:*) of § = 0, 1 = 0.01, A = 10, n = 100(20).

Therefore, we can use the spectral decomposition meth8y f@t. solving the
system of ODEs (4.2)

fu(t) = Ruexp(Dgt) (R~ ¢n)s, (6.1)
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or
Fu(t) = R.exp(Dyt) (RLR.) " R, (62)

whereR, is the matrixR without the lasti, columns,R’, is the transpose matrix
of R., Dj is the quadratic matrix oD, without the lastz, columns and rows, and
(R™1¢). is the vector-columifR~1¢) without the last, rows. The expressions
(6.1), (6.2) are in the fornfi, (t) = R. exp(D{t)w;;, wherew;: is the vector-column

wy, Without the lastn, rows, butwy, wj; are the following solutions of algebraic
systems equations:

1) the system with full matrixR (ordern) —w;, = R~ ‘¢, in (6.1),

2) the system with matri®’, R, (ordern,) from the least-squares approximation
or Gauss transformatioms; = (R, R.) "' R. ¢, in (6.2).

Eigenvalues of 3=5(x),1=0.01, A=10
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Figure 2.Eigenvaluesx*) of §(z), I = 0.01, A = 10, n = 100(40).

Fig. 2, shows the first 60 eigenvalue§”, k = 1,...,60, wheren = 100;
§ = 6(z) andI = 0.01, A = 10. Here the valuefRe (\(*))| tend to value.270, if
the numbel is enlarged.

For the uniform grid (3.1) using the finite-difference sclesngives us a possibil-
ity to compute accurately only the first 3-5 eigenvalues, if 100 (see Fig. 3 with
n = 100, I = 0.01,0 = 0, A = 10, here the exact value ef, tends asymptoti-
cally to 0.2675 wheny; tends to infinity, but the corresponding value obtained by
the finite-difference method tends to zero).

Next we present results of numerical experiments, whenlgnofl.1) — (1.3) is
solved with different methods.

Results of application of the method of lines & 100, n; = 60) for values
|f(t,L)|, t € [0,400] are presented in Fig. 4 = 0, I = 0.01, A = 10) and Fig. 5
(0 =6(x), I =0.01, A =10). If § = 0 then the solution tends to zero very slowly.

Tab.2 shows that the calculation with = 0.4n, using expressions (6.1), (6.2)
are more stable in comparison with = 0 from (6.1).
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Eigenvalues of FDS, =0,1=0.01,A=10,n=100
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Figure 3. Eigenvaluesx™ of § = 0,1 = 0.01, A = 10, n = 100 for finite-difference

scheme.

Solution of ODE by n=100(60), 1=0.01,5=0,A=10
T T

100

150

200
t

250

300 350

Figure 4. Solution|f(¢,15)| by n = 100, I = 0.01, § = 0, A = 10.

Table 2. The dependence of valug, = |f(1, L)| fromn for I = 0.01, § = §(x), A = 10.

n (6.1),112 =0.4n (6.2),112 = 0.4n (6.1),77,2 =0
5 0.0809 0.0842 0.0776
10 0.0918 0.0990 0.1008
20 0.0983 0.1018 0.1049
40 0.1001 0.1003 0.1003
60 0.1001 0.1002 0.0996
80 0.1003 0.1003 0.1003
100 0.1003 0.1003 0.1011

7. Conclusions

It follows from the numerical experiments that for the twedkeapproximation the
time stepr must be small. For the finite-difference scheme the numbgridfpoints

is increasedn > 200). Therefore this requires large computer time and it is more
suitable to use the nonuniform grid and the algorithm basetthe method of lines.
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Solution of ODE by n=100(60), 1=0.01,6=5(x),A=10
0.25 T T T T

0.2 4

0.15

0.1

abs(f)
ooy w’ .~ T

0.05 4

0 50 100 150 200 250 300 350 400

Figure 5. Solution|f(¢, 15)| by n = 100, I = 0.01, 6 = §(z), A = 10.

The finite-difference schemes (5.2), (5.4) are stablesfor 0.5, but they are not
sufficiently accurate. Using the matrix of derivatives oa tmiform grid it is possi-
ble to make calculations only for smaidl(n < 25), otherwise the calculations are
unstable.
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Skaitiniy metody girotrono teorijos uzdaviniuose palygnimas
J. Ceptis, H. Kalis, A. Reinfelds

Straipsnyje nagri@jami girotrono teorijos uzdaviniy su Robino krastindyga kai kurie
skaitinio sprendimo metody aspektai. Atidziai nagjamas vienos modos atvejis ir gauti
pasteljimai leidzia sudaryti tinkama skaitinio Sio uzdaviniprendimo strategija bendrajai
girotrono lygtiy sistemai, aprasaiai jo nestacionarius virpesius.



