
Mathemati
al Modelling and AnalysisVolume 10 Number 1, 2005, pages 31–40
c© 2005 Technika ISSN 1392-6292

SPECTRAL METHOD FOR NUMERICAL
CALCULATION OF DERIVATIVES IN DIGITAL
PROCESSING OF SUBSURFACE RADAR
SOUNDING SIGNALS

A. GRAKOVSKI and A. ALEXANDROV

Transport and Telecommunication Institute

Lomonosova str. 1, Riga, LV-1019, Latvia

E-mail:avg�tsi.lv
Received June 27, 2004; revised December 10, 2004

Abstract. The practical realization of the morphologic analysis of radar subsurface as the
processing of input digital data is presented here togetherwith real data processing results.
The analysis depends on a new numerical differentiation algorithm in frequency domain. It
is compared with a central finite differences scheme and results of computations demonstrate
approximately 80-times decrease of the maximum errors.
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1. Introduction

The task of high accuracy numerical differentiation of discrete data is important not
only in such known areas of the applied sciences as solution of partial differential
equations [4], but also in solution of some specific tasks, namely, for the analysis of
signals during subsurface radio location of ground surfacesegments. The main goal
of this processing is to define from radar sounding signals the information about
targets, e.g. ground inner objects or a localization of geological structures layers and
its properties. In this paper we propose the so-called morphologic approach [3].

The main idea of morphologic analysis of subsurface radar signals [1] is to use
the methods of calculation geometry instead of formal equations describing signal
deformation. The axiom of space homogeneity and isotropy asserts that solutions of
equation defining the propagation of disturbances in environment have the same form
for all coordinate systems that are obtained by translationand rotation of axes. On the
other hand, according to the Curie principle, the electrical field in environment has a
characteristic symmetry, which is a subgroup of cylindrical transformation group [1].
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Violation of the homogeneity and isotropy leads to a non-symmetry, i.e. to typical
deformation of signal form.

Figure 1. Classification of signal discrete points: linear shape (I),quadratic shape (II) and
cubic shape (III).

When a signal is presented by a smooth curve, then the problemis reduced to
the classification of characteristic points on the curve, the number of such points is
always finite. By asmooth curve we mean that at each point there exists a derivative
and, therefore, it is always possible to construct a tangentand normal vectors, i.e. to
introduce a local coordinate system.

There are three different cases of mutual location of pointsrelatively to the local
coordinate system: in Fig.1 (I), (II) and (III) correspond to the linear, quadric and
cubic forms, respectively. The other types of points cannotexist for a signal set in
the finite interval. A relative distribution of points of each type is changing depending
on a sounding environment, and points of cubical type are connected with reflections
from radar targets. Indeed, according to the Newton principle, the deformation of
the curve is proportional to the second derivative, and the cubic form satisfies this
condition (see Fig.1 (III)).

Let us consider reflection of the separate realization of sounding pulseS(t)
(Fig.2) onto the space curve given in the form of complex analytical signal

−→
U (t) = U0(t) ejΦ(t) = ure(t) + j uim(t),

where the radar signal is a real parture(t) = S(t) = Re
−→
U (t)], and its Hilbert

transformationuim(t) = H{S(t)} = Im
−→
U (t) is an imaginary part of the complex

signal. HereU0(t) is the envelope, andΦ(t) is the instantaneous phase on the interval
(0 < t < T ) of one development of durationT , andH{. . .} is the fast Hilbert
transformation [5]. In [3] it is defined that the analysed process is described by three
parameters: two external parameters, i.e. the radialυR and tangentialυT components
of the instantaneous velocity

a(t) = υR =
dU0(t)

dt
, b(t) = υT = U0(t)

dΦ(t)

dt
, (1.1)

and one internal parametert. The equilibrium states define a surface
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Figure 2. Complex analytical signal in 3D space constructed from realradar sounding signal.

F(a, b, t) :=
1

4
t4 +

1

2
at2 + bt = 0

belonging to the space of given number of dimensions. The projection of this sur-
face onto the plane of external parametersa(t), b(t) can have singularities that arise
due to reflections from targets. A physical interpretation of these singularities [3]

Figure 3. Coming out of the dotted area borders means the indication oftarget.

is connected to the fact that a reflection group always generatesconvolution–type
(A3–type) catastrophe [1] (Fig.3). Then, parameters of the form a(t), b(t) describe
a function with twice degenerated special points [2], this allows us to localize the
position of targets during subsurface sounding
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dF

dt
= 0,

d 2
F

dt2
= 0 ⇒

(
a

3

)3

+

(
b

2

)2

= 0. (1.2)

The points belonging to the domain outside of the coloured region defined by curve
(1.2) indicate the target. It is the basis for understandingthe morphologic method.

Figure 4. The example of individual signal (trace) processing by morphologic method.

The results of morphologic analysis of the single signal (ortrace) are presented
in Fig.4.

2. Central Finite Differences Scheme and Spectral Method

As we see from (1.1), the quality of the analysis depends directly on the accuracy of
numerical approximation of derivatives. Let us consider this question in detail. The
Central Finite Difference (CFD) approximation is defined for a discrete data:

u
′

(t) =
du(t)

dt
≈ uk+1 − uk−1

2 △ t
, (2.1)

where△t is a time step, andt = k △ t, (k = 1, 2, . . . , Nt − 1) is the discrete time.
Such approximation has the second order of accuracy:
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uk+1 − uk−1

2 △ t
=

u(tk + △t) − u(tk −△t)

2 △ t
(2.2)

= u
′

(tk) +
u

′′′

(tk)

3!
(△t)2 + O

(
(△t)4

)

︸ ︷︷ ︸

O

(
(△t)2

)

= u
′

(tk) + O
(
(△t)2

)
.

The CFD scheme has its analog in the frequency domain. Letu(t) be a discrete
signal, its spectrum is obtained by the Fast Fourier Transformation (FFT):

uk = u(tk) −→ −→
U (ω) = F{u(k △ t)},

whereω = ν △ f, ν = 0, 1, . . . , Nf − 1 is a discrete variable in frequency domain
with step△f andF{. . .}is the FFT transformation.

Every sample of the signal can be considered as a shift by one step forward or
backward. According to the Fourier shift theorem [5] it is equivalent to the multipli-
cation of the spectrum by a complex exponent:

uk+1 = u(tk + △t) −→ −→
U (ω) ejω△t,

uk−1 = u(tk −△t) −→ −→
U (ω) e−jω△t,

thus the analog of CFD formula in the frequency domain can be written as

u
′

(tk) ≈ uk+1 − uk−1

2 △ t
−→

−→
U (ω)

2 △ t

(
ejω△t − e−jω△t

)
.

By using the Euler formula for the complex exponent we obtain:

ejω△t = cos(ω △ t) + j sin(ω △ t),

e−jω△t = cos(ω △ t) − j sin(ω △ t),

wherej =
√
−1 is the imaginary unit. Thus in frequency domain the CFD scheme

means a multiplication of the spectrum by imaginary Sine-function (similar to digital
filtering methods [5]):

u
′

(tk) ≈ uk+1 − uk−1

2 △ t
−→

−→
U (ω)

△t
j sin(ω △ t).

By repeating the same rule after triple multiplication we get the approximation of the
third order derivative:

u
′

(tk) ≈ 1

△t
F−1

{−→
U (ω) d

−→
f (ω)

}

,

u
′′′

(tk) ≈ 1

(△t)3
F−1

{−→
U (ω)

(

d
−→
f (ω)

)3}

,

whered
−→
f (ω) = j sin(ω △ t), andF−1{. . .} is the inverse fast Furrier transforma-

tion.
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Using these formulas for a digital signal we can eliminate the second order error
term in (2.2) and reduce high order terms by using a compensation in the frequency
domain:

u
′

(tk) ≈ 1

△t
F−1

{−→
U (ω)

(

d
−→
f (ω) −

(
d
−→
f (ω)

)3

6

)}

. (2.3)

The implementation of the method consists of two parallel processes, which use
two separate inputs of the signal for FFT in order to reduce a computation time. One
of them is filtered to approximate the first derivative, and the second approximates
the third derivative. Then, before application of the inverse FFT, they are added to
each other.

Figure 5. Test signal - modulated Gauss pulse (3.1) on double time interval.

3. Numerical Experiment

In order to compare the accuracy of the proposed method and CFD scheme we ap-
plied both methods for numerical computation of derivatives of the artificial signal,
generated by the modulated Gauss pulse (see Fig.5), which issimilar to radar main
pulse given in Fig.4:

S(t) = e−γ(t−t0)
2

cos(ωt + ϕ), (3.1)

with parameters

t0 = 200, ω = 0.0943, ϕ = −0.131, γ = 0.0015 .

Discrete data is given att = 1, . . . , 512 andNf = 1024. The first derivative ofS is
defined as

dS(t)

dt
= e−γ(t−t0)

2(−2γ(t− t0) cos(ωt + ϕ) − ω sin(ωt + ϕ)
)
. (3.2)

In order to reduce possible boundary effects we process the signal on a double
time interval with its mirror imaging. Fig.6 presents results obtained by the spec-
tral method. The errors of numerical approximations of the first derivative by the
CFD scheme and the spectral method are presented in Fig. 7.
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Figure 6. Real and imaginary parts of the first derivative of test signal (3.1) calculated by the
spectral method.

Figure 7. Comparison of CFD and spectral approximations for the first derivative of the test
signal (3.1).

The results show essential difference between CFD and spectral methods. Com-
paring both methods we see a substantial difference in location of the peak value of
the test signal. The error was computed by using the analytical solution for deriva-
tive. We conclude that the maximum error of spectral approximation is equal to
3.7× 10−6 and it is 80-times smaller than the error for CFD method (which is equal
to 2.7 × 10−4). This result depends on a shape of the signal and the accuracy of the
spectral approximation can be improved by further compensation of high order terms
in series (2.2) in the same manner as it was demonstrated above.
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Figure 8. Subsurface radar sounding profile: before (left) and after (right) processing. Three
rows of low-sized targets.

Figure 9. Subsurface radar sounding profile: before (left) and after (right) processing. Indi-
vidual target.

4. Radar Sounding Data Processing

We implemented the proposed method to process data sets obtained by subsurface
radar sounding of various ground places. Each separate signal from data set given
in Fig.4 is shown in Figures 8-11 as a vertical line, colouredaccording to its value.
The current number of each separate signal (or trace) depends on the spatial position
of the radar antenna. Thus, all separate signals produce a two-dimensional picture or
image called a radar "profile". In Fig.8 we present the profileof the test polygon with
three rows of small-sized targets, an individual target is considered in Fig.9, a system
of underground pipelines is shown in Fig.10, and, finally, the geological section of
some ground surface strip is considered in Fig.11.

The morphologic method of signal processing leads to elimination of cross–re-
verberation and interference of reflection images from various targets and geological
layers. This property of the spectral method and computation of derivatives (1.1)
with high accuracy gives a possibility to increase a visual clarity of radar sounding
profiles and location of subsurface targets or ground geological layers.



Spectral Method for Numerical Calculation of Derivatives in Radar Signals 39

Figure 10. Subsurface radar sounding profile: before (left) and after (right) processing. Un-
derground pipelines system.

Figure 11.Subsurface radar sounding profile: before (left) and after (right) processing. Geo-
logical section of some ground strip.

5. Conclusion

The spectral method requires much larger computation time in comparison with fi-
nite central differences method because application of direct and inverse fast Furrier
transformation procedures are time consuming. Thus this method is not useful for
real-time processing applications. On the other hand, we can eliminate errors pro-
duced by finite differences schemes. If high accuracy of derivatives is necessary, one
can implement the algorithm in such a way that most of problems, connected with
processing quality, stability of the method and convergence, may be successfully
solved.
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Spektrinis metodas išvestinių skaitiniam radimui radaro zondavimo popaviršinių sig-
nalų skaitinio apdorojimo uždavinyje

A. Grakovski, A. Alexandrov

Straipsnyje nagriṅejama radaro popaviršutinių signalų skaitinio duomenųapdorojimo mor-
fologinės analiżes praktiṅe realizacija, kai skaitiniai duomenys apdorojami kartu surealiais
duomenimis. Analiże remiasi skaitinio deferenciavimo algoritmu dažnių srityje. Ji lyginama
su centrine baigtinių skirtumų schema ir demonstruoja vidutiniškai 80 kartų mažesnę skaičia-
vimo paklaidą.


