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Abstract. The practical realization of the morphologic analysis afarasubsurface as the
processing of input digital data is presented here togetiitér real data processing results.
The analysis depends on a new numerical differentiatioardhgn in frequency domain. It

is compared with a central finite differences scheme andtsesficomputations demonstrate
approximately 80-times decrease of the maximum errors.
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1. Introduction

The task of high accuracy numerical differentiation of die data is important not
only in such known areas of the applied sciences as solufiparial differential
equations [4], but also in solution of some specific taskmelg, for the analysis of
signals during subsurface radio location of ground surégggnents. The main goal
of this processing is to define from radar sounding signadsitformation about
targets, e.g. ground inner objects or a localization of ggichl structures layers and
its properties. In this paper we propose the so-called nadggiic approach [3].

The main idea of morphologic analysis of subsurface radprads [1] is to use
the methods of calculation geometry instead of formal egonatdescribing signal
deformation. The axiom of space homogeneity and isotropgrésthat solutions of
equation defining the propagation of disturbances in enwirent have the same form
for all coordinate systems that are obtained by translai@hrotation of axes. On the
other hand, according to the Curie principle, the eledtfield in environment has a
characteristic symmetry, which is a subgroup of cylindri@nsformation group [1].
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Violation of the homogeneity and isotropy leads to a non+syaty, i.e. to typical
deformation of signal form.

Figure 1. Classification of signal discrete points: linear shapedtiadratic shape (Il) and
cubic shape (llI).

When a signal is presented by a smooth curve, then the prableaduced to
the classification of characteristic points on the curve,itbmber of such points is
always finite. By asmooth curve we mean that at each point there exists a derivative
and, therefore, it is always possible to construct a tangedinormal vectors, i.e. to
introduce a local coordinate system.

There are three different cases of mutual location of pogitively to the local
coordinate system: in Fig.1 (1), (II) and (lll) corresporwdthe linear, quadric and
cubic forms, respectively. The other types of points camxagt for a signal set in
the finite interval. A relative distribution of points of datype is changing depending
on a sounding environment, and points of cubical type areected with reflections
from radar targets. Indeed, according to the Newton prlacifhe deformation of
the curve is proportional to the second derivative, and th#ocform satisfies this
condition (see Fig.1 (ll)).

Let us consider reflection of the separate realization ohdimg pulseS(t)
(Fig.2) onto the space curve given in the form of complex il signal

U (t) = Up(t) €770 = upo(t) + j ttim (£),

where the radar signal is a real past.(t) = S(t) = Reﬁ(t)], and its Hilbert
transformationu;,, (t) = H{S(¢)} = Imﬁ(t) is an imaginary part of the complex
signal. HerdJy(t) is the envelope, andl(t) is the instantaneous phase on the interval
(0 < t < T) of one development of duraticfi, and H{...} is the fast Hilbert
transformation [5]. In [3] it is defined that the analysedgass is described by three
parameters: two external parameters, i.e. the radiand tangential components

of the instantaneous velocity

~dUy(t)

B dd(t)
a(t) =vg = et

dt ’

b(t) = vr = Us(1) (1.1)

and one internal parameterThe equilibrium states define a surface
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Figure 2. Complex analytical signal in 3D space constructed fromnadéhr sounding signal.

1 1
F(a,b,t) := Z154 + 5at2 +bt=0

belonging to the space of given number of dimensions. Thiggtion of this sur-
face onto the plane of external paramet€s, b(t) can have singularities that arise
due to reflections from targets. A physical interpretatibrih@se singularities [3]
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Figure 3. Coming out of the dotted area borders means the indicatitargét.

is connected to the fact that a reflection group always géeecanvolution—type

(As—type) catastrophe [1] (Fig.3). Then, parameters of thefoft), b(t) describe
a function with twice degenerated special points [2], tHisvés us to localize the
position of targets during subsurface sounding
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The points belonging to the domain outside of the colourgibredefined by curve
(1.2) indicate the target. It is the basis for understanttiegnorphologic method.
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Figure 4. The example of individual signal (trace) processing by rhotpgic method.

The results of morphologic analysis of the single signati(ace) are presented
in Fig.4.

2. Central Finite Differences Scheme and Spectral Method

As we see from (1.1), the quality of the analysis dependstiyren the accuracy of
numerical approximation of derivatives. Let us considés tluestion in detail. The
Central Finite Difference (CFD) approximation is defineddaliscrete data:

L du(t) Ukl — Up—1

e e VR 2.1)

whereAtis atime step,and =k At, (k=1,2,..., N, — 1) is the discrete time.
Such approximation has the second order of accuracy:
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Uk+1 — Uk—1 u(tk + At) — u(tk — At)
20t 2Nt

u/// (tk)
3!

(2.2)

=u'(tg) + (A1)% + O((A)Y) = (tx) + O((A)?).

o((an?)

The CFD scheme has its analog in the frequency domainu(tgtbe a discrete
signal, its spectrum is obtained by the Fast Fourier Transdtion (FFT):

w=ulty) — Uw)=Flulk b)),

wherew =v A f, v =0,1,..., Ny — 1 is a discrete variable in frequency domain
with stepA f andF{. . .}is the FFT transformation.

Every sample of the signal can be considered as a shift bytepearward or
backward. According to the Fourier shift theorem [5] it isie@lent to the multipli-
cation of the spectrum by a complex exponent:

U1 = u(ty + At)  — ﬁ(w) et

up—1 = u(ty — At) — ﬁ(w) e WAt

thus the analog of CFD formula in the frequency domain can titgaw as

_
’ Uk4+1 — Uk—1 U(w) jwAt —jwAt

th) N ————— —— (/¥ — eI
w (te) YN = Sl c )

By using the Euler formula for the complex exponent we obtain
eIt = cos(w A t) + 7 sin(w At),
eTIAt = cos(w A t) — j sin(w A t),

wherej = /—1 is the imaginary unit. Thus in frequency domain the CFD sahem
means a multiplication of the spectrum by imaginary Sineefion (similar to digital
filtering methods [5]):

-
/ Upt1 — Uk—1 U(w)

u (t) ~ -y ey vl sin(w A t).
By repeating the same rule after triple multiplication weéthe approximation of the
third order derivative:

u (ty) ~ é Ffl{ﬁ(w) d?(w)},
f

W)~ o P{T ) (47 @)}

Whered7(w) = j sin(w At),andF~1{...} is the inverse fast Furrier transforma-
tion.



36 A. Grakovski, A. Alexandrov

Using these formulas for a digital signal we can eliminategacond order error
term in (2.2) and reduce high order terms by using a compiensatthe frequency

domain: - 5
(df (W)

u (1) ~ é F*l{ﬁ(w) (d?(w) - T)} (2.3)

The implementation of the method consists of two paralletpsses, which use
two separate inputs of the signal for FFT in order to reducenapuitation time. One
of them is filtered to approximate the first derivative, anel $econd approximates
the third derivative. Then, before application of the imeFFT, they are added to
each other.

Initial testing sianal on double format (1024 samples)

Figure 5. Test signal - modulated Gauss pulse (3.1) on double timevaite

3. Numerical Experiment

In order to compare the accuracy of the proposed method abdsCkeme we ap-
plied both methods for numerical computation of derivatieéthe artificial signal,
generated by the modulated Gauss pulse (see Fig.5), whethmiigr to radar main
pulse given in Fig.4:

S(t) = e (t=t0)’ cos(wt + ), (3.1)

with parameters
to =200, w=0.0943, » =—-0.131, v=0.0015.

Discrete data is given @t= 1, ...,512 andN; = 1024. The first derivative of5 is
defined as

ds(t
d—z(f) — e (t=t0)? (—=27(t — to) cos(wt + @) — wsin(wt + ¢)) . (3.2)
In order to reduce possible boundary effects we processitimalson a double
time interval with its mirror imaging. Fig.6 presents rasubbtained by the spec-
tral method. The errors of numerical approximations of th& filerivative by the
CFD scheme and the spectral method are presented in Fig. 7.
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Numerical derivatives by spectral and finite-differences methods
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Figure 6.Real and imaginary parts of the first derivative of test digBd) calculated by the
spectral method.
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Figure 7. Comparison of CFD and spectral approximations for the fiesivdtive of the test
signal (3.1).

The results show essential difference between CFD andrgpewtthods. Com-
paring both methods we see a substantial difference initotaf the peak value of
the test signal. The error was computed by using the analg@ution for deriva-
tive. We conclude that the maximum error of spectral appnation is equal to
3.7 x 1075 and it is 80-times smaller than the error for CFD method (Whscequal
t0 2.7 x 10~%). This result depends on a shape of the signal and the agooirée
spectral approximation can be improved by further comp@nsaf high order terms
in series (2.2) in the same manner as it was demonstrate@abov
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Figure 8. Subsurface radar sounding profile: before (left) and aftgh{) processing. Three
rows of low-sized targets.
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Figure 9. Subsurface radar sounding profile: before (left) and afigh{) processing. Indi-
vidual target.

4. Radar Sounding Data Processing

We implemented the proposed method to process data seteaibtay subsurface
radar sounding of various ground places. Each separatal Sigm data set given
in Fig.4 is shown in Figures 8-11 as a vertical line, colowsiedording to its value.
The current number of each separate signal (or trace) demenithe spatial position
of the radar antenna. Thus, all separate signals produce-ditmensional picture or
image called a radar "profile”. In Fig.8 we present the prafiline test polygon with
three rows of small-sized targets, an individual targebissidered in Fig.9, a system
of underground pipelines is shown in Fig.10, and, finallg gfeological section of
some ground surface strip is considered in Fig.11.

The morphologic method of signal processing leads to ehtion of cross—re-
verberation and interference of reflection images fromotegitargets and geological
layers. This property of the spectral method and computaifoderivatives (1.1)
with high accuracy gives a possibility to increase a vislality of radar sounding
profiles and location of subsurface targets or ground gécdbtayers.
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Figure 10. Subsurface radar sounding profile: before (left) and afigh{) processing. Un-
derground pipelines system.
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Figure 11.Subsurface radar sounding profile: before (left) and aftgh{) processing. Geo-
logical section of some ground strip.

5. Conclusion

The spectral method requires much larger computation tmwimparison with fi-
nite central differences method because application ettand inverse fast Furrier
transformation procedures are time consuming. Thus thifiadeis not useful for
real-time processing applications. On the other hand, weetimminate errors pro-
duced by finite differences schemes. If high accuracy ol/dévies is necessary, one
can implement the algorithm in such a way that most of problesonnected with
processing quality, stability of the method and convergemcay be successfully
solved.
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Spektrinis metodas iSvestiniy skaitiniam radimui radaro zondavimo popavirsiniy sig-
naly skaitinio apdorojimo uzdavinyje

A. Grakovski, A. Alexandrov

Straipsnyje nagri@jama radaro popavirsutiniy signaly skaitinio duomepgorojimo mor-
fologines analies prakti® realizacija, kai skaitiniai duomenys apdorojami kartuealiais
duomenimis. Analie remiasi skaitinio deferenciavimo algoritmu dazniyygeit Ji lyginama
su centrine baigtiniy skirtumy schema ir demonstruofutiniskai 80 karty mazesne skai-
vimo paklaida.



