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Institute of Mathematics of Latvian Academy of Sciences and University of Latvia
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Abstract. A method for numerical solving of boundary values problems of ordinary differ-
ential equations based on the use of splines and differentiation matrices with nodes as zeroes
of classical orthogonal polynomials is considered. Possibilities of the method are shown by
means of different examples. The method essentially uses the results obtained by Degenerate
Matrices methods and it is applied for solving initial values problems of ordinary differential
equations.
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1. Introduction

Boundary values problems of ordinary differential equations (BVP of ODE) mean a
very great interest both for their direct applications in physics and for solving more
complicated problems in Mathematical Physics. Such problems are discussed in [1,
2, 6] where a very extensive list of references is given.

Degenerate Matrices (DM) methods for solving problems of mathematical phy-
sics are based on the use of approximation of functions and their derivatives of the
Lagrange projectors with nodes chosen as zeroes of the classical orthogonal poly-
nomials. These methods can be applied for BVP of ODE according to the following
scheme.

1. We construct the equation and boundary conditions of the problem on chosen
nodes.

2. All derivatives are replaced by differentiation matrices.
3. Values of the unknown function at the end points of the given interval are ex-

cluded from the obtained system of algebraic equations.
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4. By solving the corresponding system of algebraic equations, values of the un-
known function at interior points of the interval are calculated.

A principal deficiency of the method stated above consists in the necessity to
choose a very large order of differentiation matrices if the solution of BVP of ODE
is complicated, e.g. it rapidly oscillates or has boundary layers. Large order matrices
lead to a great loss of the precision of calculations. In order to increase the accuracy
for solution of BVP of ODE we suggest the method which combines the approxima-
tion by means of Lagrange projectors with the ones by splines. An analogous idea
was applied to solve initial values problems of ODE in [3, 4, 5] and very effective
algorithms were constructed, which depend on two independent parameters: the step
h and the differentiation matrices order N . The accuracy of the solution can be in-
creased in two ways, by reducing h and increasing N . The analysis of solutions in
this case leads us to a conclusion that the splines should be constructed simultane-
ously with an unknown solution. Following this idea, we will use splines in the same
way to construct the methods for solving BVP of ODE. Therefore, these splines have
the species dependent on the concrete BVP.

Section 2 is devoted to general foundation of numerical algorithms. Examples
of BVP for ODE are considered in Section 3 and BVP of ODE of higher degrees
and systems are investigated in Section 4. Section 5 is devoted to a decomposition of
BVP of ODE. All algorithms are constructed in the matrices forms. Such formulation
is very convenient for their realization in computer codes.

2. Foundations of Numerical Algorithms

We will consider the following boundary value problems of ordinary differential
equations

Unx ≡

n∑

s=0

qs(t)x
(s) = f(t), t ∈ (a, b), (2.1)

φj

(
x(a), x′(a), . . . , x(m)(a), x(b), x′(b), . . . , x(m)(b)

)
= 0, (2.2)

j = 1, 2, . . . , n; m < n

as illustration of our method for finding the unknown function x(t). It is assumed
that functions qs(t) and f(t) are sufficiently smooth in the interval t ∈ [a, b] and
qn(t) 6= 0. The boundary conditions (2.2) can be non-linear as well.

We are using splines to approximate the solution of BVP (2.1)–(2.2). The main
interval is divided into smaller subintervals:

[a, b] = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [ak+1, bk+1],

a = a1 < b1 = a2 < · · · < bk = ak+1 < bk+1 = b.

Let p(t) be a spline of order N − 1. A system of nodes on every interval [ai, bi] is
fixed (i.e. the template is given) Σi = (t1,i, t2,i . . . , tN,i):
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ai = t1,i < t2,i < · · · < tN,i = bi.

Since all nodes are selected, the spline p(t) can be identified with a column vec-
tor X whose components are values of p(t) on the nodes of the whole template
Σ = (Σ1, Σ2, . . . , Σk+1). Thus, we define the vector X = p(Σ) ∈ R(k+1)N . Now
instead of the spline we use a vector X from the linear space R(k+1)N . Usually
nodes are chosen as zeroes of one of classical orthogonal polynomials. In such a way
the nonsaturatness of numerical algorithms is ensured. The order of splines is high
enough (several dozens). For simplicity of implementation in all numerical examples
subintervals [ai, bi] are chosen of the same length, but nodes on them are zeroes of
Chebyshev polynomials of the first order. Certainly, it is possible to use subintervals
of different length and to choose nodes as zeroes of general Jacobi polynomials.

We find derivatives of the spline using the block diagonal differentiation matrix

∆ = ∆(1) ⊕∆(2) ⊕ . . . ⊕∆(k+1),

where matrices ∆(i) are primary differentiation matrices on corresponding intervals
[ai, bi] applied in DM methods for ODE. The process of construction of ∆(i), its
properties and applications are mentioned in [3]. Elements δjk , j, k = 1, 2, . . . , N
of ∆(i) are computed in the following way. Let qN (τ) be a polynomial with N
different zeroes on [−1, 1]:

−1 = τ1 < τ2 < . . . < τN = 1.

Then τj correspond to nodes tj = ai + 0.5(bi − ai)(1 + τj), j = 1, 2, . . . , N for
each interval [ai, bi], and

δjk =





Hi

q′N (τj)

(τj − τk)q′N (τk)
, if j 6= k,

Hi

q′′N (τk)

2q′N (τk)
, if j = k,

Hi =
2

bi − ai

.

If X = p(Σ) then ∆X = p′(Σ), where p′ is a derivative of a spline. Higher
order derivatives are defined analogically, i.e. ∆2X = p′′(Σ) and so on.

Let Lj be a linear space of splines of the order N − 1, and the defect of splines
be

ν(j) = N − 1 − j, −1 ≤ j ≤ N − 1 .

It is known that dim Lj = µj = (k+1)N−(j +1)k.The number j characterises the
smoothness of the spline. It must be greater than or equal to the order of ODE (2.1).
In our constructions the space L−1 is isomorphic to R(k+1)N . In case when j > −1,
Lj is isomorphic to its subspace lj of dimension µj . We can construct the basis of lj
by using the matrix ∆(i). It is obvious that if X ∈ R(k+1)N then

X ∈ lj ⇐⇒ X = SjVj ,

where Sj is (k + 1)N × µj matrix composed from a basis of lj as its columns, but
Vj is an arbitrary vector from Rµj . We will show how to build matrices Sj . The
sequence of subspaces lj is a monotone one, that is:
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R(k+1)N = l−1 ⊃ l0 ⊃ l1 ⊃ · · · ⊃ lN−1.

It is obvious that S−1 = E, where E is an identity matrix. We can choose S0 in the
form:

S0 = (e1, . . . , eN−1, eN + eN+1, eN+2, . . . , e2N−1,

e2N + e2N+1, . . . , ekN + ekN+1, ekN+2, . . . , e(k+1)N ),

where {ej}
(k+1)N
1 are the vectors of canonical basis of R(k+1)N .

Matrix S1 can be build in the following way. Let ∆s, s = 1, 2, . . . , (k + 1)N
be rows of matrix for derivatives ∆ = ∆(1) ⊕ ∆(2) ⊕ · · · ⊕ ∆(k+1). We define
k × (k + 1)N matrix A with ∆iN − ∆iN+1 as it rows (i = 1, . . . , k). Rank of A is
equal to k. For each X ∈ R(k+1)N

AX = (x′

N − x′

N+1, x
′

2N − x′

2N+1, . . . , x
′

kN − x′

kN+1)
T ,

where X ′ = ∆X . Hence (X ∈ kerA) ⇐⇒ (X ′ = ∆X ∈ l0). As

(X ∈ l0 ∩ l1) ⇐⇒ (X = S0V0&∆X ∈ l0) ⇐⇒ (AS0V0 = 0)

⇐⇒ (V0 ∈ kerAS0).

Then taking into account that B0 is of a size k × µ0, we get that l1 ∼= kerB0,where
B0 = AS0, dim kerB0 = µ1 and rank B0 = k. So kerB0 = {G1V1|V1 ∈ Rµ1},
where G1 = (g1, g2, . . . , gµ1

) is a matrix whose columns are the basis of kerB0.
Therefore (X ∈ l1) ⇐⇒ (X = S0G1V1), where V1 is an arbitrary vector from Rµ1 .
Consequently S1 = S0G1. Matrix Sj , j = 2, 3, . . . , N − 1 is defined by induction.
First matrix Bj−1 = A∆j−1Sj−1 of a size k × µj−1 is constructed. Moreover,
rank Bj−1 = k, dim kerBj−1 = µj . Next matrix Gj whose columns are the basis
of kerBj−1 is built. Then Sj = Sj−1Gj , rank Sj = µj .

The behaviour of the spline at the end points t = a and t = b is of a great
importance for solving the BVP (2.1) and (2.2). For example, L̃j ⊂ Lj is the variety
defined by the conditions:

p(a) = ξ1, p
′(a) = η1, p(b) = ξ2, p

′(b) = η2,

where ξ1, ξ2, η1, η2 are parameters. Variety l̃j ⊂ lj corresponds to the variety L̃j in
case if we are using vectors X instead of splines p(t). By using primary matrices for
derivatives ∆(i) and matrices Sj it is possible to build two matrices M1 and M2 of
sizes (k + 1)N × 4 and (k + 1)N × (µj − 4) such that the following theorem holds.

Theorem 1. X ∈ l̃j if and only if X = M1Γ + M2W , where Γ = (ξ1, η1, ξ2, η2)
T

and the vector W ∈ Rµj−4.

Proof. We construct a matrix R of size 4×(k+1)N , its first row r1 = (1, 0, . . . , 0),
the third one r3 = (0, . . . , 0, 1), but the second and the last rows are equal to the first
and the last rows of the matrix of derivatives ∆. As (X ∈ lj) ⇐⇒ (X = SV ),
where S = Sj and V = Vj ∈ Rµj , then (X ∈ l̃j) ⇐⇒ (ΦV = Γ ), where Φ = RS
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is a 4 × µj-matrix. It easy to see that rank Φ = 4. Hence the system ΦV = Γ is
compatible for each vector Γ , and therefore its general solution can be presented in
a form

V = Φ2(ΦΦ2)
−1Γ + Φ1W,

where Φ1 is a µj×(µj−4) matrix with a basis of kerΦ as its columns, and Φ2 is the
matrix with a basis of kerΦT

1 as its columns and has a size of µj × 4, W ∈ Rµj−4.
Since matrix ΦΦ2 is an invertible one, so we get that

M1 = SΦ2(ΦΦ2)
−1, M2 = SΦ1 .

�

The other varieties for solving BVP (2.1) and (2.2) can be constructed in the same
way. Our main idea for the solving BVP of ODE is to construct such splines, which
correspond specially to the considered BVP. Algorithms for numerical solution of
different BVP are described in the following sections.

3. BVP for the Second Order ODE

Let us consider BVP (2.1) and (2.2) for n = 2:




U2x = f, t ∈ (a, b),

φ1(x(a), x′(a), x(b), x′(b)) = 0,

φ2(x(a), x′(a), x(b), x′(b)) = 0.

(3.1)

Using Theorem 1 we find an approximate solution of equation U2x = f in the form
of a spline X = M1Γ + M2W . Smoothness of this spline is j ≥ 2, since the
differential equation is of the second order.

Vector X depends on µ = µj = (k + 1)N − (j + 1)k parameters (that are
the components of Γ and W ). In order to get this parameters we use the method
of collocation and apply it at nodes of template Σ. So we get an approximation of
equation U2x = f by a system AW = ΦΓ1, where

A = DM2, D = Q2∆
2 + Q1∆ + Q0

is a (k + 1)N × (k + 1)N matrix, Qk = diag(qk(Σ)), k = 0, 1, 2; ∆ is a matrix
for derivatives, Φ = (Φ0, F ) is (k + 1)N × 5 block matrix, Φ0 = −DM1, and
F = f(Σ) is a column matrix, Γ1 = (Γ, 1)T = (ξ1, η1, ξ2, η2, 1)T .

The following part of the algorithm we will describe only heuristically without
formulating and proving any theorem.

3.1. Let homogeneous system AW = 0 approximates BVP

{
U2x = 0, t ∈ (a, b),

x(a) = x′(a) = 0, x(b) = x′(b) = 0,
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then system AW = 0 has only a trivial solution. That means that columns of matrix
A are linear independent (rankA = µ − 4).

3.2. Non-homogeneous system AW = ΦΓ1 is an approximation of BVP
{

U2x = f, t ∈ (a, b),

x(a) = ξ1, x′(a) = η1, x(b) = ξ2, x′(b) = η2.
(3.2)

In general case for arbitrary ξ1, η1, ξ2, η2 it does not have a solution. A special set
(ξ1, η1, ξ2, η2) must be considered with two additional conditions (a general solution
of equation U2x = f has only two free parameters). We can get these conditions
from a compatibility condition of system AW = ΦΓ1.

3.3. It follows from the third Fredholm’s theorem that system AW = ΦΓ1 has
a solution if and only if ΦΓ1 ⊥ kerAT . Let l = (k + 1)N − µ + 4 and define
l × (k + 1)N matrix P, whose rows are the basis of kerAT . Matrix B = PΦ has a
size l× 5 and its rank is 2. In a space of rows of matrix B we choose an orthonormal
basis s = (s1, s2, s3, s4, s5), τ = (τ1, τ2, τ3, τ4, τ5).

System AW = ΦΓ1 is compatible if and only if
{

s1ξ1 + s2η1 + s3ξ2 + s4η2 = −s5,

τ1ξ1 + τ2η1 + τ3ξ2 + τ4η2 = −τ5.
(3.3)

If f = 0 then s5 = τ5 = 0. The system (3.3) is a compatible one, because there
always exist such ξ1, η1, ξ2, η2 that BVP (3.2) has a solution.

3.4. As ξ1 ≈ x(a), η1 ≈ x′(a), ξ2 ≈ x(b), η2 ≈ x′(b), where x = x(t) is a
solution of equation U2x = f , then system (3.3) and boundary conditions of BVP
(3.1) give a system of four equations





s1ξ1 + s2η1 + s3ξ2 + s4η2 = −s5,

τ1ξ1 + τ2η1 + τ3ξ2 + τ4η2 = −τ5,

ϕ1(ξ1, η1, ξ2, η2) = 0,

ϕ2(ξ1, η1, ξ2, η2) = 0

(3.4)

to get values of four unknowns ξ1, η1, ξ2, η2.

3.5. System (3.4) is the main part of the proposed numerical algorithm.

• BVP (3.1) has a solution if and only if the system (3.4) is a compatible one.
• Every solution of (3.4) gives a set of approximate values of x(a), x′(a), x(b),

x′(b) for the problem (3.1).
• If values of x(a), x′(a), x(b), x′(b) are obtained, then we can complete the solu-

tion in various ways.

For example, if Γ = (ξ1, η1, ξ2, η2)
T is a solution of system (3.4), then forming

matrix Γ1 = (ξ1, η1, ξ2, η2, 1)T and solving compatible system AW = ΦΓ1, we get
an approximation of solution of the BVP as the following spline

X = M1Γ + RΓ1,R = M2(A
T A)−1AT Φ. (3.5)
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When matrices M1 and R are known the solution of BVP can be obtained by insert-
ing the solution of (3.4) into (3.5).

Remark 1. Let Γ = (ξ1, η1, ξ2, η2)
T be a general solution of system (3.3). This

means that Γ = V0 + c1V1 + c2V2, where V0 is a particular solution of the sys-
tem and c1V1 + c2V2 is a general solution of the homogeneous system. By solving
system AW = ΦΓ1 we can get an approximation of the general solution of the
equation U2x = f in a form of the spline X = X0 + c1X1 + c2X2, where

X1 = GV1, X2 = GV2, X0 = GV0 + ΩF,

Ω = M2(A
T A)−1AT , G = M1 + ΩΦ0.

Example 1. Let us consider the following BVP




x′′ + 2hx′ − x = 1, t ∈ (0, 1),

x2(0) + (x′(0))2 = r2
1 ,

x2(1) + (x′(1))2 = r2
2 .

(3.6)

We introduce the following notations:

Γx =
(
x(0), x′(0), x(1), x′(1)

)T
, Γ = (ξ1, η1, ξ2, η2)

T ,

where Γ is a corresponding vector of approximate values, ρ = ‖Γx−Γ‖, ‖ ·‖ stands
for the Euclidean or unitary norm. The BVP (3.6) has four solutions which can also
be complex. If some solution is complex then we use ρ∗ instead of ρ.

Results of numerical experiments are presented in Tables 1–8. In all tables N −1
is the order of the spline, k + 1 is the number of subintervals, j is smoothness of the
spline. In Tables 4–8 we use a notation ρ = max(ρ1, ρ2, ρ3, ρ4).

We can see from Tables 1 – 3 that the accuracy of approximations is slightly
dependent on the smoothness j of the spline. Since the differential equation is of the
second order, we use j ≥ 2.

It follows from Tables 4–7 that if the order of spline is not high, the precision
is equivalent to the method of the finite differences. With the growth of the order
the accuracy of approximation increases. In all cases there is an optimal order, the
exceeding of which does not improve the accuracy of the result.

Example 2. Let us consider BVP with a singular point
{

t2y′′ + ty′ + (t2 − ν2)y = 0, 0 < t < b, ν ≥ 0,

|y(0)| ≤ M, αy(b) + βy′(b) = γ.
(3.7)

By means of the following substitution y(t) = tνx(t) we get the problem




tx′′ + (2ν + 1)x + tx = 0, 0 < t < b,

x(t) is an entire function,

α1x(b) + β1x
′(b) = γ1.

(3.8)

Approximation with a spline of an entire function x(t) is more effective than of a
function y(t) = tνx(t) for an arbitrary ν ≥ 0.
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Table 1. Example 1 (r1 = 1.881, r2 = 2, h = 4, k = 10, N = 10).

j ρ1 ρ2 ρ3 ρ4

2 5 · 10−10 5 · 10−10 4 · 10−11 4 · 10−11

4 2 · 10−11 4 · 10−11 2 · 10−11 4 · 10−11

7 5 · 10−9 5 · 10−9 5 · 10−10 3 · 10−10

Table 2. Example 1 (r1 = 1.7, r2 = 2, h = 4, k = 10, N = 10).

j ρ∗

1 ρ∗

2 ρ3 ρ4

2 4 · 10−11 4 · 10−11 5 · 10−11 5 · 10−11

4 2 · 10−11 2 · 10−11 2 · 10−11 4 · 10−11

7 5 · 10−10 5 · 10−10 8 · 10−10 7 · 10−10

Table 3. Example 1 (r1 = 1.5, r2 = 2, h = 4, k = 10, N = 10).

j ρ∗

1 ρ∗

2 ρ∗

3 ρ∗

4

2 10−11 10−11 10−11 10−11

4 3 · 10−11 3 · 10−11 4 · 10−11 4 · 10−11

7 3 · 10−10 3 · 10−10 10−10 10−10

Table 4. Example 1 (r1 = 3, r2 = 2, h = 4, k = 3, j = 3).

N 6 8 10 15 25 30

ρ 10−3 10−5 10−8 10−11 6 · 10−11 7 · 10−11

Table 5. Example 1 (r1 = 3, r2 = 2, h = 4, k = 5, j = 3).

N 4 6 8 10 15 20

ρ 10−2 10−3 4 · 10−7 10−9 10−11 5 · 10−11

Table 6. Example 1 (r1 = 3, r2 = 2, h = 4, k = 20, j = 3).

N 4 6 8 12

ρ 4 · 10−3 10−6 2 · 10−10 3 · 10−10

Table 7. Example 1 (r1 = 3, r2 = 2, h = 4, k = 50, j = 3).

N 4 6 8 10

ρ 10−3 10−7 10−10 2 · 10−10
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Table 8. Example 1 (r1 = 3, r2 = 2, j = 2).

k 10 10 10 10 10 14 18 10

N 10 10 10 10 10 10 10 16

h 4 10 20 30 40 40 40 40

ρ 3·10−11 10−8 6·10−7 2 · 10−5 2·10−5 8·10−6 2·10−6 2·10−9

The numerical algorithm is the same. The only difference is that rankB = 3.
Instead of system (3.3) we have analogical system of three equations. Together with
equation α1ξ2 + β1η2 = γ1 they give a system of four equations to get values of

ξ1 ≈ x(0), η1 ≈ x′(0), ξ2 ≈ x(b), η2 ≈ x′(b).

On a set of four free parameters ξ1, η1, ξ2, η2 one must give three additional condi-
tions. Equation (3.8) has only one linear independent solution which satisfies condi-
tions: x(0) = ξ1, x

′(0) = η1.
In Table 9 we present results of numerical experiments for α = 1, β = −0.01,

γ = 2. We have used the following parameters:

k = 10, N = 10, j = 3, Y = y(Σ),

where y(t) is the exact solution of problem (3.7), Σ is a set of all node points, Yp is
a vector of the approximate values, ρ = ‖Y − Yp‖, where ‖ · ‖ stands for l∞-norm.

Table 9. Example 2 (Spline parameters: k = 10, N = 10, j = 3).

b 1 1 1 1 6 6 6 12 12

ν 1 2 3 4 1 2 5 1 2

ρ 7 · 10−10 2 · 10−10 3 · 10−11 4 · 10−11 5 · 10−10 3 · 10−10 10−11 10−9 10−8

4. Higher Degrees ODE and Systems

4.1. The algorithm for solving BVP (2.1)–(2.2) for n > 2 is analogous to the case
n = 2. Let, for example, n = 4 and boundary conditions (2.2) be of the form

φk

(
x(a), x(1)(a),x(2)(a), x(3)(a),

x(b), x(1)(b), x(2)(b), x(3)(b)
)

= 0, k = 1, 2, 3, 4. (4.1)

Let Γ = (ξ1, η1, µ1, κ1, ξ2, η2, µ2, κ2)
T be a vector of parameters and

Γy =
(
y(a), y(1)(a), y(2)(a), y(3)(a), y(b), y(1)(b), y(2)(b), y(3)(b)

)T
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be a vector of values of function y = y(t) and its derivatives at the end points. Let
spline p(t) ∈ Lj . By using condition Γp = Γ we construct a variety L̃j ⊂ Lj . If
splines are given as vectors X = p(Σ) then variety l̃j ⊂ lj corresponds to the variety
L̃j . It is easy to get a result analogous to Theorem 1.

Finally we approximate the solution of equation U4x = f by a spline

X = M1Γ + M2W, W ∈ Rµ−8,

where M1 and M2 are given matrices, µ = µj = (k +1)N − (j +1)k. Smoothness
of this spline j ≥ 4. Vector X depends on µ parameters. The remaining analysis
is equivalent to the case n = 2. The only difference is that the dimension of row-
space of matrix B is equal to 4. Hence instead of system (3.3) we get an analogical
system of four equations. Together with boundary conditions (4.1) we get a system
of 8 equations, that is analogical to system (3.4). Solving it we get vector Γ which
approximates vector Γx, where x = x(t) is the solution of BVP.

Example 3. Let us consider the following BVP
{

x(4) + 2x(3) + x(2) − x(1) + x = 1, t ∈ (0, b),

x(0) = x(3)(0) = 0, x(b) = x(3)(b) = 0.
(4.2)

The results of numerical experiments are presented in Tables 10–12. Here we use the
following notation: k, N, j are parameters of the spline, ρ = ‖Γ − Γx‖, where ‖ · ‖
stands for the l∞ norm.

Table 10. Example 3 (b = 1).

k N j ρ

3 10 5 10−8

5 10 5 10−8

10 10 5 10−8

10 10 7 10−7

Table 11. Example 3 (b = 20).

k N j ρ

10 10 5 8 · 10−5

20 10 5 7 · 10−6

20 16 5 4 · 10−8

The behavior of numerical results is analogical to the case n = 2.

4.2. The given algorithm can be applied to solve BVP of systems of ODE. Let us
consider the following system
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Table 12. Example 3 (b = 30).

k N j ρ

10 10 5 5 · 10−4

10 10 7 3 · 10−3

20 10 5 2 · 10−5

20 16 5 3 · 10−7

qx′ + sx = f(t), t ∈ (a, b), (4.3)

where

x = x(t) =
(
x1(t), . . . , x4(t)

)T
, q = q(t) = diag

(
q1(t), . . . , q4(t)

)
,

s = s(t) = ‖sij(t)‖4,4, f(t) = (f1(t), f2(t), f3(t), f4(t))
T .

The boundary conditions are given by

φk(x1(a), x1(b), . . . , x4(a), x4(b)) = 0, k = 1, 2, 3, 4. (4.4)

It is assumed that all functions are smooth enough and detq(t) 6= 0, t ∈ [a, b].
The following notation is introduced: Γ = (ν1, ν2, µ1, µ2, η1, η2, ξ1, ξ2) is a vector
of parameters, Γy = (y1(a), y1(b), . . . , y4(a), y4(b))

T is a vector of function y(t) =
(y1(t), . . . , y4(t))

T values at the end points, L4
j = Lj ⊕ Lj ⊕ Lj ⊕ Lj and the

smoothness of the spline is j ≥ 1.

Let p(t) = (p1(t), p2(t), p3(t), p4(t)) ∈ L4
j . Using a condition Γp = Γ we con-

struct a variety L̃4
j ⊂ L4

j . If splines are given as vectors X = (p1(Σ), . . . , p4(Σ))T ∈

R4(k+1)N , then variety l̃4j ⊂ l4j = lj ⊕ lj ⊕ lj ⊕ lj corresponds to variety L̃4
j . It is

easy to prove a result equivalent to Theorem 1.

Finally we approximate the solution of system (4.3) with the spline

X = M1Γ + M2W, W ∈ R4µ−8,

where M1 = M′

1 ⊕ M′

1 ⊕ M′

1 ⊕ M′

1 is 4(k + 1)N × 8 block diagonal matrix,
M2 = M′

2 ⊕ M′

2 ⊕ M′

2 ⊕ M′

2 is 4(k + 1)N × (4µ − 8) block diagonal matrix,
µ = µj = (k + 1)N − (j + 1)k. Using the method of collocation on nodes of the
whole template Σ we get system AW = ΦΓ1 as an approximation of system of
ODE (4.3). Here A and Φ are known matrices of sizes 4(k + 1)N × (4µ − 8) and
4(k + 1)N × 9 respectively and Γ1 = (Γ, 1) = (ν1, ν2, µ1, µ2, η1, η2, ξ1, ξ2, 1)T .

The rest part of construction is analogical to Section 3. The only difference is that
the dimension of a row-space of matrix B = PΦ is equal to four. So the condition
of compatibility of system AW = ΦΓ1 is equivalent to a system of four equations.
Together with boundary conditions (4.4) it gives a system of 8 equations, which is
analogical to system (3.4), for finding vector Γ that approximate a vector Γx. Here
x = x(t) is a solution of the given BVP.

Example 4. Let us consider the following BVP
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Table 13. Example 4 (b = 10).

k 5 10 10 20

N 10 10 10 10
j 2 2 6 2
ρ 5 · 10−7 4 · 10−9 2 · 10−8 10−12





x′

1 + 2x1 + x2 − x3 + x4 = 1, t ∈ (0, b),

x′

2 − x1 = 0,

x′

3 − x2 = 0,

x′

4 − x3 = 0,

x1(0) = x4(0) = 0, x1(b) = x4(b) = 0.

(4.5)

The results of numerical experiments are presented in Table 13. Here we use the fol-
lowing notation: k, N, j are parameters of the spline, ρ = ‖Γ − Γx‖, where ‖ · ‖
stands for the l∞ norm. Notice that problem (4.5) is equivalent to problem (4.2). A
better approximation is explained by increased number free parameters (4µ parame-
ters instead of µ).

5. Decomposition of BVP

The theory that has been introduced helps us also in case of decomposition of BVP
of ODE or system of ODE. Let us consider a scheme of decomposition of BVP
(2.1)–(2.2) for n = 2 with boundary conditions of the third kind, i.e.

{
U2x = f, t ∈ (a, b),

α0x(a) + β0x
′(a) = γ0, α1x(b) + β1x

′(b) = γ1.
(5.1)

The main interval [a, b] is divided into n subintervals

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = an+1.

On every subinterval [ai, bi], i = 1, 2, . . . , n we get a system of compatibility equa-
tions (3.3), that can be written as

{
s
(i)
1 ξ

(i)
1 + s

(i)
2 η

(i)
1 + s

(i)
3 ξ

(i)
2 + s

(i)
4 η

(i)
2 = −s

(i)
5 ,

τ
(i)
1 ξ

(i)
1 + τ

(i)
2 η

(i)
1 + τ

(i)
3 ξ

(i)
2 + τ

(i)
4 η

(i)
2 = −τ

(i)
5 ,

(5.2)

where

ξ
(i)
1 ≈ x(ai), η

(i)
1 ≈ x′(ai), ξ

(i)
2 ≈ x(bi), η

(i)
2 ≈ x′(bi), bi = ai+1.

Let Zx = (x(a1), x
′(a1), x(a2), x

′(a2), . . . , x(an+1), x
′(an+1))

T , and Z is a
corresponding vector of approximate values. Then equation (5.2) together with the
boundary conditions of BVP (5.1) give system AZ = B. Matrix A is 5-diagonal,
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Table 14. Example 5 (Spline parameters: k = 10, N = 10, j = 2).

b 46 66 86 106 126 146 186 246 246 246

n 10 10 10 10 10 10 10 10 20 40

ρ 2 · 10−11 5 · 10−11 2 · 10−9 5 · 10−9 5 · 10−8 10−7 10−6 10−4 10−6 10−9

B = (γ0,−s
(1)
5 ,−τ

(1)
5 , . . . ,−s

(n)
5 ,−τ

(n)
5 , γ1)

T . By solving this system we get ap-
proximate values x(ai), x

′(ai), i = 1, 2, . . . , n + 1. After that we can get values of
x(t) inside the subintervals in various ways.

Example 5. Let us consider the following BVP




t2x′′ + tx′ + (t2 − 16)x = 0, t ∈ (6, b),

x1(6) − 0.12x′(6) = 2,

x(b) + 0.12x′(b) = 1.

The results of a numerical experiments are presented in Table 14. Here we use
the following notation: k, N, j are parameters of the spline, ρ = ‖Z − Zx‖/‖Zx‖,
where ‖ · ‖ stands for Euclidean norm.

6. Conclusion

A method for numerical solving of boundary values problems of ordinary differen-
tial equations is constructed. It is based on the use of Degenerate Matrices methods
and splines. All algorithms are constructed in the matrices form. Possibilities of the
method are shown by solving different test examples.
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Splainais sudaromų nereguliariųjų matricų metodų taikymas paprastųjų diferencialinių
lygčių kraštiniams uždaviniams spręsti

M. Belovs, T. Cirulis

Darbe nagrinėjamas paprastųjų lygčių su kraštinėmis sąlygomis skaitinis sprendimo metodas.
Šio metodo pagrindą sudaro nereguliariųjų matricų bei splainų konstravimas klasikinių orto-
gonaliųjų polinomų pavidalu. Nagrinėjamo straipsnyje metodo taikymo galimybės parodytos
įvairiais pavyzdžiais.


