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Abstract. On non-uniform mesh new high-order compact finite difference approx-
imations of the solution and the flux to convection-diffusion interface problems
in one-dimension are constructed and analyzed. Explicit formulas based on new
Marchuk integral identities that give O(h?), O(h"),... accuracy are derived. New
numerical integration quadrature procedures for computing three-point schemes of
any prescribed order of accuracy are developed. Numerical experiments confirm the
theoretical results.
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1. Introduction

Many physical problems involve the combination of convective and diffusive
processes. They occur in the field where mathematical modelling is important
such as physics, engineering and in particularly on fluid dynamics and trans-
port, problems. Many papers are describing numerical approximations, as well
as the various techniques for analyzing and overcoming the difficulties that
each numerical method presents, see [6, 9, 10, 11, 13, 14, 15, 16, 17].

We are concerned with numerical solution methods for solving on non-
uniform mesh one-dimensional convection diffusion equation with a source
singularity in the domain. A number of applied problems exhibit local solution
behaviour that require higher level resolution in one area of the domain than
in other. To achieve effective numerical simulation of physical processes with
local behaviour it is important to employ adapted discretization procedure
with high local accuracy.
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The compact difference schemes [2, 3,4, 5,7, 8,12, 13, 14, 15, 16, 17, 18, 19|
atractive because they require a minimal stencil of the grid. In the present
paper we implement the schemes derived on the base of new Marchuk integral
identities for reaction problems in [2].

We consider the convection-diffusion equation
Lu := —(a(z)u") + b(z)u' + c(z)u = g(x) on (0,1) (1.1)
with the Dirichlet boundary conditions
u(0) = ug, u(l) = us. (1.2)

Suppose that a, b, ¢, g are piecewise continuous functions on [0,1] which
can have single discontinuity at + = a, 0 < a < 1. Then, if we assume that
u is continuous at x = «, then a formal integration of (1) gives

Lu=g(z) on (0,a)U (a,1), (1.3)
[u]o = u(a+0) — u(a — 0) =0, (1.4)
[au/]s = 0. (1.5)

We note that some results of this paper will require a greater smoothness of
the solution, respectively of the data to the left and right of x = «. It is also
assumed that

0<ap<a(r)<ap, [b(x)]<b, 0<c(r)<c, 0<z< 1. (1.6)

Let QF be the set of continuous functions v € Q¥ that are defined on [0,1]
and have piecewise derivatives up to order k, where k is integer. The func-
tion v and its derivatives can have bounded discontinuities only at the point
a. Further, we assume that the solution of problem (1.1)—(1.2) (respectively

(1.3)-(1.5), (1.2)) belongs to Q*, with appropriate k.

This paper is arranged as follows. In Section 2, we present the new Marchuk
integral identities and derive the difference schemes. In Section 3 we propose
new quadrature formulas for numerical integration of the integrals that arise
at the construction of the difference schemes. Numerical experiments are con-
ducted to show that the proposed difference schemes have the predicted in
the theory accuracy.

2. High-order Difference Schemes Based on New
Marchuk Integral Identities

Let

d(x) = exp (/ vy dt). (2.1)
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Then equation (1.1) can be written as a reaction-diffusion one:

Lu = —(p(a)’) + qw)u = f(2), (2.2)
where
p(x) = a(z)d(z), q(z) = c(z)d(x), f(x) = g(x)d(z).
We rewrite the problem (2.2), (1.2) as follows:

—w'+q@)u=f(z),ze0,a)U(al),
u (0) = ug,u (1) = u, (2.3)
[u’]a = 07 [w]a = 07
where w () = p (z) v’ () is the flux.
Let us consider on [0, 1] two systems of mesh points:
wip = {(EOZO, r,=x;_1+h;, hy >0, 1=1,...,N, zn :].}7

T + Tip1
b

W2h:{xi+1/2: 5 i=0,...,N—1,
_h1 _h¢+hi+1 _hN
hl—?; h; = 5 ,ﬁN—2},

where o = x5, 0 < j < N. Let

f 30

t

(0) 1 T € [xj—hxj'i'l] ) (1) Ti—1 7o
f (x) = gj (x) — Tj+1 5](0)(t)
0,2 ¢ [zj—1,241], I SLmrdt, @ € (x5, 741),

dt, z € (ijl,xj),

0, x ¢ [rj-1, 7541
For n > 1 we introduce the following functions:
x

J a@eP Y wat, x e (wjo1,y),

Ij—l

(271) _ Tjq1 -
Y J a(®) 51('2 V(t)dt, v € (@5, Tjt1),

0, = ¢ [xjflﬂijrl]ﬂ

g
fl o dt, @ € (251, 35),

(2n+1) o Tj41 (2n)
4 x) = £2™ (¢)
6 ( ) f Jp(t) dt, T e (xj,xjﬂ),

0, = ¢ [xj—1,2j41]



322 L.Tr. Angelova

Let denote

n

v (@) =3PV (@), n=1,2,... (2.4)

k=1

Then applying the method developed in [2], we obtain the following Marchuk
type identities:

Uj — Uji1 Uj —Uj-1
O (@ +0) B\ (2 0)

[ e VN O
+ (z) — dx + q(z) — dz | u (2.5)
/ o (2~ 0) / oY o))
Ty (2n) Titt (2n)
- / w () 5j<n> ) de+ [ w(z) 5j<n>( L
2 p(@) ;" (z; —0) kg p(x) ;" (z; +0)
/ f(z ¢(n d + / f(z ¢(n ) dx
m] +0) '
Uj Ut uj U1

+
O (@ +0) B\ (z; - 0)

zj (n—1) ZTitt (n—1)
N /q(x) vy (@) ¢ (@)

d d 2.6
T g / vorie
;5 5J(_2n—1) (x) Tjt+1 éhj(42n—1) (x)
B A St S g
+wK 1) i (a5 — 0) o w/ i) Wi (a4 0) ’
v (@)
/f (") _ d$+/f ") xg+0)dx'

The integral identities (2.5), (2.6) can be used for derivation of high-order
difference schemes. The main problem is how to approximate the integrals

& (x).

Similar identities can be obtained for the flux w, which satisfies the fol-
lowing problem



High-Order Difference Schemes 323

—2 4@ w=f(z),z€(0,a)U(al),

I
)  2(@) =F@)w (2). (28)
In addition to (1.6), we assume

0<qo<qx)<q.

The first two equations (2.7) are equivalent to the following one

_ _ = f(x)
—(p(z)w) + q(z)w = f(z) —d(z — a [— ,
(P(z)w’) + q(z)w = f(z) = 0(z — ) @ |
where 6(+) is the Dirac delta function. Now, following [2] we have
Wj — Wi+ Wj —Wj—1

O (@5 +0) B (2 - 0)

i 7(n) Titt ~(n) T
+ (/ q(x )L()dx—k / q(x) w%f])j())da:) w; (2.9)

S @m0 (40
T Z(2n) Titt #(2n)
B / 2 (@)= 53‘(71)( z) o+ / (@) — §Z(n) (x) i
p(x) ¥ (x5 —0) J p(x) ¢y (z; +0)

n) ( z

ZTj J

The integral identity corresponding to the left boundary condition is:

wy — Wi . 15(()71) (x) . géQn) ()
— + — dx + —
25704 wO/o 1 oron ™ / s ion ™

(")
/ f n) — 20;
wo

where zo = ug — f(0)/q(0),

~(2n— 2)

1, z€[0,1), 71 & t)dt x €[0,21),
"'30) ({,C) _ { "'éQn—l) (x) — { fr p [ 1)

0, x € [x1,1], 0, x € [z1,1],
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T1 ~/,\ 7 (2n—1) ~ no o~
seen) oy ) LT at)g dt ,x €[0,21), >n), \_ (2k—1)
@ ={] el 3@ = £ 8w,
forn=1,2,...

Let U denote the discrete function approximating the differential solution.
Then, if we ignore the integral containing the flux w, we will obtain the scheme:

—a;-n)Uj_l + C;-n)Uj - b;-n)Uj_;_l = fj(n), j=1...,N—1,
(2.10)
UQZUO, UN =UuUy, nN= 172,...,
where
n 1 n 1
M- = M= (2.11)

a y b E —
T (@ -0 T met™ (2 +0)

xj (n) I]‘+1 (n)
h; ;" (w5 - 0) I/w<%+®

f](n) —

(n) (n)
/fn) n Mdm . (2.13)

33 ™)
xj—o S (i +0)

In order to derive from (2.10)-(2.13) finite difference schemes up to fourth
order of accuracy, classical numerical integration formulas (e.g. midpoint,
trapezoid or Simpson’s rule) can be used. For example, to obtain the popular
“standard interface formula” proposed by Varga [20] (see also [16]) we apply
the midpoint rule to a'V, 'Y and the trapezoid rule to the other integrals in

FERAE
le) and fjl):

GO Z P12 o) Pivz ) hig; + hjv1aj

=alV b 4

T hghy T hyahy hi+hje
! hj + Rt

In [2] Lobatto’s formulas [3] were used for derivation of higher order numerical
integrations. In the next section we present the new ones.

The following result holds for the rate of convergence of the scheme (2.10)-
(2.13).

Theorem 1. Let a € Q?>" 1, b, ¢ g € Q*" 2, u be the solution of the dif-
ferential problem (1.1), (1.2) and U is the solution of the difference problem
(2.10)-(2.18). Then

le = Ul < CR,

where the constant C' doesn’t depend on h = 2\"/22721 Rt
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The proof is very similar to that one of Theorem 2 given in [2] and we omit
it.

3. Numerical Integration

3.1. One-dimensional integral

Let us consider the one-dimensional integral

h 1
= ¢(f;h) :/ f(x) dx:h/ f(hx)dz, for f(x) € C™*0,h]. (3.1)
0 0

We write f(z) in Maclaurin series

n (0
flx) = kaxk +O(z™),  where f, = ! k!( )
k=0
Then for ¢! we have
L n hk )
¢ :hkak+l+(9(h”+ ). (3.2)
k=0

Let introduce the auxiliary function

T(a) = % {f ((1 —a)g) +f ((1 +a)g>}
_ z":fk’;_: [2]: (Z) PO, ac 0,1 (33)
k=0 =0

We seek quadrature formulas for ¢! of the form:

S
¢ =n) wT(a)+Oh"?)

: [5] s

~ bt k 2 12
= —_— ,i . n ) -4
hkgzofk?C <21> izglwozl + O™ (3.4)

where w; > 0 are unknown weights and «; are unknown real numbers. Equal-
izing in (3.2), (3.4) the coefficients at the corresponding degrees of h, we find:

(5] s
k o 2k B
E (21) izglwzai —k—H, k—071, , N

=0

=0

After some rearranging, we obtain the following system with respect to
Wy, Oy izl,...,S:
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S
Zmﬁ:E%?ZﬂuwwaS:mw. (3.5)

i=1

The accuracy of the quadrature formula (3.4) is of order 2[%] + 3.
1) Let S = 1. Then (3.5) takes the form

OMm3): wy =1, 1=0,
1
O(h®): wiad = 3 I=1.
If we did not use the second equation of the last system, i.e. taking «

as a free parameter, we can derive some known classical formulas. For w; =
1, a; = 0 we get the midpoint rule:

h
€L = hT(0) + O(h%) = hf(§) + O,
For wy =1, a; = 1 we get the trapezoid formula:

€ = KT(1) + O(1) = & [1(0) + F()] + O,

Solving the full system, we find wy = 1, oy = %, which leads to a
formula of Lobato’s type:

%) n (’)(h5):g[f((1 _ %)g) w0+ %)g)} + o).

2) Let S = 2. Then, it follows from the system (3.5), that:

glth(

OMm3): w+wy =1, 1 =0,

1
O(h®) : wloc% —|—w2a§ =3 =1,
7 4 4_ 1
O(h"): w1a1+w2a2:g, =2,
9 6 6_ 1
O(h?) : w1a1—|—w2a2:?, l1=3.
If we take wy = %, wp = %, 01 = 0, ap = 1, then only the first and

second equations are satisfied. The corresponding formula coincides with the
Simpson’s rule and it is of order O(h):

& = 210+ 37| + 00 = § [10)+ 47 (5) + 100 + 00

For w; = %, Wy = g, a; =0, ag = \/é the first three equations are satisfied
and we get the integration formula
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=510 3)3) +ar () + ot (1)) + o

16

For w; = %, wy = 57,1 =1, a3 = % again only the first three equations

are satisfied:

&= ga50@ 10 +16(r (0= F) )+ (1) )] o0

Now, for the unique solution of the full system

1y 1[5 1 1 /5 o, 3 2/6 , 3 216
wl_i(”%\/g)’w2_§(1_§\/;)’a1_?_?\/;’a2_?+? 5

the corresponding formula is valid:

S O RO DGR LR )
D (2 2D (22D 2] rou

3.2. Two-dimensional integral

Let us consider the two-dimensional integral

&= (f,g:h / f(@)de / (y)dy = b2 / F(ha)dz / “hy)dy, (3.6)

where f € C""2[0,h] and g € C"*1[0, h]. Now we expand f and g in Maclau-
rin’s series:

n n+1
=> gy +0W™Y), fl@) =) frz" + 0. (3.7)
k=0 k=0
Then
Z—h—fj WY gfii— B o) (3.8)
Tt LR FhaDi+2) | ' '

Let us introduce the auxiliary function (see Fig.1):
17,72k h
T =3 |£(F0-)s(50-0)

D)) sobo ) e
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Figure 1.2D-domain: A;(%(1—-a), 2(1—a)), Bi(2(1+%), 2(1-a)), C1 (2 1+
2), (14 2a)).

In view of (3.7), we get

l

T(@=), ;%ngfl—k[(1—04)l2l_k+(2+04)l_k((1—a)k+(1+2a)k)]—|—(9(h”+1).
=0 k=0

We seek w;, «;, such that:

n2 &

T2l
i=1

2 w; T (c;) + O(R"T3). (3.10)

After equalizing in (3.8)-(3.10) the coefficients at the corresponding powers
of h we get the system of nonlinear algebraic equations for £k =0,1,...,l, s >
1:

36

S
;wi[(l —@)' 2P 24 @) R — )* + (1 4+ 200)F)] = TS

From here, we find for | < 4:
s
Oh*): Y wi=1, 1=0, 1,
i=1

s
1
O(R®) : Zwm? =7 =2,
i=1

5
1
O(h°) : Zwm? =10’ =3,
i=1

s
1
O(h") : Zwiozf =1y =4
i=1

We are interested in formulas of seventh order of accuracy, which can

be obtained for S = 3. One possible solution is given by w; = 3(9%6271),
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_ 87+17v21 _ 397\/21
W2 = 480 , W3 =

the following integration formula

329

1=0, ag = ‘/_ y2l-1, az = —52, then we get

~ h%3(9 - V2I) 87+17v21, /v21—1
52_7[ 160 TO)+ 480 T( 5 )

\/_ —21
+ 25 60 ( 10 1)} +O(h").

3.3. Three-dimensional integral

Let us consider the 3D integral

h x t
3.=¢3 rih) = ) dx r .
£ :=£&(f,9,m:h) /0 f(z)d /0 g(t)dt/o (y) dy (3.11)

= /01 f(hx)dx /OI g(ht) dt /Otr(hy) dy,

where f € C"*3[0,h], g € C"*2[0, h] and r € C" 10, h).
We expand f, g and r in Maclaurin’s series

n n+1
=Y 0@y, g(t) = gt* + O™ ?)
k=0 k=0
n+2
f@)=>" fra® + 0"+,
k=0
Then
3 h3 n t t ! 3' »
TrRGi—kfi—1 + O™, (3.12
2 ;;0 S GEnaroasy oW (12

We introduce the function (see Fig.2):

re) =1 | (£ (Fa-w)+r(Fas5))o(50-a)r (Jo-a)
+f (% (1+ %)) g (2(1 +a)) <7“ (%(1 +a)) tr (% (1—|—3a))>} .
We seek w;, «; , such that: We seek w;, oy, such that
_ ¢

=3 w; T (c;) + O(R" ). (3.13)
Ci=1

53

In an analogical way as for ¢!, €2, we obtain:
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S

Oh®): Y wi=1, 1=0, 1,
=1
S

O(h") Zwia? =—, 1=2
1=1

s
1
O(R") : Zwmf =15 l=3.
i=1

Based on this system various formulas (up to the seventh order of accuracy)
can be derived. We only present the following two formulas of order seven:

4 9 1
a’) wl___an—g = ,ag—g
1\ 4
€ [‘ (5)‘5 0] +007)
b - — 0, ap =
) w 15 15 P2 = 5
B3 [16 1
&= 6 [15T(§)_1_5T()] O(h").

Following the same idea, one can derive formulas of numerical integration
for the integrals §§4), fj@, f;G), -++. In the next section results of numerical
experiments are given for difference schemes of order 2, 4, 6.

4. Numerical Experiments

In this section results of numerical experiments illustrating the accuracy of
the schemes derived in Section 3 are presented. Let g(x) be chosen such that
the problem (1.1), (1.2) with coefficients
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exp(z —0.5), 0 < x <0.75,
a(z) =
exp(z), 0.75 <z <1,
b, 0 <z < 0.75, o 0 <z <0.75,
@) =\ b, 0.75 1, c@=9_
Ty Y. <z <l m,075<1’<1,
has the exact solution
@) exp(z), 0 <z <0.75,
u(x) =
exp (z —0.5) +exp (0.75) —exp (0.25), 0.75 <z < 1.
Table 1. Example : the solution u, by = —1; b, = 1.
N 4 8 16 32 64 128 256
z2  0.003 7.952E-4 2.031E-4 5.075E-5 1.269E-6 7.927E-7 1.982E-8
p2  2.009 1.969 2.001 2.000 2.000 2.000 2.000
z4 3.590E-5 2.470E-6 1.590E-7 1.008E-8 6.345E-10 3.971E-11 3.640E-13
psa 3.8612 3.9580  3.9797 3.9890 3.9982 3.9990
z6 2.006E-7 4.132E-9 6.755E-11 1.069E-12 1.338E-15
pe 5.9223 5.9345  5.9818 5.9904
Table 2. Example : the solution u, by = 1; b, = —
N 4 8 16 32 64 128 256
zo  0.001 3.448e-4 8.632E-5 2.159E-5 5.404E-6 1.351E-6 3.378E-7
p2 2.0215 1.9980 1.9995 1.9982 1.9999 2.0000 2.0000
z4 2.334E-6 1.548E-7 1.001E-8 6.375E-10 4.023E-11 2.457E-12 1.527E-13
ps 3.9146 3.9506 3.9733 3.9859 4.0333 4.0084
z6 2.804e-7 5.100e-9 8.600e-11 1.381e-12 2.163e-14
pe 5.7808  5.8900  5.9609 5.9965
The numerical solutions were computed on uniform meshes with N =
4,8,16,...,256. The maximum norm of the error and an approximate rate of
convergence
(n)
) _ () _ 1 1225, [loo
= ||z, max |z h=—, =
=7 = g [V b= = loy
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Table 3. Example : the flux w, by = 0; b, = —1.

N 4 8 16 32 64 128 256

22 0.625 0.157 0.039 0.010 0.003 6.152e-4 1.538e-4
p2 19922 19963  2.0073 1.9709 2.0228  2.0000  2.0000

z4 0.001 7.010e-5 4.363e-6 2.719e-7 1.697e-8 1.059e-9 9.695e-12
ps 3.9719 4.0060  4.0041 4.0022 4.0021  4.0003

z6 3.210E-7 5.732E-9 9.602E-11 1.509E-12 1.872E-15
ps 5.8076 5.8996  5.9920 5.9990

are presented in Tables 1,2,3 (subscript co is omitted in the notation of the
norm).

The computations were done on PC Athlon 900MHz with MATLAB. For
the schemes of order 2, 4, 6 the results are contained in Tables 1, 2, 3 in which
the convergence rates are clearly observed.

5. Conclusions

In this paper we generalized the classical Marchuk integral identity in or-
der to obtain conservative high-order difference schemes for one-dimensional
convection-diffusion interface problems. The local exact equations admit weak
formulation analogical to that proposed by Agoshkov [12]. This property can
be used for construction of high-order approximations to degenerate equa-
tions, parabolic and elliptic problems [11, 12]. Our schemes, in the case
a(z) := €2a(r) have diagonal domination which is uniform with respect to
small parameter ¢ and easily can be implemented to singularly perturbed

problems [1].
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Aukstos eilé skirtumy schemos konvekcijos-difuzijos sgveikos uZdavi-
niams

I T. Angelova

Straipsnyje sukonstruotos ir analizuojamos naujos aukstos eilés kompaktinés baigti-
niy skirtumy schemos, aproksimuojancios konvekcijos-difuzijos sgveikos uzdavinius
vienmagiu atveju. Gautos idreikstinés O(h?),O(h*),... eilés tikslumo formulés,
pagristos Marchuko integralinémis tapatybémis. I$vestos naujos skaitmeninio inte-
gravimo kvadraturinés nurodyto tikslumo formulés tritaskiy schemy skaifiavimui.
Pateikti skaitiniai eksperimentai, patvirtinantys teorinius rezultatus.



