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A. HANDLOVIČOVÁ and Z. KRIVÁ
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1. Introduction

1.1. Mathematical model of the problem

Perona-Malik problem discussed in [3] has the following form

∂tu −∇ · (g(|∇Gσ ∗ u|)∇u) = 0 in QT ≡ I × Ω, (1.1)

∂νu = 0 on I × ∂Ω, (1.2)

u(0, ·) = u0 in Ω, (1.3)

where Ω ⊂ IRd is a rectangular domain, I = [0, T ] is a scaling interval, g(s)
is a Lipschitz continuous decreasing function with Lipschitz constant Lg,

g(0) = 1, 0 < g(s) → 0 for s → ∞,

Gσ ∈ C∞(IRd) is a smoothing kernel with compact support Kσ, such that
∫

IRd

Gσ(x)dx = 1, Gσ(x) → δx for σ → 0,

δx is the Dirac function at point x, initial condition u0 is such that regularity
stated below is fulfilled.
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We can rewrite the partial differential equation (1.1) in the form

∂tu −∇.(g(|J(u)(x)|)∇u) = 0 in QT ≡ I × Ω, (1.4)

where J(u) : L2(Ω) → (C∞(Ω))d. In our case we use J(u)(t, ·) = ∇Gσ ∗u(t, ·)
for t fixed, but we can choose any smoothing operator with these properties.

Let us define a weak solution of the problem (1.4),(1.2),(1.3). Equation
(1.4) is multiplied by a test function ϕ ∈ Ψ , where Ψ is the space of smooth
test functions

Ψ = {ϕ ∈ C1,2([0, T ]× Ω), ∇ϕ · ~n = 0 on (0, T )× ∂Ω, ϕ(T, ·) = 0}.

Integrating over [0, T ] × Ω and applying integration by parts and properties
of a test function, we come to a definition of the weak solution.

Definition 1. The weak solution of the regularized Perona-Malik problem
(1.1)-(1.3) is a function u ∈ L2(I, W 1,2(Ω)) satisfying the identity

T
∫

0

∫

Ω

u
∂ϕ

∂t
(t, x) dx dt +

∫

Ω

u0(x)ϕ(0, x) dx

−
T
∫

0

∫

Ω

g(|J(u(t, x))|)∇u(t, x)∇ϕ(t, x) dx dt = 0 (1.5)

for all ϕ ∈ Ψ .

It is well known from the regularity theory of such solutions [6] that, due
to given properties of the operator J(u), the weak solution of our problem is a
function u ∈ L2(I, W 2,2(Ω)) for initial condition u0 ∈ L∞(Ω). Moreover it fol-
lows from the embedding theory for dimensions d = 2 and d = 3 that u ∈ C(Ω̄)
for almost all t ∈ I . To obtain our error estimates we need further regular-
ity of the solution, more precisely u ∈ L2(I, W 2,2(Ω)) ∩ L∞(I, W 1,2(Ω)),
∂ttu ∈ L1(I, L1(Ω)) and ∇(∂tu) ∈ L1(I, L1(Ω)).

1.2. Formulation of the finite volume scheme

Let τh be a uniform mesh covering Ω with cells p of measure m(p) (we assume
rectangular cells here). For every cell p we consider a set of its neighbours N(p)
consisting of all cells q ∈ τh for which the common interface of p and q, denoted
by epq , is of non-zero measure m(epq). We denote the set of all these edges for
all volumes p ∈ τh by E and by epqI we denote the edge which connects the
volumes p and q (clearly epq = eqp = epqI).

It is assumed that for every p, there exists a representative point xp ∈ p,

such that for every pair p, q, q ∈ N(p), the vector
xq−xp

|xq−xp|
is equal to a unit

vector npq which is normal to epq and oriented from p to q. We denote dpq :=
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|xp − xq |. In a simple case of a uniform grid xp is just the center of the pixel.
Then, let xpq be the point of epq intersecting the segment xpxq . We define

Tpq :=
m(epq)

dpq

.

Moreover there exist constants T , T , such that for all mesh τh it holds
T ≤ Tpq ≤ T .

Remark. It is obvious that if we consider a uniform mesh, there are only
several types of the values for dpq , Tpq and m(epq). For example if all volumes
are squares, then dpq , Tpq and m(epq) have the same value for all volumes,
for rectangles they have two different values etc. We will use the notation
introduced above in accordance with the notation used in the cited articles.

Discrete approximation of a solution of partial differential equation is con-
sidered to be piecewise constant on control volumes ([4]). Let un

p be the value
of the numerical solution in the n-th scale step on a volume p. The finite
volume explicit scheme is then written as follows:

Let 0 = t0 ≤ t1 ≤ ... ≤ tn.... ≤ tNmax
, Nmax k = T denote the scale

discretization steps with tl = tl−1 + k, where k is the discrete scale step,
l = 1, 2, ...Nmax. For n = 0, ..., Nmax − 1 we look for un+1

p , p ∈ τh, satisfying
the identities

(

un+1
p − un

p

)

m (p) = k
∑

q∈N(p)

gσ,n
pq Tpq

(

un
q − un

p

)

, (1.6)

u0
p =

1

m(p)

∫

p

u0(x) dx, gσ,n
pq := g (|J(ũ (tn, xpq)) |) ,

where ũ is a periodic extension of the discrete image computed in the n-th
scale step. For computation details see [1].

Its L2 norm can be estimated with constant B by L2 norm of the function
u. un

p is a value of the numerical solution on the volume p in the n-th scale
step. Let us denote by uh,k the finite volume numerical solution for some fixed
space and scale mesh h and k. This solution is piecewise constant on each finite
volume and in each scale step as is usual for finite volume numerical schemes
of a parabolic type. By ūl we denote the function piecewise constant on each
finite volume in the l−th scale step.

1.3. Previous results

In [2] error estimates for similar but implicit numerical scheme based on the
finite volume space discretization were proved in the form:

Theorem 1. Let the relation between scale and space discretization is given
as follows k = Ch. Then the following error estimates hold for Perona-Malik
weak solution and numerical solution obtained via finite volume method
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Nmax
∑

n=0

∫

In

∫

Ω

|u(tn+1, x) − uh,k(tn+1, x)|2 dxdt ≤ Ch

and

m−1
∑

n=0

∫

In

∑

epqI

m(epq)dpq

(un+1
q − un+1

p

dpq

− 1

m(epq)

∫

epq

∇u · npq ds
)2

dt ≤ Ch.

Similar results will be now proved also for the explicit numerical scheme.

2. Stability and Convergence Results

We briefly mention results of Krivá obtained for the explicit finite volume
scheme concerning the stability and convergence properties for explicit finite
volume numerical scheme for the Perona - Malik problem (see [1]). We need
these results to prove error estimates for numerical method presented in this
article. First we introduce the following stability assumption:

k ≤ (1 − ξ)
m(p)

∑

q∈N(p)

g
σ,n
pq Tpq

for all p ∈ τh and ξ ∈ (0, 1). (2.1)

Under this stability condition stability estimates for the explicit scheme are
proved in [1] and for the semi-implicit scheme they are derived in [5]. These
estimates are of the following type:

Lemma 1. (A priori estimates in L2(QT )) There exist positive constants
C1, C2 which do not depend on the h, k, such that

(i) max
0≤l≤Nmax

∑

p∈τh

(

ul
p

)2
m(p) ≤ C1,

(ii)

Nmax
∑

l=0

k
∑

(p,q)∈E

(

ul
p − ul

q

)2

dpq

m (epq) ≤ C2.

Lemma 2. (Convergence of uh,k.) There exists u ∈ L2 (QT ), which is the
weak solution of (1.5) such that uh,k → u in L2 (QT ) as h, k → 0. Further-
more, the convergence is pointwise.

3. Error Estimates

3.1. L∞ stability for a discrete solution

We rewrite the original discrete equation (1.6) in the following way:
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un+1
p = un

p

(

1 − k

m (p)

∑

q∈N(p)

gσ,n
pq Tpq

)

+
k

m (p)

∑

q∈N(p)

gσ,n
pq Tpqu

n
q . (3.1)

From stability condition (2.1) we immediately can see, that both coefficients
of un

p and un
q on the right hand side are positive. So, we have

un+1
p ≤ ||un||L∞(Ω)

for all p ∈ τh. Then it holds also:

||un+1||L∞(Ω) ≤ ||un||L∞(Ω).

Recursively we get
||un+1||L∞

≤ ||u0||L∞
= C. (3.2)

3.2. Error estimates

The method how to obtain the error estimates is similar to one given in [2],
but there are some new terms and some terms must be estimated in different
way so we describe the whole proof. Let now t ∈ 〈tn, tn+1). Multiplying PDE
(1.4) by vn+1

p and then integrating over volume p and using integration by
parts, we have:

∫

p

∂tu(t, x) vn+1
p dx −

∫

∂p

g(|J(u)|)∇u(t, x) · npvn+1
p dx = 0, (3.3)

where ∂p is the boundary of the volume p and np is the outward unit normal
vector to the boundary of volume p and further analogously npq will be the
outward unit normal vector to the edge epq . We can write ∂p = ∪q∈N(p)epq .

For the discrete scheme we have
(

un+1
p − un

p

)

vn+1
p m (p)

k
−

∑

q∈N(p)

gσ,n
pq Tpq

(

un
q − un

p

)

vn+1
p = 0. (3.4)

Now we denote en
p = u(tn, xp) − un

p , where xp is a representative point of a
volume p, p ∈ τh.

Then posing vn
p = en

p and subtracting (3.4) from (3.3) we obtain:

∫

p

(

en+1
p − en

p

)

k
en+1

p dx +
∑

q∈N(p)

∫

epq

(

gσ,n
pq

un
q − un

p

dpq

− g(|J(u)|)∇u · npq

)

en+1
p dx

=

∫

p

(

u(tn+1, xp) − u(tn, xp)

k
− ∂tu(t, x)

)

en+1
p dx.

Now after summation over all volumes p ∈ τh and integration over In =
〈tn, tn+1) for all n = 0, 1, . . . , m − 1 , where m is arbitrary number from the
set {1, . . . , Nmax} and rearranging the equation we obtain:
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∫

Ω

|em|2dx +

m−1
∑

n=0

∫

Ω

|en+1 − en|2 dx + 2

m−1
∑

n=0

∫

In

∑

p∈τh

∑

q∈N(p)

×
∫

epq

(

gσ,n
pq

un
q − un

p

dpq

− g(|J(u)|)∇u · npq

)

en+1
p dxdt =

∫

Ω

|e0|2 dx (3.5)

+ 2

m−1
∑

n=0

∫

In

∑

p∈τh

∫

p

(

u(tn+1, xp) − u(tn, xp)

k
− ∂tu

)

en+1
p dxdt.

The third term on the left hand side of the last equation can be expressed as
usually in the finite volume theory (see [4]):

”Third”=2
m−1
∑

n=0

∫

In

∑

p∈τh

∑

q∈N(p)

∫

epq

(

gσ,n
pq

un
q − un

p

dpq

− g(|J(u)|)∇u · npq

)

en+1
p dxdt

= 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

(

gσ,n
pq

un
q − un

p

dpq

− g(|J(u)|)∇u · npq

)

(en+1
p − en+1

q )dxdt.

After rearrangement we get:

”Third” = 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt

+ 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
q − en

q − (en+1
p − en

p )
)

dpq

(

en+1
p − en+1

q

)

dxdt

+ 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

(

gσ,n
pq − g(|J(u)|)

) un
q − un

p

dpq

(en+1
p − en+1

q ) dxdt + 2

m−1
∑

n=0

×
∫

In

∑

E

∫

epqI

g(|J(u)|)
(

u(tn, xq) − u(tn, xp)

dpq

−∇u · npq

)

(en+1
p − en+1

q )dxdt.

Substituting these terms into equation (3.5) we obtain:

∫

Ω

|em|2dx +

m−1
∑

n=0

∫

Ω

|en+1 − en|2dx + 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)

×
(

en+1
p − en+1

q

)2

dpq

dxdt =

∫

Ω

|e0|2 dx

+ 2
m−1
∑

n=0

∫

In

∑

p∈τh

∫

p

(

u(tn+1, xp) − u(tn, xp)

k
− ∂tu

)

en+1
p dxdt
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+ 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

(

gσ,n
pq − g(|J(u)|)

) un
p − un

q

dpq

(en+1
p − en+1

q ) dxdt

+ 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|
(

∇u · npq−
u(tn, xq)−u(tn, xp)

dpq

)

(en+1
p − en+1

q )dxdt

+ 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en

p − (en+1
q − en

q )
)

dpq

(

en+1
p − en+1

q

)

dxdt,

or briefly

∫

Ω

|em|2 dx +
m−1
∑

n=0

∫

Ω

|en+1 − en|2 dx + 2
m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)

×
(

en+1
p − en+1

q

)2

dpq

dxdt =

∫

Ω

|e0|2 dx + I + II + III + IV.

Now we must estimate each of the four terms on the right hand side. The
estimation of the first term is different from that given in [2] due to different
stability condition (2.1), so further regularity of a solution is required. First we
use L∞ stability of discrete and continuous solutions and a Taylor expansion
for the inner term. We obtain

I = 2

m−1
∑

n=0

∫

In

∑

p∈τh

∫

p

(

u(tn+1, xp) − u(tn, xp)

k
− ∂tu

)

en+1
p dxdt

= 2

m−1
∑

n=0

∫

In

∑

p∈τh

∫

p

(

1

k

∫

In

(∂tu(s, xp) − ∂tu(t, x))ds

)

en+1
p dxdt.

Now we estimate |I | from above, as:

|I | ≤ 2
(

‖uh,k‖L∞(QT ) + ‖u‖L∞(QT )

)

∣

∣

∣

∣

∣

m−1
∑

n=0

∫

In

∑

p∈τh

∫

p

1

k

∫

In

×
( s
∫

t

∂ttu(z, x) dz + ∇(∂tu)
(

s, xp + η(xp − x)
)

|xp − x|
)

dsdxdt

∣

∣

∣

∣

∣

,

for some η ∈ 〈0, 1〉, or

|I | ≤ C

m−1
∑

n=0

∑

p∈τh

∫

p

∫

In

(

|∂ttu(z, x)dzdx| + h|∇(∂tu)(s, xp + η(xp − x))|
)

dsdx.

Finally we get the estimate
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|I | ≤ 2C
(

‖uh,k‖L∞(QT ) + ‖u‖L∞(QT )

) (

k‖∂ttu‖L1(QT ) + h‖∇(∂tu)‖L1(QT )

)

.

We estimate the second term II as in [2]. First we get the estimate

|gσ,n
pq − g(|J(u)|)| = |g(|∇Gσ ∗ ũ(tn, xpq)|) − g(|∇Gσ ∗ ũ(t, x)|)|

≤ Lg|
∫

IRd

∇Gσ(xpq − η)ũh,k(tn, η) dη −
∫

IRd

∇Gσ(s − η)ũ(t, η) dη|

≤ Lg

∫

IRd

|∇Gσ(xpq − η) −∇Gσ(s − η)| |ũh,k(tn, η)| dη

+ Lg

∫

IRd

|∇Gσ(s − η)| |ũh,k(tn, η) − ũ(t, η)| dη.

We obtain

|gσ,n
pq −g(|J(u)|)|≤LgB

(

h√
2
‖D2Gσ‖L∞(Ω)‖uh,k‖L∞(QT )m(Kσ)+‖∇Gσ‖L∞(Ω)

×
((

∫

Ω

|en|2 dx

)
1

2

+

∫

Ω

tn
∫

t

|∂tu(s, x)| dsdx +
∑

p∈τh

∫

p

x
∫

xp

|∂u(t, y)

∂n
| dydx

))

,

where m(Kσ) is measure of the compact support Kσ, σ is fixed, B is the
estimation for mirror reflexion function. We denote

C3 = 2LgB‖D2Gσ‖L∞(Ω)‖uh,k‖L∞(QT )m(Kσ),

C4 = 2LgB‖∇Gσ‖L∞(Ω), Cg is such that g(|J(u)|) ≥ Cg .

The last estimate can be established using the properties of the solution u.
Hence the term II can be estimated as follows:

II ≤ C3h

(

m−1
∑

n=0

k
∑

E

∫

epqI

|un
q − un

p |2
dpq

dx

)
1

2

(

m−1
∑

n=0

k
∑

E

∫

epqI

|en+1
p − en+1

q |2
dpq

dx

)
1

2

+ C4

m−1
∑

n=0

k

(

∑

E

∫

epqI

|un
q − un

p |2
dpq

dx

)
1

2

(

∑

E

∫

epqI

|en+1
p − en+1

q |2
dpq

dx

)
1

2

(

∫

Ω

|en|2dx

)
1

2

+ C4

m−1
∑

n=0

∫

In

(

∑

E

∫

epqI

|un
q − un

p |2
dpq

dx

)
1

2

(

∑

E

∫

epqI

|en+1
p − en+1

q |2
dpq

dx

)
1

2

×
(

∫

Ω

tn
∫

t

|∂tu(s, x)| dsdx +
∑

p∈τh

∫

p

x
∫

xp

∣

∣

∣

∂u(t, y)

∂n

∣

∣

∣ dydx

)

,
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II ≤ 4C2C
2
3h2

C2
g

+
1

2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt

+
4C2

4

C2
g

m−1
∑

n=0

[

k
∑

E

∫

epqI

|un
q − un

p |2
dpq

dx

∫

Ω

|en|2dx +

∫

In

∑

E

∫

epqI

|un
q − un

p |2
dpq

dx

×
(

∫

Ω

tn
∫

t

|∇ · (g(|J(u)|∇u) | dsdx +
∑

p∈τh

∫

p

x
∫

xp

∣

∣

∣

∂u(t, y)

∂n

∣

∣

∣ dydx

)2]

=
4C2C

2
3h2

C2
g

+ II1 + II2 + II3,

where the inequalities (3.2), (ii) and equation (1.1) have been used. The last
term can be estimated using the properties of the exact solution:

II3≤
(

8C2
4LgC2

C2
g

‖D2Gσ‖L∞(Ω)‖∇u‖L∞(I,L2(Ω))+
4C2

4C2

C2
g

‖∆u‖L2(I,L2(Ω))

)

k

+

(

8C2
4LgC2

C2
g

‖DGσ‖L∞(Ω)‖∇u‖L∞(I,L2(Ω))

)

h.

The third term can be estimated as in [2], but here we present a more
accurate estimate:

III = 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(u(tn, xq) − u(tn, xp)

dpq

−∇u(tn, x) · npq

)

× (en+1
p − en+1

q ) dxdt + 2

m−1
∑

n=0

∫

In

∑

p∈τh

∑

q∈N(p)

∫

epq

g(|J(u)|)

×
(

∇u(tn, x) · npq −∇u(t, x) · npq

)

en+1
p dxdt = III1 + III2.

We get immediately that

III2 = 2

m−1
∑

n=0

∫

In

∑

p∈τh

∫

p

(

∇g(|J(u)|)∇u(tn, x) −∇g(|J(u)|)∇u(t, x)
)

en+1
p dxdt

= 2

m−1
∑

n=0

∫

In

∑

p∈τh

∫

p

t
∫

tn

∂tt(s, x)ds en+1
p dxdt

≤ 2k
(

‖u‖L∞(Ω) + ‖un+1‖L∞(Ω)

)

‖∂ttu‖L1(I,L1(Ω)) = C6k.

In order to estimate term III1 we introduce the following notation
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Rpq =
1

m(epq)

(

−
∫

epqI

∇u(tn, x) · npq +
u(tn, xq) − u(tn, xp)

dpq

m(epq)

)

dx.

Applying the properties of function g, this term can be estimated as

|III1| ≤ 2

m−1
∑

n=0

∫

In

∑

E

∫

epqI

|Rpq ||en+1
p − en+1

q | dxdt.

Now using the regularity of a weak solution and the well known estimates of
the finite volume method (see [4], chapter 3.1.6) we get

|III1| ≤
C

Cg

h2
m−1
∑

n=0

∫

In

∫

Ω

(H(u)(z))2 dzdt

+
1

4

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt.

Here |H(u)(z)|2 =
d
∑

i,j=1

|DiDju(z)|2 and Di denote the weak derivative with

respect to the component zi. Since u ∈ L2(I, W 2,2(Ω)) we can denote a con-
stant C5 = C

Cg
||H(u)||2

L2(QT ) and we have

|III1| ≤ C5h
2 +

1

4

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt.

Finally we can estimate the last term as follows:

|IV | ≤ 16

3

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
q − en

q − (en+1
p − en

p )
)2

dpq

dxdt

+
3

4

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt

≤ 32

3

m−1
∑

n=0

∫

In

∑

E

∫

epqI

(

en+1
q − en

q

)2
+
(

en+1
p − en

p

)2

dpq

dxdt

+
3

4

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt

≤ 32

3

m−1
∑

n=0

k
∑

E

(

(

en+1
q − en

q

)2
+
(

en+1
p − en

p

)2
)

Tpq
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+
3

4

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt

≤ 128

3

m−1
∑

n=0

k

m(p)

∑

p∈τh

(

en+1
p − en

p

)2
Tpqm(p)

+
3

4

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt ≤ 128T

3

k

m(p)

×
m−1
∑

n=0

∫

Ω

|en+1 − en|2dx+
3

4

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt.

We now choose the following relation between scale and mesh size

k =
3

256T
m(p). (3.6)

This relation is correct also for (2.1) for some ξ ∈ (0, 1). Putting all these
estimates together and taking into account the relation (3.6), we obtain:

∫

Ω

|em|2dx+

m−1
∑

n=0

∫

Ω

|en+1− en|2dx+

m−1
∑

n=0

∫

In

∑

E

∫

epqI

g(|J(u)|)
(

en+1
p − en+1

q

)2

dpq

dxdt

≤4

∫

Ω

|e0|2dx+2(‖uh,k‖L∞(QT )+‖uL∞(QT ))
(

k‖∂tt‖L1(QT )+h‖∇(∂tu)‖L1(QT )

)

+

(

4C2C3

Cg

+ 2C5

)

h2 +

(

8C2
4LgC2

C2
g

‖DGσ‖L∞(Ω)‖∇u‖L∞(I,L2(Ω))

)

h

+

(

8C2
4Lg

C2
g

‖D2Gσ‖L∞(Ω)‖∇u‖L∞(I,L2(Ω)) + C6 +
4C2

4C2

C2
g

‖∆u‖L2(I,L2(Ω))

)

k

+
4C4

Cg

(

m−1
∑

n=0

k
∑

E

∫

epqI

|un+1
q − un+1

p |2
dpq

dx

∫

Ω

|en|2dx

)

.

We conclude the proof as in [2]: if we realize, that the first term on the
right hand side with e0 is less then Ch because of the properties of the exact
solution and the definition of u0

p, we are prepared to use Gronwall’s lemma in
the following form.

Lemma 3. If u(t) and v(t) are non-negative measurable functions for t ≥ 0
and u0 is a non- negative constant, then the inequality

u(t) ≤ u0 +

t
∫

0

v(s) u(s) ds
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implies that

u(t) ≤ u0 exp

( t
∫

0

v(s) ds

)

.

To estimate the last term of the previous inequality let us denote for
t ∈ In = 〈tn−1, tn)

v(t) =
∑

E

∫

epqI

|un+1
q − un+1

p |2
dpq

dx, u(t) =

∫

Ω

|en|2 dx.

All the terms on the left hand side of the obtained above inequality are non-
negative, so we can omit all terms except the first and the inequality still will
be valid. On the right hand side of this inequality we estimate the first term:

∣

∣

∣4

∫

Ω

|e0|2 dx
∣

∣

∣ ≤ Ch2,

where C depends only on the measure of Ω and the norm of initial condition.
From now we denote by constant C the estimations of all norms of the exact
solution on the right hand side this inequality, so we obtain

∫

Ω

|em|2dx ≤ C(h2+h+k)+
4C4

Cg

(

m−1
∑

n=0

k
∑

E

∫

epqI

|un+1
q − un+1

p |2
dpq

dx

∫

Ω

|en|2dx

)

.

If we use the properties of function v (see relation (ii) of Lemma 1), then we
obtain the following inequalities

∫

Ω

|em|2 dx ≤ C(h2 + h + k) exp

(

m−1
∑

n=0

k
∑

E

∫

epqI

|un+1
q − un+1

p |2
dpq

dx

)

≤ C exp(C2)(h
2 + k + h),

where C is a generic constant depending only on domain Ω, time T and some
norms of the exact solution.

Theorem 2. Let the relation (3.6) between scale and space discretization be
valid. Then the following error estimates for Perona-Malik weak solution and
numerical solution obtained via finite volume method hold

Nmax
∑

n=0

∫

In

∫

Ω

|u(tn+1, x) − uh,k(tn+1, x)|2 dxdt ≤ Ch,

Nmax
∑

n=0

∫

In

∑

epqI

m(epq) dpq

(

un+1
q − un+1

p

dpq

− 1

m(epq)

∫

epq

∇u · npq dx

)2

dt ≤ Ch.
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Proof. It is easy to see that

Nmax
∑

n=0

∫

In

∫

Ω

|u(tn+1, x) − uh,k(tn+1, x)|2 dxdt

≤ 2h2‖∇u‖L2(I,L2(Ω) + 2

Nmax
∑

n=0

∫

In

∫

Ω

|en+1|2 dxdt ≤ Ch,

and the first inequality is proved. Now we get

Nmax
∑

n=0

∫

In

∑

epqI

m(epq) dpq

(

un+1
q − un+1

p

dpq

− 1

m(epq)

∫

epq

∇u · npq dx

)2

dt

≤ C

Nmax
∑

n=0

∫

In

∑

epqI

∫

epq

g(J(u))

(

en+1
p − en+1

q

)2

dpq

dxdt + C

Nmax
∑

n=0

∫

In

dpq

×
∑

epqI







u(tn+1, xq) − u(tn+1, xp)

dpq

− 1

m(epq)

∫

epq

∇u · npqdx







2

dt ≤ Ch,

where we have again used the estimate of the finite volume method for the
second term. �

Remark 1. We note that error estimates in the L2 norm for a linear problem
and for an exact solution u ∈ C2(QT ) are of order O(h + k) (see [4]). The

estimates obtained in this paper are only of order O(h
1

2 ), when the specified
above relation between the scale and mesh size is satisfied. We have not ob-
tained such a quality of the estimates due to the lack of regularity of the exact
solution and the strong nonlinearity in the elliptic term.

4. Numerical Example

The following example shows the work of the algorithm on an image of the
size 480×540. This image represents a good input for this algorithm based on
the Perona-Malik equation, since for edges the large gradients are typical and
noise can be characterized as having small gradients. The setting of parameters
was the following: K in Perona - Malik function g was set to 150, h was equal
to 1, T to 25 and scale step k to 0.011.
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Figure 1. Example. a) the original image, b) the smoothed image.
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