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Abstract. The Sturm-Liouville problem with various types of nonlocal integral boundary
conditions is considered in this paper. In the first part of paper we investigate Sturm-Liouville
problem with two cases of nonlocal integral boundary conditions. We prove general properties
of the eigenfunctions and eigenvalues for such problem in the complex case. In the second part
we investigate real eigenvalues case. The spectrum depends of these problems on boundary
condition parameters is analyzed. Qualitative behaviour of all eigenvalues subject to nonlocal
boundary condition parameters is described.
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1. Introduction

Boundary problems with nonlocal conditions are an area of the fast developing dif-
ferential equations theory. Problems of this type arise in various fields of physics,
biology, biotechnology and etc. Nonlocal conditions come up when value of the
function on the boundary is connected with values inside the domain. Theoretical
investigation of problems with various type of nonlocal boundary conditions is ac-
tual problem and recently it much attention is given in the scientific literature.

A.A. Samarskii and A.V. Bitsadze were originators to such problems. They
formulated and investigated nonlocal boundary problem for elliptic equation [1].
J. Canon was one of the pioneers who investigated parabolic problems with integral
boundary conditions [4]. Also parabolic problems with nonlocal integral boundary
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conditions were analyzed in [3, 6, 7, 12, 17, 20, 21]. Multipoint nonlocal bound-
ary problem for the second order ordinary differential equations was initiated by V.
llyin and E. Moiseev [10]. Also this problem was investigated in papers [2, 5, 14].
During the last decades the number of differential problems with nonlocal boundary
conditions increased significantly.

Quite new area, related with problems of this type, is investigation of the spec-
trum of differential equations with nonlocal conditions. Eigenvalue problems with
nonlocal conditions are closely linked with boundary problems for differential equa-
tions with nonlocal conditions [9, 11, 13]. In the papers [8, 16, 18] the similar prob-
lems are investigated for the operators with nonlocal condition of Bitsadze-Samarskii
or integral type. Eigenvalue problems for differential operators with nonlocal condi-
tions are considerably less investigated than classical boundary conditions cases.

The purpose of this paper is to analyze a real eigenvalue problem for station-
ary differential problem with various types of nonlocal boundary conditions. In this
paper we analyze stationary problem with two cases of nonlocal integral boundary
conditions. We investigate how spectrum of these problems depends on parameters
of some nonlocal boundary conditions. Some results are published in paper [19].

In Sect. 2 we analyze Sturm-Liouville problem with nonlocal integral type
boundary condition and find general properties of eigenvalues and eigenfunctions
in the complex plane, in Sect. 3 we investigate real eigenvalues.

2. Sturm-Liouville Problem with Nonlocal Integral Type
Boundary Condition

Let us consider Sturm-Liouville problem with one classical boundary condition

—u" =X, x€(0,1), (2.1)
u(0) = 0, 2.2)

and another nonlocal integral boundary condition:

3
u(1) = ~ /O w(@)dz (Case 1), 2.3)

or
( ) A ( ) ( ase ) ( )

with parameters v € C and ¢ € [0, 1].

Remark 1. For v = oo, we investigate boundary conditions
3 1
/ u(z)de =0, £ > 0(Case 1)and / u(z)de =0, £ <1 (Case2)
0 3

instead boundary conditions (2.3) and (2.4) .
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In the general case eigenvalues A € C and eigenfunctions u(z) are the complex
functions. We investigate how spectrum depends on boundary condition in the case
parameters y and &.

We note that Case 1 when £ = 1 and Case 2 when £ = 0 give the same integral
boundary condition.

When v = 0 or £ = 0 in problem (2.1)—(2.3)and v = 0 or £ = 1 in prob-
lem (2.1)-(2.2), (2.4) we get the problems with classical boundary conditions. Their
eigenvalues and eigenfunctions are well-known:

M = (k)% wup(z) = sin(rkx), ke N. (2.5)

When A = 0 then u(z) = cz. Substituting this solution into the second boundary
condition we get

3 €2 ! 1—¢&2
c= fy/ cxdr = iy (Case 1), c= ’y/ cxdx = ¢y (Case 2),

0 3

i.e.
€y _ -8

c(1—77) =0 (Casel), c(l—’y 5 ) =0 (Case?2).

Nontrivial solutions (¢ # 0) exist if
2 1 — &2
155 =0 (Case1), 1-71S =0 (Case2).

!_emma 1. The eigenvalue X = 0 exists if, and only if v = 5% inCasel, v = 1f€2
in Case 2.

In the general case, when A\ # 0, eigenfunctions are u = c¢sin(gx) and eigenval-
ues A = ¢2, where ¢ € C, ~ {0},

Cy:={qeC|Reqg>00rReq=0,Imq > 0orqg=0}.

They satisfy equation (2.1), boundary condition (2.2) and nonlocal boundary condi-
tion (2.3) or nonlocal boundary condition (2.4).
If A # 0, the nonlocal boundary condition is satisfied, when

13 1
csing = cv/ sin(¢gz)dz (Casel), csing= cw/ sin(gr)dz ( Case 2),
0 4

ie.
) 1 — cos(&q) i cos(£q) — cosq
c¢(sing— VT) =0 (Case ), ¢(sing— Wﬁ) =0 (Case 2).
So, a nontrivial solution exists if ¢ (¢ # 0) is a root of equation
in2 &4 :
ST =5 Sin
filg) == 5% = =5 =0 (Case1), (26)
s (48q . (1-8)q :
SNl ——-—— S11l ——~— Sin
folq) = 27 2 = 2 - _0 (Case2). @.7)
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If sing = 0 and sin & = 0 in Case 1, and sin 1822 — ( or sin U584 = ¢ and
sing = 0 in Case 2, then equation (2.6) or (2.7) is valid for all v € C. In this case
we get constant eigenvalues, which don’t depend on parameter ~. If parameter £ is
an irrational number, then such eigenvalues don’t exist.

Let{ =7 =T € Q.For¢ € (0,1) we suppose that m and n (n > m > 0) are
positive coprime integer numbers. If £ = 0, we suppose m = 0,n =l andif £ =1,
we suppose m = 1, n = 1. Let denote subset N,,, := {n € Njn = km,k € N}
of integer positive numbers, N, = {k € N3k < n} U {0} are even numbers and
N, = {k € N~ Nz|k < n} are odd numbers.

Lemma 2. Constant eigenvalues exist only for rational numbers { = = < [0,1],
and those eigenvalues are given by: A\, = (n7k)2,k € N, m € N, and )\, =
(2nmk)?,k € N, m € N, in Case 1; A\, = (nwk)’,k € Nyn—m € N, and

At = (2nmk)? k € N,n —m € N, in Case 2.

Proof. ~Let us define functions S;(z) = 32U} ; ¢ N'U{0}. When j > 2, we can
express them by the Moivre formula:

So(z) = 2k cos?* 1 z — (%) cos? 3 zsin? z + ... 4 (=1)* 12k cos zsin?* 72 z,

Sort1(2) = (2k + 1) cos® 2 — (21@;-1) cos?* 2 zsin? 2 + ...+ (—1)*sin?* 2.
We see, that S (z) = 1, So(z) = 0and for j > 2 functions S; (=) are entire transcen-
dental with the first order of growth. Functions sin z and .S;(z) don’t have common
zeroes. Then common zeroes of functions sinmz and sinnz are zeroes of function
sinz if 0 < m < n. Therefore in this case, functions S,,(z) and S, (%) don’t have
COMMON Zeroes.

In Case 1 from equation (2.6) we get:

i [Z5a(B)ont -5, (1)

sin 9. {2—7572,1(1) sini — S’gn(i)] =0, m € N,.
2n 2n 2n

0, m € N,

In Case 2 from equation (2.7) we get:

sin% [ 7S’(,H_m)/g( )S’(n m)/g( )sing—Sn(g)} =0,n—m€eN,,

n n
o [ (55 ) Snm (55) S = Son (55)] =0 m - men
sin o . Sntm ™ Sh— o sin o Son o 0, n—m € N,.

We note that numbers n — m and n + m are both odd or both even.

If sin £ = 0, we have constant eigenvalues for m € N, in Case 1andn—m € N,
in Case 2. From this equation we get that ¢ = nzk, k € N,s0 A\, = (n7k)?, k € N. If
sin & = 0, we have constant eigenvalues for m € N, (Case 1) and odd n —m € N,
(Case 2). Therefore, g, = 2n7k, k € Nin Case Land A\, = (2n7k)?, k € Nin Case
2.1
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Remark 2. Functions S;(z) = P;(cos z), where P; is the polynomial (with real inte-
ger coefficients) and deg P; = j — 1,5 > 1:

Pay(z) = k2271 — ()22 7301 = 22) o ()R 2k (1 - 2R,
Popyr(2) = 2k + 1)2% = (5122721 = 2%) 4+ (FDF( - 20,
and P, =0, P, = 1.

Remark 3. Whenn = 1 (m = 0in Case 1 or m = 1 in Case 2) we have only constant
eigenvalues.

Let us analyze non constant eigenvalues. We define functions:

fir(z) = 27P31/2(cos i) o Pn(cos E), 0<meN,,
n n

z

sin &
fir(2) = 27P3L(cos i) 2n Pgn(COS i), meN,
2n z 2n

in Case 1, and

for(2) := 2yPnym (cos i)Pn_m (cos i) T Pn<cos i) =0,
—3 n/ ~3 n/ z n

0<n—meN,,
sin &=
r(2) :=29Pp4m cosi —m cosi —= — P, cosi =0,
2 2~ P, P, 2n _ p. 0
2n n z 2n
n—méeN,
in Case 2.

Remark 4. In the case v = oo we define functions:

2\ sin £

fir(2) = QPi/Q(COS—) o 0<méeN;
n/ z

sin &
fir(2) == 2P,31(cos %) 22" , mE Ny;

sin £
for(2) := 2Pngm (cos E)Pn_m (cos i) Bl ,0<n—meN;
2 n z

2 n
_ z Z\singy (cos ) =
for(z) := 2Pn+m(cos 2n)Pn,m(cos 2n) - Py, ( cos o™ 0,

n—m € N,.

Lemma 3. There is countable number of eigenvalues, which depend on parameter
~, for every v € C and every £ € (0,1] in Case 1 and every £ € [0,1) in Case 2.
Point A\ = oo is accumulation point of those eigenvalues.

Proof. Functions fi(v/)\), k = 1,2 for irrational £ and functions fy, (VA), k = 1,2
for rational £ = » = m/n are entire transcendental functions with order of growth
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equal to % Such functions get every ~-value infinity (countable) times, and A = oo
is an accumulation point of y-values (see, [15]). B

For instance, functions f;(v/)), fi-(v/A) have infinity number of zeroes points.
We can get all non constant eigenvalues (which depend on parameter +) as y-values
of meromorphic functions defined on the set C:

. gsingq _ qsinq
’71((1) = 1— COS(E(]) - 2sm2(§q/2)’ f0r§ € (Oa 1)7§ ¢ Qa (28)
qPn(cos())
0<meN
2sin(L )P2 (cos(2))’ «

r(q) = foré =r € Q(0,1), (2.9)
Y1r(q) qP%(COb( L)) . r€Q(0,1)
2sin(gk) P2 (cos(gh)) ”

in Case 1, and
() = o
2T 26in((1+ €)g/2) sin(1 - €)q/2)”
4Py (cos(4))
2sin(4 )Pn+7n (cos(£ ))Pn n (cos(4))’
ngn(COb(%))
25in(55) Prym (cos(55)) Po—m(cos(5L))
foré =r € Q(0,1), (2.11)

for£ € (0,1),£ € Q, (2.10)

0<n—méeN,,

Yor (Q) =

n—m € N,,

in Case 2. We can use functions ~,, for rational £ too, but in this case the constant
eigenvalues points are isolated singular points.

Remark 5. The poles of the functions v1(¢), v2(q), v1-(q),v2-(q) are eigenvalues of
the problem (2.1)—(2.3) or the problem (2.1)-(2.2),(2.4) in the case v = oo.

The graphics of functions |y1,-(z/7)| and |y2,(z/7)| for various rational £ are
presented in the Fig. 1. As cosz = cos z, sin z = sin z, and polynomials P, have
real coefficients, we get similar property for functions v, and ~vg,: v(z) = v(2),

~r(2) = v (Z). So, graphics are drawn only for Im z > 0 and Re z > 0.

Proposition 1. All zeroes and poles of meromorphic functions vi¢, yir, Y2¢, yor lie
on the positive part of the real axis.

Proof. The proof directly follows from (2.8) and (2.10) and properties of sinus
function (all zeroes of this function are real numbers ¢ = k7, k € N). So, on the C,
we have only positive zeroes and poles. B

Remark 6. If & is a irrational number, then z; = 7j,j € N are zeroes of those
functions 71, 2. The points p, = 27k/€, k € N are the second order poles in Case
1 (see, formula (2.8)), and points py, = 27xk/(1+ &), k € Nand p; = 27l/(1 — &),
[ € N are the first order poles in Case 2 (see, formula (2.10)).
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5

Casel,¢{=1;Case2, (=0 Case2 &= 3

Figure 1. Functions |y1,(z/m)| and |yzr(z/m)| for various &.

Remark 7. When £ = r = m/n € Q, then a part of zeroes z; of functions 1, 2
coincide with the poles py or p;. In Case 1 points p, = 7k/m, k € N, are poles.
They are poles of the second order, except & € N,,,,,, m € No and k € No,,,,,, m €
N, (coincide with the case of constant eigenvalues) which are the first order poles.
When m = 1 and m = 2 there aren’t poles of the second order. In Case 2 if pair
(n,m) are coprime numbers then pairs (m + n,m — n), (m + n,n),(m — n,n)
are also coprime numbers. We have two families of the poles: pr, = 7k/(n + m),
k € Na,, and p; = wl/(n — m), | € Nay,. The poles from the first family coincide
with the poles from the second family in the points ¢; = i, i € N,,, n — m € N, or
g; = 7j, j € Na,, n —m € N,. These points are zeroes of sinus function too (they
coincide with the case of constant eigenvalues). So, in Case 2 all points py, & € Ny,
or p;, | € Na,, are poles of the first order.

Remark 8. We can enumerate all poles p,, & € N in the increasing order, i.e. p; <
P2 < -+ < prp = pr+1 < .... There py is the first order pole which coincide with
constant eigenvalue point. Formally we note py = 0.

From inequalities sinh |Im ¢| < |sin ¢g| < cosh(Im ¢) we get estimates
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sinh [Im cosh(Im
2 cosh”(£Im q/2) 2sinh” |€Im ¢/2]
|q| sinh |Im g| < ol
2 cosh((1 — €)Im ¢/2) cosh((1 — E)Imq/2) — 2
|q| COSh(Im q) (2.13)

< .
~ 2sinh (1 4 &)Imq/2|sinh |(1 — &)Im ¢/2|
Corollary 1. The following limits are valid: lim v, =o00, k=1,2.

Im g—+o0

3. Real Eigenvalues Case

Let us consider the case when parameter v € R. Then we investigate Sturm-Liouville
problem (2.1)—(2.3) or (2.1)—(2.2), (2.4) with real eigenfunctions and real eigenval-
ues \ € R.

Instead of ¢ € C, we take g only onrays ¢ = « > 0and ¢ = —iz, z < 0.
We have positive eigenvalues in the case of ray ¢ = « > 0 and negative eigenvalues
in the case of ray ¢ = —iz, < 0. Point ¢ = = = 0 corresponds to A = 0. For

function f : C, — C we have two restrictions on those rays: f (z) = f(z +i0) for
x> 0and f_(z) = f(0—iz) for z < 0. Function f, corresponds to the positive
eigenvalues case and function f_ to the negative eigenvalues case. We investigate all
real eigenvalues

2 for xj, >0,
)\k:{ Thy TOTTR = keN,

—z%, forz, <0

using a function f : R — C:

) fi(x), forz >0,
J@) = {f_(a:), forz < 0.

For complex functions (2.8) and (2.10) these functions are real and can be written as:

inh
y-(x) = %, forz <0,
. 2sinh”(3F)
n(@) = xsinx (3.1)

)= —+—— forz>0;

"+() 2sin2(%)
xsinh x

yo_(x) = forx <0,

_ (@) 2 sinh( ) ginh (U807 )
Y2(®) = rsinz (3.2)
You(2) = forz > 0.

2+(3) 2sin((12€)m)sin((1;§)w)

We use notation f(z;¢) or f(x) when investigate function f(z,¢) as one dimen-
sional with fixed parameter £. Graphics of functions v (z; ) and 2 (z; £) for various
& are shown in Fig. 2.
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Figure 2. Functions v1 (z/m; &) and vz (z/m; €).

Let’s enumerate all poles p, ¥ € N in the increasing order (see, Remark 8 in

Sect. 2). Functions ~y;4 (x) and 24 () are defined in intervals (o, 8) = (px—1, Pk),
k € N, where py_1 < px.

Proposition 2. Functions v, (x; &) and yo—(x; &) are monotone decreasing func-
tions for x < 0 and all £ € (0,1) and for £ = 0 in Case 2 (¢ = 1 in Case 1).
Function 2 (z; £) is monotone decreasing function in each interval («, ) for all
&€ (0,1)andfor £ =0inCase 2 (£ = 1in Case 1).

Proof. Functions ~v,_(z) and ~,_(x) are even, when z € R, and v;_(0) = 5%
72-(0) = 2@ and 71— (+00) = 72— (+00) = +o0. Therefore, we need to show
that in interval (0, +o0) these functions are increasing.

Let’s consider function y; (x) := z cothx, x > 0. It is evident that sinh z > «.
So,

, sinh(2z) — 2z

r)= —"—"

(@) 2 sinh? z

and y1 (x) is increasing positive function. Then 1/y;(z) = L tanhx is decreasing
positive function and it’s derivative is negative.

>0,

Let’s consider function y(§, z) = %tanh(ga:) —tanhz, x > 0and ¢ € (0,1).
For this function

li :x) =2 —tanhz >0, li x) =0 3.3
g_lﬁy(é,x) z —tanhz > 0, g_lg{l_y(&x) (3.3)
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for all z > 0. Its derivative with respect to £

e B 1 / B i /
Yy (&z) = (f tanh(gx)) = x(fx tanh({x)) < 0.

So, y(&; z) is monotone decreasing function in (0,1) and from (3.3) we have that

y(&x) > 0forall £ € (0,1)and all x > 0.

Let’s consider function yo(x, &) := Sijﬁ&”;) , ¢ > 0. Its derivative

/o _ coshxsinh({x) — Ecosh(§x)sinhe  {y(€, x) coshx cosh(éx)
Yo(a;8) = sinh?(¢x) B sinh?(¢x) =0

So, ya(x, £) is increasing positive function forall z > 0 and £ € (0, 1).
Function

z

_(z;6) =22
st (xaf) Sinh%

hZ, sinh?
T e 2>)2:2yl(%x)-yz(%w;f)-yz(%x;i)

sinh( %w

is monotone increasing function for = > 0 as product of monotone increasing pos-
itive functions. For ¢ = 1 function y» = 1, and proposition is valid in this case
too.

Function

Yo (58) = gcoth (%) i gcoth (@)
A=) n y1 ()
C1-¢ 1+¢

is monotone increasing positive function for z > 0 as sum of monotone increasing
positive functions.

Let’s consider function ys(z) := xcotz, x > 0, x # km, k € N. Itis evident
that sinz < z. So,

sin(2z) — 2x <

a(x) = 0,
() 2sin? z

and y3(z) is monotone decreasing function in the intervals (w(k — 1), 7k), k € N.
Function

o (3:6) = Ecot @) T ot (w)

2 2 2 2
_ w5 | w(H)
1-¢ 1+¢

is decreasing function (as sum of decreasing functions) in each interval («, 3). For
& = 0 function 24 (x;0) = 2y3(%), and proposition is valid in this case too. B

In the Sect. 2 we show that A = 0 exists if and only if v = 7¢ (see, Lemma 1),
and 7o = &0 & € (0,1] in Case 1, 70 = 172? ¢ € [0,1) in Case 2. Now from
Proposition 2 we will derive a few results for eigenvalues.
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Lemma 4. For v > -y, one negative eigenvalue exists, and for v < -, there aren’t
negative eigenvalues.

Proof. Functions ~;_ (x) and v,_ (x) are monotone decreasing functions when = <
0, 11— (—00) = y2_(—00) = oo and y1_(0) = 5% vo—(0) = % Therefore,
equation v = y,_ (), k = 1, 2 has negative root only for v > ~,.

Lemma 5. All eigenvalues of the problem (2.1)—(2.2), (2.4) with real -y are real. Each
positive eigenvalue Ax () = xz(y), where zy, € (pr—1,pk) if Pr—1 < pr OF T = i
if p—1 = pr.

Proof. The proof follows from Proposition 2 for the function 5 in the case of non
constant eigenvalues, because all constant eigenvalues are real and positive.ll

Remark 9. We enumerate eigenvalues A\, (v) = z3(7) as zx(0) = 7k, i.e. using the
case of classical boundary condition.

In Case 2 of the boundary conditions we prove the following asymptotical properties
of eigenvalues.

Corollary 2. For the problem (2.1)-(2.2), (2.4) the properties

lm ap(y) =pr, Um zp(y) =pr—1, kEN~{1}, lim z1(y)=-
y—+o0 y—+o0

Y——0o0
are valid.

In Case 1 of the boundary conditions there isn’t such simple spectrum. In this
case for real v can exist multiple and complex eigenvalues. In many cases it is nec-
essary to know when all eigenvalues are positive and non multiple, i.e. the spectrum
of analyzed problem is the same as for the classical problem. When the qualitative
root distribution depends on parameters v and &, it is necessary to find such interval
for v where the spectrum of the problem satisfies this property.

Graphics of functions hq(z) := sinz + zcosz, hao(z) := 1 — cosz — zsinz
for z > 0 are given in Fig. 3. Let us suppose that x1, x2, x5 are the first three
positive zeroes of function h; and z1, 2o, z3, 24 are the first four positive zeroes of
function ho. We define &, := m/xy and v := ap sinxg/2. Then x; =~ 2.02876,
xo = 4.91318, x3 = 7.977, & = 1.54853, & =~ 0.639421, &3 =~ 0.393743, v =
0.90985, v2 = —2.4072, v3 =~ 3.95836, z1 =~ 2.3311, 20 = 2m, 23 = 9.2084,
Z4 = 4.

Lemma6. If 5 < ~v < ~3, then all eigenvalues of the problem (2.1)-(2.3) are real
for all ¢ € (0,1), and limitary cases are realizable when £ = & and £ = &s. If
2 < v < 2, then all eigenvalues are positive and simple for all £ € (0, 1).

Proof. We can consider only non constant eigenvalues, because the constant eigen-
values (if they exist) are positive. Function ~y; . defines distribution of positive eigen-
values. We resolve ;4 in multiplicands:
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g 1\

ra)
\
T

X \g/ EE!
\/ |\

3% A0 45 sp g 60
x

a)
Figure 3. Functions hi(1) Figure 4. Function v14 (z, §).
and hz(2).
Tsinx T
1) = ———— = g(x;¢) si where g(z;¢) == ——.
14 (858) = T ey = 9w € sina), 958 = T

Graphics of the functions v 4 (z; €) and +g(x; £) for various parameter £ values are
shown in Fig. 5. As we can see, graphics of the function 1 4 (z; £) oscillates between
functions g(z; &) and —g(z; €).

Let us define function g(x;&) = ﬁs(gz) > 1. The first two poles of this
functionare x = 2% and = = 4?”. When 2 > 4?” then g(x; &) = xg(x; &) > 21 > 3.
So, in this case, the values of the function 1 (x; £) in extremum points are out the
interval [y2,v3].
sinee 1 — cos(¢a) — xsin(€a)

— COS(CT) — crsm(cx
g'(x) = —
(1 — cos(éx))
minimum points of function g(x) are i, = % k € N,, where z; are positive
roots of equation 1 — cos z — zsinz = 0. Points z = % k € N, are poles.

When = € (%%, %%) function g(z) has one minimum point and g(%,¢) =

L2 \Wehave g(z,&) > 222 > 43,

E 1—cos z3 1—cos z3
Therefore, we need to investigate function ;4 only in the first interval (0, 25—”).
If¢ < 5 theng(2,8) > g=ibm = T > 12l

Function’s ;4 (x, &) extremum points we can find from a system

(3.4)

Oyiy  (sinw +xcosx)(l — cos(éx)) + Ewsinasin(ér) 0
or (1 — cos(£x))? -
Oy & sin z sin(éx)

06 (1—cos(éx))?

This system is equivalent

=0.

{ sinx + xcosx =0, (35)

sin(éx) = 0.
For ¢ > £ function ~;4 (z;€) has one local minimum when = € (r,2m). Then

§x € (%,2m), i.e. we have only one extreme point (z2, &) and this point is saddle
(see, Fig. 4a) ¢ € [0.5,0.9], z € (m,2m)) and y14(x2,&2) = 2.
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Figure 5. Functions y4(z/7; &) and £g(x /73 &).

If & < 3 then g(a;€) > =25~ > 3. If £ > 2 function vy (2 &) hasn’t local

1—cosz3

maximum points in the interval (0, %’T). If 1 < ¢ < 2 then we have only one local
maximum point 4. and

Y14 (Tmaz, &) > g(%ﬂ, ) > 57r/(2 - 2COS(¥)) > 57T/(2 - 2(305(57”)) > 3.

If £ < ¢ < 2 then we have two local maximum points z,az, zand

max

Nt @ras €) > (%, €) > 97/ (2 — 2cos(22E)) > 97/ (2 — 2 cos(2E)) > .

If 2 < ¢ < £ then we have one local maximum point 4. SiNCE Zax € (27, 37),
then £z € (27/3,3m/2) for £ € (1/3,1/2), i.e. we have only one extreme point
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(x3,&3) and this point is saddle (see, Fig. 4 b) £ € [0.3,0.5],z € (27, 37)) and
Y1+ (23, 83) = 7.

So, for v < v < 43 horizontal line  intersects a graphic of the function ~; .
If v = 0, then we get classical case with all positive and simple eigenvalues. When
v9 < v < s all eigenvalues remain real and simple. We can enumerate as in classi-
cal case.

We have one negative eigenvalue for v > E% So, all eigenvalues will be positive
forall¢ € (0,1)ify<2.1

Remark 10. When £ = &; and v = v, or £ = & and v = 3 then we have one
multiple eigenvalue.

Remark 11. When £ = &, = 0.55 then yar = Y14 (Tmaz) = 71+(0) = 5% ~ 6.599
and all eigenvalues are positive and simple when ~,, < v < yar, Ym = —2.55.

4. Conclusions

e Sturm-Liouville problems (2.1)-(2.3) (Case 1) and (2.1)—(2.2), (2.4) (Case 2)
have similar spectrum properties in the complex plane. Both spectrums haven’t
constant eigenvalues for irrational £ and countable number of non constant and
constant eigenvalues for rational £. All constant eigenvalues are real positive
numbers.

Both problems have only one negative eigenvalue for v > ~q.

Positive parts of spectrums are different for real v case. Problem in Case 2
has only real eigenvalues. In Case 1 problem has all real eigenvalues only for
Ym (&) < v < var(€), but exists interval [v2, 3] C [Ym,vas] the same for all &.
So, in this case for some real v multiple and complex eigenvalues exist.
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Sturmo-Liuvilio uzdavinys stacionariajam diferencialiniam operatoriui su jvairaus tipo
nelokaliosiomis krastinemis sglygomis

S. Petiulyté, O. Stikoniené, A. Stikonas

Siame straipsnyje nagrinéjamas Sturmo-Liuvilio uzdavinys su viena nelokaligja integralinio
tipo krastine salyga. Pirmoje straipsnio dalyje tiriamas Sturmo-Liuvilio uzdavinys su dviejy
tipy integraline nelokaligja sglyga. |rodytos tikriniy funkcijy ir tikriniy reikSmiy bendrosios
savybés komplesingje plokStumoje. Antroje dalyje plaCiau istirtas realiyjy tikriniy reikSmiy
atvejis. Straipsnyje nagrinéjama kaip Sturmo-Liuvilio uzdavinio spektras priklauso nuo kras-
tiniy salygy parametry. Priklausomai nuo nelokaliyjy krastiniy salygy parametry, apraSytas
kokyhbinis tikriniy reikSmiy pasiskirstymas.



