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Abstract. For singularly perturbed boundary value problems, numerical methods conver-
gentε-uniformly have the low accuracy. So, for parabolic convection-diffusion problem the
order of convergence does not exceed one even if the problem data are sufficiently smooth.
However, already for piecewise smooth initial data this order is not higher than1

2
. For prob-

lems of such type, using newly developed methods such as the method based on the asymptotic
expansion technique and the method of the additive splitting of singularities, we constructε-
uniformly convergent schemes with improved order of accuracy.

Key words: singular perturbation, boundary layer, parabolic convection-diffusion equation,
difference scheme, parameter-uniform convergence, high-order accuracy

1. Introduction

Solutions of singularly perturbed convection-diffusion problems have boundary lay-
ers controlled by a perturbation parameterε. This parameter multiplies the highest
space derivatives in equations and is related to the thickness of the boundary layer. It
is well known that standard numerical methods give large errors in discrete solutions
(comparable with the exact solution) whenε becomes small. That is why robust nu-
merical methods, i.e., methods whose errors are independent of the parameterε (or in
short,ε-uniform methods), are very important. At present robust numerical methods
have been developed for various problems with boundary layers. However, the order

1 This research was supported by the Russian Foundation for Basic Research under grants
No. 04–01–00578, 04–01–89007–NWO_a, by the Netherlands Research Organisation
NWO under grant No. 047.016.008 and by the Boole Centre for Research in Informatics at
the National University of Ireland, Cork.
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of accuracy for suchε-uniform special numerical methods does not exceed one for
convection-diffusion equations in the maximum norm (see, e.g., [2, 12, 13, 18] and
also the bibliography therein). The low rate ofε-uniform convergence is a significant
restriction to use such methods in practice.

Thus, the development ofε-uniformly convergent numerical methods of high-
order accuracy is sufficiently actual task for singularly perturbed problems. We men-
tion existing techniques used when constructingε-uniformly convergent finite dif-
ference schemes with improved accuracy such as well elaborated:

(a) the defect correction method,
(b) the Richardson extrapolation method,

and anew created

(c) the method based on the asymptotic expansion technique,
(d) the method of the additive splitting of singularities.

Methods based on approaches (a) and (b) are discussed in [3, 4, 7, 6, 8, 9] and
[15, 20, 25]; approaches (c) and (d) are given in [21, 22, 24] and [10, 19, 23], respec-
tively, see the references therein. These approaches, which use the technique based
on piecewise uniform meshes condensing in the layer region,allow us to construct
effective numerical methods for a sufficiently wide class ofboundary value problems
to elliptic and parabolic equations whose solutions exhibit layer phenomena. Orig-
inally, condensing mesh technique for singularly perturbed problems was invented
by N.S. Bakhvalov in 1969 [1], and was developed in subsequent publications (see,
e.g., [2, 12, 18] and also the bibliography therein).

In the present paper, in order to demonstrate the techniques(c) and (d), we focus
our attention on singularly perturbed parabolic convection-diffusion equations with
smooth (Sections 2–4) and piecewise smooth initial data (Sections 5–8).

2. Problem with Smooth Data. Aim of Research

On the setG
G = G

⋃
S, G = D × (0, T ], (2.1)

whereD = (0, d), we consider the boundary value problem for the parabolic equa-
tion

Lu(x, t) = f(x, t), (x, t) ∈ G, u(x, t) = ϕ(x, t), (x, t) ∈ S. (2.2)

Here

L ≡ ε a(x, t)
∂2

∂x2 + b(x, t)
∂

∂x
− c(x, t) − p(x, t)

∂

∂t
, (x, t) ∈ G,

the functionsa(x, t), b(x, t), c(x, t), p(x, t), f(x, t) andϕ(x, t) are assumed to be
sufficiently smooth onG andS, respectively, moreover1

1 Throughout this paper,M, Mi (or m) denote sufficiently large (small) positive constants
that do not depend onε and on the discretization parameters.
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a0 ≤ a(x, t) ≤ a0, b0 ≤ b(x, t) ≤ b0, c0 ≤ c(x, t) ≤ c0, p0 ≤ p(x, t) ≤ p0,

(2.3)
|f(x, t)| ≤M, (x, t) ∈ G; |ϕ(x, t)| ≤M, (x, t) ∈ S; a0, b0, c0, p0 > 0;

the perturbation parameterε takes arbitrary values in(0, 1].
Assume that the data of problem (2.2), (2.1) on the set of corner pointsS∗ =

S0 ∩ S
L

satisfy the compatibility conditions which ensure the required smoothness
of the solution onG (see, e.g., [11]). HereS = S0 ∪ SL, S0 andSL are the lower
and lateral boundaries;S0 = S0.

For smallε, a regular boundary layer appears in a neighbourhood of the set

Sl = {(x, t) : x = 0, 0 < t ≤ T }.

HereSl andSr are the left and right parts of the lateral boundary:SL = Sl ∪ Sr.

Let us give anε-uniformly convergent finite difference scheme constructed by
a classical approximation of problem (2.2), (2.1). On the set G we introduce the
rectangular mesh

Gh = ω × ω0, (2.4)

whereω andω0 are arbitrary, generally speaking, non-uniform meshes on the seg-
ments[0, d] and[0, T ], respectively. Let

hi = xi+1 − xi, xi, xi+1 ∈ ω, h = max
i
hi,

hk
t = tk+1 − tk, tk, tk+1 ∈ ω0, ht = max

k
hk

t .

Assume thath ≤ M N−1, ht ≤ M N−1
0 , whereN + 1 andN0 + 1 are the number

of nodes in the meshesω andω0, respectively.
Problem (2.2), (2.1) is approximated by the finite difference scheme [14]

Λz(x, t) = f(x, t), (x, t) ∈ Gh, z(x, t) = ϕ(x, t), (x, t) ∈ Sh. (2.5)

HereGh = G
⋂
Gh, Sh = S

⋂
G,

Λ ≡ ε a(x, t) δxbx + b(x, t) δx − c(x, t) − p(x, t) δt, (x, t) ∈ Gh,

δx bx z(x, t) is the second central difference derivative on a nonuniformmesh,

δx bx z(x, t) = 2(hi + hi−1)−1[δx z(x, t) − δx z(x, t)], (x, t) = (xi, t) ∈ Gh;

δx z(x, t) andδx z(x, t) are the first (forward and backward) derivatives.

Scheme (2.5), (2.4) is monotone [14]ε-uniformly. In the case of uniform meshes
in both variables

Gh = ω × ω0, (2.6)

using the maximum principle, we obtain the estimate

|u(x, t) − z(x, t)| ≤M [(ε+N−1)−1N−1 +N−1
0 ], (x, t) ∈ Gh, (2.7)

i.e. the scheme converges asN−1 ≪ ε, N, N0 → ∞.
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We now construct the base scheme that convergesε-uniformly (see, e.g., [6, 7, 8,
18]). On the setG we introduce the mesh

Gh = ω∗ × ω0, (2.8a)

whereω0 = ω0(2.6), ω
∗ is a piecewise uniform mesh constructed as follows. The

segment[0, d] is divided into two parts[0, σ] and [σ, d], where the step-sizes are
constant and equal toh(1) = 2 σN−1 andh(2) = 2(d − σ)N−1, respectively. The
parameterσ is defined by

σ = σ(ε, N, l) = min [ 2−1 d, lm−1 ε lnN ], (2.8b)

wherem is an arbitrary number from(0,m0), m0 = minG[a−1(x, t) b(x, t)]. Here

l = 1. (2.8c)

In other piecewise-uniform meshes this parameter will be chosen. Thus the meshes
ω∗ andGh = Gh(l = 1) are constructed.

For solutions of scheme (2.5), (2.8) we obtain theε-uniform estimate

|u(x, t) − z(x, t)| ≤M
[
N−1 lnN +N−1

0

]
, (x, t) ∈ Gh. (2.9)

Theorem 1.Let the solutionu(x, t) of problem(2.2), (2.1) satisfies the estimates
from Theorem2, whereK = 4. Then the difference scheme(2.5), (2.8) (scheme
(2.5), (2.6)) convergesε-uniformly (for fixed values of the parameterε). The numer-
ical solutions satisfy estimates(2.7) and(2.9).

For the boundary value problem (2.2), (2.1), our aim is to develop a finite differ-
ence scheme convergentε-uniformly with accuracy higher than the first order, using
the technique based on asymptotic constructs.

3. A Priori Estimates and the Asymptotic Construction for
Problem (2.2), (2.1)

Here we givea priori estimates of the solutions and derivatives for problem (2.2),
(2.1); the derivation of these estimates is similar to that in [6, 7, 8, 18].

We represent the solution of the problem as the sum of functions

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G, (3.1)

whereU(x, t) andV (x, t) are the regular and singular parts of the solution. The
functionU(x, t), (x, t) ∈ G is the restriction, toG, of the functionUe(x, t), (x, t) ∈
G

e
, which is a solution of the “extended” problem obtained by extension of problem

(2.2), (2.1) beyond the left boundarySl, so thatG ⊂ G
e
, with retention of properties

similar to (2.3). The functionV (x, t), (x, t) ∈ G, is the solution of the problem

{
L(2.2) V (x, t) = 0, (x, t) ∈ G,

V (x, t) = ϕ(x, t) − U(x, t), (x, t) ∈ S.



Robust High-Order Accurate Numerical Methods 397

For simplicity, besides sufficient smoothness of the data inproblem (2.2), (2.1), we
assume that

∂k

∂xk
ϕ(x, t),

∂k0

∂tk0

ϕ(x, t),
∂k+k0

∂xk∂tk0

f(x, t) = 0, (x, t)∈S∗, k, k0 ≤ l, (3.2)

wherel = 3n+ 2, n ≥ 1. In this case

u, U, V ∈ Cl1, l1(G), l1 = n+ 1 + α, α ∈ (0, 1);

for U(x, t) andV (x, t) we obtain the estimates (a technique can be found in [5])

∣∣∣∣
∂k+k0

∂xk∂tk0

U(x, t)

∣∣∣∣ ≤M [1 + εn+1−k−k0 ],

(3.3)∣∣∣∣
∂k+k0

∂xk∂tk0

V (x, t)

∣∣∣∣ ≤M ε−k exp(−mε−1 x), (x, t) ∈ G, k + k0 ≤ K,

wherem is any number from the interval(0,m0),m0 = m0(2.8); K = n+ 1.

Theorem 2.Let the data of the boundary value problem(2.2), (2.1) satisfy the con-
dition a, b, c, p ∈ Cl, l(G), f ∈ Cl, l,(G), ϕ ∈ Cl, l(G), l = 3n + 2, n ≥ 1,
and also condition(3.2). Then the solution of the problem and its components in
representation(3.1) satisfy estimates(3.3), whereK = n+ 1.

We now give the formulations of problem for main terms in the asymptotics of the
solution that are considered in a neighbourhood of the boundary layer and outside it.
We will use these problem formulations when constructing schemes for small values
of the parameter. The setG can be represented in the form of a sum of two sets

G = G
(1) ⋃

G
(2)
, S (k) = G

(k)
\G (k), k = 1, 2; (3.4)

G (1) = (0, σ) × (0, T ], G (2) = [σ, d) × (0, T ].

The condition imposed on the parameterσ is given below (in (3.6a) ).

Let us introduce the functionu2(x, t), (x, t) ∈ G
(2)

, i.e., two first terms in the
outer asymptotic expansion of the solution of problem (2.2), (2.1). We assume

u2(x, t) = u2
0(x, t) + ε u2

1(x, t), (x, t) ∈ G
(2)
.

The componentsu2
i (x, t) can be found by solving the problems

{
L(1) u2

0(x, t) = f(x, t), (x, t) ∈ G (2),

u2
0(x, t) = ϕ(x, t), (x, t) ∈ S (2),

(3.5a)

{
L(1) u2

1(x, t) = −a(x, t) ∂2

∂x2 u
2
0(x, t), (x, t) ∈ G (2),

u2
1(x, t) = 0, (x, t) ∈ S (2),

(3.5b)

where
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L(1) u(x, t) ≡

{
b(x, t)

∂

∂x
− c(x, t) − p(x, t)

∂

∂t

}
u(x, t), (x, t) ∈ G (2).

We say that the functionu2(x, t), (x, t)∈G
(2)
, is the solution of problem (3.5a;3.5b).

Then we find the functionu1(x, t), (x, t) ∈ G
(1)

by solving the problem

L(2.2) u
1(x, t) = f(x, t), (x, t) ∈ G (1), (3.5c)

u1(x, t) =

{
ϕ(x, t), (x, t) ∈ S (1)

⋂
S,

u2(x, t), (x, t) ∈ S (1) \ S.

The functionu1(x, t) is a solution of the parabolic equation, but in a small (inx)
subdomain.

Using asymptotic expansions of the components in representation (3.1) of the
solutionu(x, t), provided that

σ = σ(ε, δ) = min
(
2−1 d, q m−1 ε ln(1/δ)

)
, (3.6a)

whereq ≥ 1, m = m(3.3) and δ is a sufficiently small number, we find the estimate

|u(x, t) − uk(x, t)| ≤M
(
ε2 + δq

)
, (x, t) ∈ G

(k)
, k = 1, 2. (3.6b)

Theorem 3.Let the hypothesis of Theorem2 for l = 4 be fulfilled. Then the func-

tionsuk(x, t), (x, t) ∈ G
(k)

, k = 1, 2, satisfy estimate(3.6b)under condition(3.6a).

Remark 1.When the domainG is subdivided into subdomains (3.4), (3.6a) forδ ≈ ε,
q ≥ 2, the solutions of subproblems (3.5a; 3.5b), (3.5c) define onthe subdomains

G
(k)

the functionsuk(x, t), k = 1, 2, which approximate the solution of the bound-
ary value problem (2.2), (2.1) with accuracyO(ε2).

4. Schemes with Improved Accuracy for Problem (2.2), (2.1)

4.1. Scheme with improved convergence for finiteε

Here we give anε-uniformly convergent difference scheme having (unlike scheme
(2.5), (2.8)) the rate ofε-uniform convergence of order close to two inx, for not too
small values of the parameterε, and of the second order int. The finite difference
scheme is constructed by approximation of problem (2.2), (2.1) using the first cen-
tral difference derivatives inx and the defect correction for the implicit difference
derivative int.

On the setG, we introduce the family of meshes

Gh = G
s

h ≡ ω s × ω0, (4.1a)

whereω0 = ω0(2.8), ω
s is a piecewise uniform mesh onD; ω s = ω ∗

(2.8)(σ) under
the condition
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σ = σ(ε,N, l = 2) = min
(
2−1 d, 2m−1 ε lnN

)
, m = m(3.3). (4.1b)

On the meshGh we consider the difference scheme
{
Λ(2)z(x, t) = f(x, t), (x, t) ∈ Gh,

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.
(4.2)

Here

Λ(2)z(x, t) ≡ {Λ2 + Λ1} z(x, t),

Λ2 z(x, t) ≡ {ε a(x, t) δxbx + b(x, t) δex} z(x, t), (x, t) ∈ Gh ∩G(1),

δex is the first order central difference derivative;

Λ2z(x, t)≡

{
{εa(x, t)δxbx + b(x, t)δex}z(x, t), if εN ≥M0

{εa(x, t)δxbx + b(x, t)δx}z(x, t), if εN < M0

}
, inGh ∩G(2),

Λ1 z(x, t) ≡ {−p(x, t) δt − c(x, t)} z(x, t), (x, t) ∈ Gh,

G
(k)

= G
(k)

(3.4)(σ), σ = σ(4.1), M0 is any number satisfying the condition

M0 ≥ 2 d max
G

(
a−1(x, t) b(x, t)

)
.

Scheme (4.2), (4.1) is monotoneε-uniformly. For solutions of scheme (4.2),
(4.1), usinga priori estimates (3.3) and the maximum principle, we obtain the esti-
mate for(x, t) ∈ Gh:

|u(x, t) − z(x, t)| ≤

{
M [N−1 +N−1

0 ] for εN < M0

M [N−2 (ε+ ln−1N)−2 +N−1
0 ] for εN ≥M0

}
,

whereM0 = M0(4.2). We have also theε-uniform estimate

|u(x, t) − z(x, t)| ≤M
[
N−1 +N−1

0

]
, (x, t) ∈ Gh. (4.3)

Thus, scheme (4.2), (4.1) convergesε-uniformly with first-order accuracy.

Remark 2. The use of the first central difference derivative inx for not too small
values of the parameterε, precisely, for

εN ≥M0(4.2), (4.4)

allowed us to obtain the order of the convergence rate inx close to two. According
to (4.3),

|u(x, t) − z(x, t)| ≤M
[
N−2

(
ε+ ln−1N

)−2
+N−1

0

]
, (x, t) ∈ Gh,

this estimate isunimprovablewith respect toN, N0, ε (i.e. the estimate can not be
improved with respect any one of the variablesN , N0 or ε without loss of accuracy
with respect to other variables).
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We now give a difference scheme of improved convergence ratewith respect tot
under condition (4.4). For this we apply an approach based onthe defect correction
technique (see, e.g., [8]); we use scheme (4.2), (4.1) as thebase scheme.

We approximate problem (2.2), (2.1) by the difference scheme
{
Λ

(2)
(4.2)z

(2)(x, t) = f(x, t) + ψ0(x, t), (x, t) ∈ Gh,

z(2)(x, t) = ϕ(x, t), (x, t) ∈ Sh.
(4.5a)

HereΛ(2) = Λ
(2)
(4.2),Gh = Gh(4.1), ψ0(x, t) is the correcting term

ψ0(x, t) = ψ0
(
x, t; z(1)(·)

)
≡

1

2
τ p(x, t)






δ2 t z
(1)(x, t), t ≥ 2τ

∂2

∂t2
u(x, 0), t = τ




 , (4.5b)

z(1)(x, t), (x, t) ∈ Gh, is the solution of the discrete problem (4.2), (4.1),δ2 t z(x, t)
is the backward second-order difference derivative

δ2 t z(x, t) = (δt z(x, t) − δt z(x, t− τ)) /τ, (x, t) ∈ Gh, t ≥ 2τ,

τ is the step size of the meshω0 in (4.1),τ = T N−1
0 ; the derivative∂

2

∂t2
u(x, 0),

x ∈ D, can be found by virtue of the differential equation in (2.2). We call the
functionz(2)(x, t), (x, t) ∈ Gh, the solution of the difference scheme (4.5), (4.2),
(4.1), (4.4). For simplicity, we assume that the coefficientsa(x, t), b(x, t) satisfy the
condition

a(x, t) = g(x) b(x, t), (x, t) ∈ G (4.6)

(for example,a(x, t), b(x, t) do not depend ont), and the initial condition is homo-
geneous:

ϕ(x, t) = 0, (x, t) ∈ S0. (4.7)

Note that, under condition (4.7), the derivative∂
2

∂t2
u(x, 0) required to compute

the functionψ(0)
(4.5b)(x, t) for t = τ is determined by

∂2

∂t2
u(x, 0)=−p−1(x, t)

{
ε a(x, t)

∂2

∂x2
+ b(x, t)

∂

∂x
− c(x, t) −

∂

∂t
p(x, t)

}

×
{
p−1(x, t) f(x, t)

}
− p−1(x, t)

∂

∂t
f(x, t), (x, t) ∈ S0.

In the case of conditions (4.6), (4.7), the following estimate holds for the solution
of scheme (4.5), (4.2), (4.1), (4.4) (see its proof for a linear problem, e.g., in [7]):

|u(x, t) − z(2)(x, t)| ≤M
[
N−2(ε+ ln−1N)−2 +N−2

0

]
, (x, t) ∈ Gh, (4.8)

this estimate is unimprovable with respect toN, N0, ε. We have also theε-uniform
estimate

|u(x, t) − z(2)(x, t)| ≤M
(
N−2 ln2N +N−2

0

)
, (x, t)∈ Gh. (4.9)

Thus, for not too small values of the parameterε (for εN ≥ M0(4.2)) the differ-
ence scheme(4.5), (4.2), (4.1), (4.4) convergesε-uniformly with the order of the
convergence rate close to two inx and equal to two int.
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Theorem 4.Let conditions(4.6), (4.7), and also the estimates from Theorem2 for
K = 6 be fulfilled. Then the difference scheme(4.5), (4.2), (4.1), (4.4) convergesε-
uniformly. The numerical solutions under condition(4.4) satisfy estimates(4.8) and
(4.9), which are unimprovable with respect toN, N0, ε andN, N0, respectively.

4.2. Schemes based on asymptotic constructs

For small values of the parameterε, we construct a higher-order accurate scheme by
approximating problems (3.5a)–(3.5c).

The gridGh(4.1) is decomposed into the sum of grid sets

Gh = G
(1)

h

⋃
G

(2)

h , G
(k)

h = G
(k) ⋂

Gh, Γ
(k)

h = Γ (k) ⋂
Gh, k = 1, 2, (4.10)

where
G

(k)
= G

(k)

(3.4) = G
(k)

(3.4)(σ), σ = σ(4.1).

On the gridG
(2)

h , we approximate problem (3.5a), (3.5b) by the difference scheme
{
Λ(1) z2

0(x, t) = f(x, t), (x, t) ∈ G
(2)
h ,

z2
0(x, t) = ϕ(x, t), (x, t) ∈ S

(2)
h ,

(4.11a)

{
Λ(1)z2

1(x, t)=−a(x, t)δxx z
2
0(x, t)+ψ1(x, t)+ψ0(x, t), (x, t)∈ G

(2)
h ,

z2
1(x, t) = 0, (x, t) ∈ S

(2)
h .

(4.11b)
Here

Λ(1)z(x, t) ≡
{
b(x, t) δx − c(x, t) − p(x, t) δt

}
z(x, t), (x, t) ∈ G

(2)
h ,

ψ1(x, t) ≡ 2−1ε−1hi b(x, t)

{
δxx z

2
0(x, t), x > σ

δxx z
2
0(x̂, t), x = σ

}
, hi = xi+1 − xi,

ψ0(x, t) = ε−1 ψ0
(4.5)

(
x, t; z

(2)
0 (·)

)
,

δxx z
2
0(x̂, t) = δxx z

2
0(xi+1, t), x = xi.

The function

z2(x, t) = z2
0(x, t) + ε z2

1(x, t), (x, t) ∈ G
(2)

h ,

is called the solution of problem (4.11a), (4.11b). The operatorΛ(1) is monotone.

For the functionz2(x, t), (x, t) ∈ G
(2)

h , we obtain the estimate

|u2(x, t) − z2(x, t)| ≤M
(
ε2 +N−2 +N−2

0

)
, (x, t) ∈ G

(2)

h . (4.12)

Note that the functionz2
0(4.11a)(x, t), (x, t) ∈ G

(2)

h , approximates the function

u2
0(3.5a)(x, t) only with the first-order accuracy. The use of the additionalcorrecting

terms
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1

2

(
hi b(x, t) δxx + τ p(x, t) δ2t ) z2

0(x, t)

in the equation from (4.11b) to compute the functionz2
1(x, t) allows us to improve

the approximation of the functionu2
(3.5a; 3.5b)(x, t) and the accuracy of the numerical

solution of problem (2.2), (2.1) onG
(2)

(see estimate (4.12) onG
(2)

h ).

On the gridG
(1)

h(4.10), problem (3.5c) is approximated by the difference scheme






Λ1 z1(x, t) ≡
{
ε a(x, t)δxx + b(x, t)δex − c(x, t) − p(x, t)δt

}
z1(x, t)

= f(x, t), (x, t) ∈ G
(1)
h ,

z1(x, t) =





ϕ(x, t), (x, t) ∈ S

(1)
h

⋂
S,

z2(x, t), (x, t) ∈ S
(1)
h \ S.

(4.13)

The operatorΛ1 is monotone on the grid setG(1)
h . The proximity of the solutions

of the boundary value problem (3.5c) on the setG
(1)

h and of its numerical approxi-
mation (4.13) follows from thea priori estimates for the solution of the differential
problem and from the proximity of the functionsu2(x, t) and z2(x, t) on the set

S
(1)
h

⋂
G

(2)
. For the functionz1(x, t), (x, t) ∈ G

(1)

h , we obtain the estimate

|u1(x, t) − z1(x, t)| ≤M
(
ε2 + ε

lnN

N0
+N−2(ε+ ln−1N)−2 +N−2

0

)
. (4.14)

On the gridGh(4.1), we define the functionz(x, t) by the relation

z(x, t) =
{
zk(x, t), (x, t) ∈ G

(k)

h , k = 1, 2
}
, (x, t) ∈ Gh, (4.15)

wherezk(x, t), (x, t) ∈ G
(k)

h , are the solutions of problems (4.11a; 4.11b) and
(4.13). The functionz(4.15)(x, t), (x, t) ∈ Gh, is called the solution of the difference
scheme (4.11), (4.1).

For the solution of scheme (4.11), (4.1), by virtue of bound (4.14), we have the
estimate for(x, t) ∈ Gh:

|u(x, t) − z(x, t)| ≤M
(
ε2 + ε

lnN

N0
+N−2 (ε+ ln−1N)−2 +N−2

0

)
. (4.16)

Remark 3.For sufficiently small values of the parameterε (for ε ≤M N−1) scheme
(4.11), (4.1) convergesε-uniformly at the rateO(N−2 ln2N +N−2

0 ):

|u(x, t) − z(x, t)| ≤M
(
N−2 ln2N +N−2

0

)
, (x, t) ∈ Gh, (4.17)

this estimate is unimprovable (with respect toN, N0 for ε ≤M N−1).

The scheme of improvedε-uniform convergence order forε ∈ (0, 1] is con-
structed on the basis of schemes (4.5), (4.2), (4.1) and (4.11), (4.1). For ε ≥ ε0,
where

ε0 = ε0(N) = M0
(4.2)N

−1, (4.18)
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we use scheme (4.5), (4.2), (4.1), (4.4), while forε < ε0 we use scheme (4.11),
(4.1). The functionz(x, t), (x, t) ∈ Gh, constructed in this way is called the solution
of the difference scheme (4.5), (4.2), (4.11), (4.18), (4.1).

From estimates (4.8), (4.9) and (4.17) it follows that the solution of scheme (4.5),
(4.2), (4.11), (4.18), (4.1) satisfies the estimate

|u(x, t) − z(x, t)| ≤M

{
N−2 ln2N +N−2

0 , ε < ε0

N−2
(
ε+ ln−1N

)
−2

+N−2
0 , ε ≥ ε0

}
, (x, t) ∈ Gh,

(4.19a)
and also theε-uniform estimate

|u(x, t) − z(x, t)| ≤M
[
N−2 ln2N +N−2

0

]
, (x, t) ∈ Gh. (4.19b)

Estimates (4.19a) and (4.19b) are unimprovable with respect toN, N0, ε andN, N0,
respectively. Scheme (4.5), (4.2), (4.11), (4.18), (4.1) convergesε-uniformly with the
second order inx up to a logarithmic factor and with the second order int.

Theorem 5.Let the data of the boundary value problem(2.2), (2.1) and its solu-
tions satisfy the hypotheses of Theorem4. Then the solutions of the difference scheme
(4.5), (4.2), (4.11), (4.18), (4.1) asN, N0 → ∞ converges to the solution of prob-
lem(2.2), (2.1) ε-uniformly at the rateO(N−2 ln2N +N−2

0 ). The numerical solu-
tions satisfy the unimprovable estimates(4.19).

Remark 4.For fixed values of the parameterε, scheme (4.5), (4.2), (4.11), (4.18),
(4.1) converges with the second-order accuracy.

5. Statement of the Problem with Piecewise Smooth Initial Data.
Aim of Study

In the domainG with boundaryS, where

G = G ∪ S, G = D × (0, T ], D = {x : x ∈ (−d, d)}, (5.1)

we consider the Dirichlet problem for the singularly perturbed parabolic equation
with constant coefficients and piecewise-smooth initial data

{
L(5.2) u(x, t) = f(x, t), (x, t) ∈ G,

u(x, t) = ϕ(x, t), (x, t) ∈ S.
(5.2)

Here

L(5.2) ≡ ε a
∂2

∂x2
+ b

∂

∂x
− c− p

∂

∂t
,

a, b, p > 0, c ≥ 0, the right-hand sidef(x, t) is sufficiently smooth onG. The
boundary functionϕ(x, t) is continuous onS, sufficiently smooth on the setSL,
and piecewise smooth on the setS0. For t = 0 the firstx-derivative of the function
ϕ(x, t) has a discontinuity of the first kind on the setS(∗). Here
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S∗ = S \ S(∗), S(∗) = {(x, t) : x = t = 0}, S = SL ⋃
S0,

SL andS0 = S0 are the lateral and lower parts of the boundaryS,

SL = Sl ⋃Sr, S∗

0 = S0 \ S
(∗),

whereSl andSr are the left and right parts of the lateral boundarySL.

By a solution of problem (2.2), we mean a functionu ∈ C(G) ∩ C 2,1(G) that
satisfies the differential equation onG and the boundary condition onS. For sim-
plicity, we assume that compatibility conditions ensuringlocal smoothness of the

solution for fixedε [11] are fulfilled on the setS∗ = S0 ∩ S
L

. Suppose that on the

setG
δ
, i.e., theδ-neighbourhood of the setS∗, the inclusion

u ∈ Cl+α,(l+α)/2(G
δ
), l ≥ 2, α ∈ (0, 1) (5.3)

is satisfied. The derivative∂
∂x

u(x, t) is continuous onG
∗

, whereG
∗

= G \ S (∗);

for fixedε, it is bounded onG
∗

and discontinuous onS (∗).

We are interested in a numerical approximation to the solutionu(x, t), (x, t) ∈
G. Let us specify the behaviour of the solution. Let

S γ = {(x, t) : x = γ(t), (x, t) ∈ G},

and letx = γ(t), t ≥ 0, be the characteristic of the reduced equation passing through
the point(0, 0). As ε → 0, in the neighbourhood of the setsS l andSγ there appear
boundary and transient layers with typical scalesε andε1/2, respectively, unlike the
boundary layer, the transient layer is weak (the firstx-derivative of the transient-layer
function is boundedε-uniformly; see estimates (6.4) in Section 6). For simplicity, we
assume that the characteristicS γ does not meet the boundaryS l, that is, the transient
and boundary layers do not interact.

The classical finite difference scheme for problem (5.2), (5.1) in the case of
piecewise uniform meshes condensing in the layers converges ε-uniformly at the
rateO(N−1/2 + N

−1/2
0 ) (see estimate (7.6) for solutions of scheme (7.2), (7.5) in

Section 7). This rate of convergence is essentially lower than that for problems with
sufficiently smooth data.

Our aim is to construct a numerical method that convergesε-uniformly at the rate
O(N−1 lnN +N−1

0 ) for the problem (5.2), (5.1).
Note that under condition (7.9) below, when the main term of the transient

layer (the functionW1(x, t) in representation (6.3)) vanishes (see (7.8)), the clas-
sical difference scheme on a piecewise uniform mesh converges ε-uniformly at
the rateO(N−1 lnN + N−1

0 ). Thus, to construct a scheme with improved con-
vergence it seems appropriate to apply the method of the additive splitting of
singularities when the componentW1(x, t) generated by the discontinuity in the

derivative ∂
∂x

ϕ(x, 0) is separated. The remaining part of the solution (the function
w(x, t) = u(x, t) − W1(x, t)), which is a solution of the boundary value prob-
lem with an initial function having continuous firstx-derivative, can be found using
schemes on piecewise uniform meshes. Such an approach is applied here to construct
an improved scheme for problem (5.2), (5.1).
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6. A Priori Estimates for Problem (5.2), (5.1)

To derive estimates for the solution of problem (5.2) and itsderivatives, we apply
the technique from [16, 17, 18]. We assume that the functionsf(x, t) andϕ(x, t)

are sufficiently smooth on the setsG andS
L

, S0+, S0−, respectively, and also the
solution of the problem satisfies condition (5.3), wherel ≥ K − 2,K ≥ 4.

The setG is decomposed into the sum of overlapping sets

G =
⋃

jG
j
, j = 1, 2, 3, (6.1)

where

G 1 = G 1(m1) =
{

(x, t) : |x− γ(t)| < m1, t ∈ (0, T ]
}
,

G 2 = G 2(m2) =
{

(x, t) : x ∈ (−d, −d+m2), t ∈ (0, T ]
}
,

G 3 = G 3(m3) = G \
{
G1(m3)

⋃
G2(m3)

}
, m3 < m1, m2,

G 1 andG 2 are the neighbourhoods of the transient and boundary layers, respec-

tively; let G
1 ⋂

G
2

= ∅. We denote the solution of problem (5.2), (5.1) considered

on the setG
j

by u j(x, t), j = 1, 2, 3. Using the results from [16, 17, 18] we find
the estimate

∣∣∣∣
∂k+k0

∂xk∂tk0

u 3(x, t)

∣∣∣∣ ≤M, (x, t) ∈ G
3
, k + 2k0 ≤ K. (6.2)

The value ofK is defined by the problem data;K ≥ 4.

Let us discuss a behaviour of the solutionu 1(x, t) on the setG
1
. We represent

the functionu 1(x, t), (x, t) ∈ G
1
, in the form of the sum of functions

u 1(x, t) = U 1(x, t) +W 1(x, t), (x, t) ∈ G
1
, (6.3a)

whereU 1(x, t) andW 1(x, t) are the regular and singular parts of the solutions,

U 1(x, t) = U 1(x, t; i) = U(x, t) +
K−1∑

k=i+1

Wk(x, t), (x, t) ∈ G
1
; (6.3b)

W 1(x, t) = W 1(x, t; i) =
i∑

k=1

Wk(x, t), (x, t) ∈ G,

andi takes one of the values, either1 or 2. HereU(x, t), (x, t) ∈ G
1
, is the compo-

nent of the solution to the inhomogeneous equation from (5.2) havingε-uniformly
bounded derivatives inx andt up to the ordersK and2−1K respectively. The func-
tionsWk(x, t), (x, t) ∈ IR × [0, T ], are solutions of the Cauchy problems

L(5.2)Wk(x, t) = 0, (x, t) ∈ IR × (0, T ], k = 1, . . . ,K − 1,

Wk(x, 0) = 2−1 (k!)−1

[
∂k

∂xk
ϕ(x, 0)

]
|x|xk−1, x ∈ IR.
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Here
[
∂k

∂xk
ϕ(x, 0)

]
=

∂k

∂xk
ϕ(+0, 0) −

∂k

∂xk
ϕ(−0, 0), x = 0, k ≥ 1

is the jump of the derivative∂
k

∂xkϕ(x, 0) when passing through the pointx = 0. For

example, the functionW1(x, t) is defined by

W1(x, t) = (6.3c)

=
1

2

[
∂

∂x
ϕ(0, 0)

]{(
x− γ(t)

)
v
(
2−1 ε−1/2 a−1/2 p1/2 (x− γ(t)) t−1/2

)

+2π−1/2ε1/2a1/2p−1/2 t1/2 exp
(
− 4−1ε−1a−1p(x− γ(t))2 t−1

)}
exp(−αt),

v(ξ) = erf (ξ) = 2 π−1/2

∫ ξ

0

exp(−α2)dα, ξ∈ IR; γ(t) =−bp−1t, α = cp−1.

For the components in representation (6.3), taking into account the explicit form
of the functionsWk(x, t), k = 1, . . . ,K − 1, we find the estimates

∣∣∣∣
∂k+k0

∂xk∂tk0

U1(x, t)

∣∣∣∣ ≤M
[
1 + ε(i+1−k−k0)/2ρi+1−k−k0

+ε(i+1−k)/2ρi+1−k−2k0

]
, (x, t) ∈ G

1
, (6.4)

∣∣∣∣
∂k+k0

∂xk∂tk0

W 1(x, t)

∣∣∣∣ ≤M
[
1 + ε (1−k−k0)/2 ρ 1−k−k0 + ε (1−k)/2 ρ 1−k−2k0

]
,

(x, t) ∈ G; k + 2k0 ≤ K, i = 1, 2,

where
ρ = ρ(x, t; ε) = ε−1/2

∣∣x− γ(t)
∣∣ + t1/2,

m is an arbitrary constant.

We now consider the solutionu 2(x, t) of problem (5.2), (5.1) on the setG
2
. The

solution can be represented as the sum of functions

u 2(x, t) = U 2(x, t) + V 2(x, t), (x, t) ∈ G
2
, (6.5)

whereU 2(x, t) andV 2(x, t) are the regular and singular parts of the solution. The

functionU 2(x, t) is the restriction of the functionU e(x, t), (x, t) ∈ G
2e

, to the set

G
2
. HereUe(x, t) is a solution of the problem

{
L(5.2) U

e(x, t) = fe(x, t), (x, t) ∈ G 2e,

Ue(x, t) = ϕe(x, t), (x, t) ∈ S 2e.

The domainG 2e is an extension of the domainG 2 beyond the boundaryS l. The
right-hand sidefe(x, t) is a smooth continuation of the functionf(x, t). The function
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ϕ e(x, t) is smooth on each piecewise-smooth part of the setS 2e, and it coincides
with the functionsϕ(x, t) andu 1(x, t) on the setsS 2∩S0 andS 2∩G 1, respectively.
The functionV 2(x, t) is the solution of the problem






L(5.2) V
2(x, t) = 0, (x, t) ∈ G 2,

V 2(x, t) = ϕ(x, t) − U 2(x, t), (x, t) ∈ S l,

V 2(x, t) = 0, (x, t) ∈ S 2 \ S l.

For the functionsU 2(x, t) andV 2(x, t), the following estimates are valid:
∣∣∣∣
∂k+k0

∂xk∂tk0

U 2(x, t)

∣∣∣∣ ≤ M, (x, t) ∈ G
2
, k + 2k0 ≤ K, (6.6)

∣∣∣∣
∂k+k0

∂xk∂tk0

V 2(x, t)

∣∣∣∣ ≤ M ε−k exp
(
−mε−1 r

(
(x, t), S

l))
,

wherer
(
(x, t), S

l)
is the distance from the point(x, t) to the setS

l
, m is any

constant from the interval(0, m0),m0 = a−1 b.

Theorem 6.Let the data of the boundary value problem(5.2), (5.1) satisfy the

condition f ∈ C l1, l1/2(G), ϕ ∈ C l1(S
−

0 )
⋂
C l1(S

+

0 )
⋂
C l1/2(S

L
)
⋂
C(S),

l1 = l + α, and let the solutionu of the problem satisfy condition(5.3), where
l = K, α ∈ (0, 1). Then the solutionu and its components in representations(6.3),
(6.5) satisfy estimates(6.2), (6.4), (6.6).

7. Classical Finite Difference Approximations on Uniform and
Piecewise-Uniform Meshes. Problem (5.2), (5.1)

We construct a difference scheme that allows us to approximate the solution of prob-
lem (5.2), (5.1)ε-uniformly.

First we consider a difference scheme based on classical approximations. On the
setG(5.1), we introduce the rectangular grid

Gh = Dh × ω0 = ω × ω0, (7.1)

whereω andω0 are meshes on the segments[−d, d] and[0, T ], respectively, the mesh
ω has an arbitrary distribution of its nodes satisfying only the conditionh ≤MN−1,
whereh = maxi h

i, hi = xi+1 − xi, xi, xi+1 ∈ ω, the meshω0 is uniform with
step-sizeτ = TN−1

0 . HereN+1 andN0+1 are the numbers of nodes in the meshes
ω andω0, respectively.

We approximate problem (5.2) by the difference scheme [14]

{
Λ(7.2)z(x, t) = f(x, t), (x, t) ∈ Gh,

z(x, t) = ϕ(x, t), (x, t) ∈ Sh,
(7.2)

where
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Λ(7.2) ≡ ε a δx bx + b δx − c− p δt.

Consider the difference scheme (7.2) on the uniform mesh

Gh = G
u

h = ω × ω0. (7.3)

Usinga priori estimates (6.2), (6.4), (6.6) for the solutions of problem (5.2), we find
the estimate

|u(x, t)−z(x, t)|≤ M
(
(ε+N−1)−1N−1 +N−1/2 +N

−1/2
0

)
, (x, t)∈ Gh. (7.4)

Thus, scheme (7.2), (7.3) converges for fixed values of the parameterε, at the rate
O(N−1/2 +N

−1/2
0 ).

We now construct a difference scheme convergentε-uniformly. On the setG, we
construct a mesh condensing in a neighbourhood of the boundary layer, similar to
that constructed in [2, 12, 16, 17, 18],

Gh = Dh × ω0 = ω ∗ × ω0, (7.5a)

whereω0 = ω0(7.1), ω
∗ = ω ∗(σ) is a piecewise uniform mesh on[−d, d], σ is

a mesh parameter depending onε andN . The value ofσ is chosen to satisfy the
condition

σ = σ(N, ε) = min (β, 2m−1 ε lnN ), (7.5b)

whereβ is an arbitrary number in the half-open interval(0, d], m = m(6.6). The
segment[−d, d] is divided into two parts[−d,−d+σ] and[−d+σ, d]; on each part
the mesh step-size is constant and equal toh(1) = 2d σ β−1N−1 on [−d,−d + σ]
andh(2) = 2d(2d− σ)(2d− β)−1N−1 on [−d+ σ, d], σ ≤ d.

The difference scheme (7.2), (7.5) convergesε-uniformly with an error bound
given by

| u(x, t) − z(x, t) |≤M
(
N−1/2 +N

−1/2
0

)
, (x, t) ∈ Gh. (7.6)

Theorem 7.Let the solution of problem(5.2), (5.1) and its components in repre-
sentations(6.3), (6.5) satisfy estimates(6.2), (6.4), (6.6) for K = 4. Then the
difference scheme(7.2), (7.5) (scheme(7.2), (7.3)) convergesε-uniformly (for fixed

values of the parameter) at the rateO(N−1/2 + N
−1/2
0 ). The numerical solutions

satisfy estimates(7.4), (7.6).

Remark 5.If the componentV (x, t) is absent in representation (6.5), i.e., if

V (x, t) = 0, (x, t) ∈ G
2
, (7.7)

we have the error estimate

|u(x, t) − z(x, t)| ≤M
(
N−1/2 +N

−1/2
0

)
, (x, t) ∈ Gh.

Thus, under condition (7.7) scheme (7.2), (7.3) convergesε-uniformly and the con-
vergence rate isO(N−1/2 +N

−1/2
0 ). Provided that
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f(x, t) = 0, (x, t) ∈ G, ϕ(x, t) = 0, (x, t) ∈ Sl,

the boundary layer is absent, so condition (7.7) holds. However, the condition

f(x, t) = 0, (x, t) ∈ G
2
, ϕ(x, t) = 0, (x, t) ∈ S

⋂
G

2
,

is generally not sufficient for (7.7) to be valid.

Remark 6.On the mesh (7.5), the numerical solution approximates the singular com-
ponentV (x, t) ε-uniformly with accuracyO(N−1 lnN +N−1

0 ).

Remark 7.Let the componentW1(x, t) be absent in representation(6.3), i.e.,

W1(x, t) = 0, (x, t) ∈ G
1
; (7.8)

in this case the derivative(∂/∂x)ϕ(x, t) is continuous onS0 and satisfy onS (∗) the
relation [

∂

∂x
ϕ(x, t)

]
= 0, (x, t) ∈ S (∗). (7.9)

When using scheme(7.2), (7.5), we obtain the estimate

|u(x, t) − z(x, t)| ≤M
(
N−1 lnN +N−1

0

)
, (x, t) ∈ Gh.

In the case of conditions(7.7) and(7.8), on the mesh(7.3) we have the estimate

|u(x, t) − z(x, t)| ≤M
(
N−1 +N−1

0

)
, (x, t) ∈ Gh.

8. Improved Scheme of the Additive Splitting of Singularities for
Problem (5.2), (5.1)

To construct the improved difference scheme (in comparisonto scheme (7.2), (7.5))
we apply the method of splitting singularities.

The solution of problem (5.2), (5.1) is decomposed into the sum of functions

u(x, t) = u1(x, t) + u2(x, t), (x, t) ∈ G, (8.1a)

where
u2(x, t) = W 1(x, t) = W 1

(6.3)(x, t; i), (x, t) ∈ G, i = 1.

The functionu1(x, t) is a solution of the problem

{
L(5.2) u1(x, t) = f(x, t), (x, t) ∈ G,

u1(x, t) = ϕ1(x, t), (x, t) ∈ S,

where
ϕ1(x, t) = ϕ(x, t) −W 1(x, t), (x, t) ∈ S,
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the functionϕ1(x, t) and its first derivative inx are continuous onS0.
We approximate problem (8.1b) on mesh (7.1) by the difference scheme

Λ(7.2) z1(x, t)=f(x, t), (x, t)∈ Gh, (8.2a)

z1(x, t)=ϕ1(x, t), (x, t)∈ Sh.

Using the functionz1(x, t), (x, t) ∈ Gh, we construct the functionz1(x, t),
(x, t) ∈ G, which is the extension ofz1(x, t), (x, t) ∈ Gh, ontoG; namely,z1(x, t)
is the bilinear interpolant on elementary rectangles generated by straight lines paral-
lel to the coordinate axes and passing through the nodes of the meshGh. Further, we
construct the function

uh
0(x, t) = z1(x, t) + u2(x, t), (x, t) ∈ G, (8.2b)

whereu2(x, t) = u2(8.1a)(x, t). The functionuh
0(x, t), (x, t) ∈ G, is called the

solution of scheme (8.2), (7.1), which is the scheme based onthe method of the
additive splitting of singularities (namely, the main termof the transient layer).

Consider the difference scheme (8.2), (7.5). Taking estimates (6.4) into account,
we have

|u1(x, t) − z1(x, t)| ≤M [N−1 lnN +N−1
0 ], (x, t) ∈ Gh.

For the functionuh
0(x, t), (x, t) ∈ G, we obtain the estimate

|u(x, t) − uh
0(x, t)| ≤M [N−1 lnN +N−1

0 ], (x, t) ∈ G. (8.3)

Scheme (8.2), (7.5) convergesε-uniformly at the rateO(N−1 lnN +N−1
0 ).

Theorem 8.Let the hypothesis of Theorem7 be fulfilled. Then the difference scheme
(8.2), (7.5) convergesε-uniformly with the error bound(8.3).

The author is grateful to Pieter W. Hemker for interest discussions of high-order
accurate numerical methods for singularly perturbed problems and the participants
of the 10th International Conference MMA2005&CMAM2 (Trakai, Lithuania, 2005)
expressed a deep interest in results of the present paper.
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Stipr ūs nauji aukštos eil̇es tiksl ūs skaitmeniniai metodai singuliariai
sutrukdytiems konvekcijos-difuzijos uždaviniams

G.I. Šiškinas

Straipsnyje nagriṅejami nedidelio tikslumoε – tolygiai konvertuojantys skaitmeniniai meto-
dai, singuliariai sutrikdytiems kraštiniams uždaviniams. Paraboliniam konvekcijos-difuzijos
uždaviniui konvergavimo eilė neviršija vienos antrosios, jeigu uždavinio duomenys yrapakanka-
mai glod ūs. Tǎciau tr ūkiems pradiniams duomenims eilė yra ne aukštesnė už2

−1. Šio tipo
uždaviniams, naudojant naujai išvestus metodus, darbe sukonstruotosε – tolygiai konvertuo-
jančios schemos aukštesniu tikslumu.


