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Abstract. For singularly perturbed boundary value problems, nuraéricethods conver-
gente-uniformly have the low accuracy. So, for parabolic coniwediffusion problem the
order of convergence does not exceed one even if the protdémate sufficiently smooth.
However, already for piecewise smooth initial data thiseorid not higher thar%. For prob-
lems of such type, using newly developed methods such asdti@ohbased on the asymptotic
expansion technique and the method of the additive sgjitifrsingularities, we construet
uniformly convergent schemes with improved order of accyra
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1. Introduction

Solutions of singularly perturbed convection-diffusianiplems have boundary lay-
ers controlled by a perturbation parametefhis parameter multiplies the highest
space derivatives in equations and is related to the theskakthe boundary layer. It
is well known that standard numerical methods give largersin discrete solutions
(comparable with the exact solution) whebecomes small. That is why robust nu-
merical methods, i.e., methods whose errors are indepeaofithie parameter (or in
short,e-uniform methods), are very important. At present robusherical methods
have been developed for various problems with boundarys$ayowever, the order
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of accuracy for such-uniform special numerical methods does not exceed one for
convection-diffusion equations in the maximum norm (seg., €2, 12, 13, 18] and
also the bibliography therein). The low ratesefiniform convergence is a significant
restriction to use such methods in practice.

Thus, the development afuniformly convergent numerical methods of high-
order accuracy is sufficiently actual task for singularlytpebed problems. We men-
tion existing techniques used when constructingniformly convergent finite dif-
ference schemes with improved accuracy such as well eldgbra

(a) the defect correction method,
(b) the Richardson extrapolation method,

and anew created

(c) the method based on the asymptotic expansion technique,
(d) the method of the additive splitting of singularities.

Methods based on approaches (a) and (b) are discussed in 73,64 8, 9] and
[15, 20, 25]; approaches (c) and (d) are given in [21, 22, Bd][40, 19, 23], respec-
tively, see the references therein. These approacheshwhkéethe technique based
on piecewise uniform meshes condensing in the layer regitow us to construct
effective numerical methods for a sufficiently wide clasbafindary value problems
to elliptic and parabolic equations whose solutions exhéyier phenomena. Orig-
inally, condensing mesh technique for singularly pertdrpeblems was invented
by N.S. Bakhvalov in 1969 [1], and was developed in subsejqudnlications (see,
e.g., [2, 12, 18] and also the bibliography therein).

In the present paper, in order to demonstrate the techn{gheasd (d), we focus
our attention on singularly perturbed parabolic conveetidfusion equations with
smooth (Sections 2—4) and piecewise smooth initial dateti@es 5-8).

2. Problem with Smooth Data. Aim of Research

On the sel?
G=GUS, G=Dx(0,T), (2.1)

whereD = (0, d), we consider the boundary value problem for the paraboliaeq
tion
Lu(zt) = f(z.t), (@.t) €G, ul@t)=gp(t), (r,H)es (22

Here

L=ca(x t)8—2+b(ar t)g—c(a: t) —plx t)2 (x,t) € G

- ) 81:‘2 3 ax 3 p 3 at7 3 3

the functionsu(x, t), b(x,t), c(x,t), p(x,t), f(x,t) andy(x,t) are assumed to be
sufficiently smooth orty and.S, respectively, moreovér

1 Throughout this papef\/, M; (or m) denote sufficiently large (small) positive constants
that do not depend anand on the discretization parameters.
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ap < a(z,t) <a, by < b(w,t) <0, o < c(w,t) <0, po < pla,t) < pY,
(2.3)
|f(17,t)| S Ma (.I,t) S 65 |(p($,t)| S Mv (.I,t) S S7 aOabOaCOapo > 07

the perturbation parametetakes arbitrary values if0, 1].
Assume that the data of problem (2.2), (2.1) on the set ofargoointsS, =

So N 5" satisfy the compatibility conditions which ensure the riegghsmoothness
of the solution on’7 (see, e.g., [11]). Her® = Sy U S%, Sy andS* are the lower
and lateral boundaries) = S.

For smalle, a regular boundary layer appears in a neighbourhood ofthe s

St ={(z,t): 2=0,0<t<T}.

HereS! andS” are the left and right parts of the lateral boundaty:= S' U S”.

Let us give are-uniformly convergent finite difference scheme constrddig
a classical approximation of problem (2.2), (2.1). On theGewe introduce the
rectangular mesh
G, =T X Wy, (2.4)

wherew andw, are arbitrary, generally speaking, non-uniform meshesherseg-
ments|0, d] and[0, T'|, respectively. Let

Rt =2t — 2t 2t 2™ ew, h=maxh,
3

A A N RS ht:m]?th.

Assumethab < M N~ 1, h; < MNgl, whereN + 1 andNy + 1 are the number
of nodes in the mesha@sandw,, respectively.
Problem (2.2), (2.1) is approximated by the finite differescheme [14]

Az(x,t) = f(x,t), (x,t) € Gp, z(z,t) = o(z,t), (x,1) € Sh. (2.5)
HereGj, = G Gh, Sn =SNG,
A=ca(z,t)dzz + b(x,t) 6y — c(x,t) — p(x,t) 07, (x,t) € G,
0z z z(x, t) is the second central difference derivative on a nonuniforesh,
6zz2(x,t) = 2(h" + RS, 2(2,t) — 0z 2(2,t)], (x,t) = (z,t) € Gp;

0z z(x,t) anddz z(x, t) are the first (forward and backward) derivatives.

Scheme (2.5), (2.4) is monotone [I&lniformly. In the case of uniform meshes
in both variables B
G =@ X Wy, (2.6)

using the maximum principle, we obtain the estimate
u(@,t) = z(z, ) < M[e + N“HTINT 4 NGt (@ t) €Gr, (27)

i.e. the scheme convergesBs ! < ¢, N, Ny — cc.
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We now construct the base scheme that convergesformly (see, e.g., [6, 7, 8,
18]). On the se we introduce the mesh

G, = w* x W, (2.8a)

wherew, = Wy(2.6), w* is a piecewise uniform mesh constructed as follows. The
segment0, d] is divided into two part§0, o] and [0, d], where the step-sizes are
constant and equal o) = 20 N~! andh(?) = 2(d — )N, respectively. The
parameter is defined by

o=0(e, N,l)=min[27 d, Im e InN], (2.8b)
wherem is an arbitrary number frorf0, mg), mo = minga™!(z, t) b(z, t)]. Here
[=1. (2.8¢)

In other piecewise-uniform meshes this parameter will beseh. Thus the meshes
w* andGy, = G, (I = 1) are constructed.
For solutions of scheme (2.5), (2.8) we obtain theniform estimate

lu(z,t) — 2(z,t)| <M [N"'InN + Ny, (2,t) € Gh. (2.9)

Theorem 1.Let the solutionu(x,t) of problem(2.2), (2.1) satisfies the estimates
from Theoren®, where X' = 4. Then the difference scheni25), (2.8) (scheme
(2.5), (2.6)) converges-uniformly (for fixed values of the parametgr The numer-
ical solutions satisfy estimat€g.7) and(2.9).

For the boundary value problem (2.2), (2.1), our aim is toeflgy a finite differ-
ence scheme convergentiniformly with accuracy higher than the first order, using
the technique based on asymptotic constructs.

3. A Priori Estimates and the Asymptotic Construction for
Problem (2.2), (2.1)

Here we givea priori estimates of the solutions and derivatives for problem)(2.2
(2.1); the derivation of these estimates is similar to thd6j 7, 8, 18].
We represent the solution of the problem as the sum of fumstio

u(x,t) = Uz, t) + V(z,t), (z,t) € G, (3.1)

whereU (x,t) andV (z,t) are the regular and singular parts of the solution. The
functionU (z,t), (z,t) € G is the restriction, td, of the functionU¢(z, t), (x,t) €

G, which is a solution of the “extended” problem obtained bieesion of problem
(2.2), (2.1) beyond the left bounda$y, so thaiZ G °, with retention of properties
similar to (2.3). The functioW (z,t), (z,t) € G, is the solution of the problem

{L(u) V(z,t) =0, (x,t)€q,
Vix,t) = o(x,t) — Uz, t), (x,t)€S.
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For simplicity, besides sufficient smoothness of the datarablem (2.2), (2.1), we
assume that

ak ako ak-ﬁ-ko

YA Ry YT = *9 ) S I .

8:ck (p(l',t), 8tk0 sp(xat)v 8Ikatkof(x’t) 07 ((E,t)ES k kO l (3 2)
wherel = 3n + 2, n > 1. In this case

wU Vel ' @), "=n+1+a, ac(0,1)

for U(x,t) andV (z, t) we obtain the estimates (a technique can be found in [5])

ok+ko
dakdtko

HF+ko
dakdtho

U(Ia t)‘ S M [1 + anJrlikiko]a
(3.3)

V(w,t)‘ <MeFexp(—meta), (x,t)€G, k+k <K,

wherem is any number from the interval, mo), mo = mo2.8); K =n + 1.

Theorem 2.Let the data of the boundary value problépi2), (2.1) satisfy the con-
dition a, b, ¢, p € CLYG), f € CLL(G), p € CHYG), 1 = 3n+2,n > 1,
and also cond|t|or(3 2). Then the solution of the problem and its components in
representatior{3.1) satisfy estimate§3.3), whereK = n + 1.

We now give the formulations of problem for main terms in tegraptotics of the
solution that are considered in a neighbourhood of the bayrdyer and outside it.
We will use these problem formulations when constructirigestes for small values
of the parameter. The sétcan be represented in the form of a sum of two sets

g=cyc®?, sw_g®\ag®, =12 (3.4)
GV =(0,0) x(0,T], GP =0, d) x (0,T].

The condition imposed on the parametes given below (in (3.6a) ).

Let us introduce the function?(z,t), (z,t) € @(2), i.e., two first terms in the
outer asymptotic expansion of the solution of problem (Z2)). We assume

W(a,t) = ud(@, ) +eud(a, ), (a,0) €T,

The components?(x, t) can be found by solving the problems

L(l)uo (z,t) = f(z,t), (x,t) eGP,
{ (z,t), (x,t) €SP, (3:5%)
{L(l) u?(x,t) = —a(x, t)a cud(x,t), (v,t) €GP, (3.5b)
ul(z,t) =0, (z,t)eS®

where
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0 0
(1) = Z _ Z 2
L u(a,0) = {b(0,0) - — cest) = ple.0) 1wl ), (@0) € GO
We say that the function®(z, t), (z,t)€G (2), is the solution of problem (3.5a;3.5Db).
Then we find the function!(x,t), (z,t) € at by solving the problem

L(2.2) ul(xvt) = f(xvt)a (Ia t) € G(l)v (35C)

L {gp(x,t), (z,t) e SM NS,
u (z,t) = ) )
u?(x,t), (x,t) € S ( )\ S.

The functionu®(z,t) is a solution of the parabolic equation, but in a smallz)n
subdomain.

Using asymptotic expansions of the components in repratent(3.1) of the
solutionu(x, t), provided that

o =o(s, §) =min (27'd, gm~" ¢ In(1/9)), (3.6a)

whereqg > 1, m = m 3.3y and ¢ is a sufficiently small number, we find the estimate

u(@,t) —ub (@, t) < M (2+67), (z,)eGV, k=12,  (3.6b)

Theorem 3.Let the hypothesis of TheoreIn for [ = 4 be fulfilled. Then the func-
tionsu®(z,t), (z,t) € a" k= 1,2, satisfy estimat3.6b)under conditior3.6a)

Remark 1When the domaid is subdivided into subdomains (3.4), (3.6a)dot «,
q > 2, the solutions of subproblems (3.5a; 3.5b), (3.5¢) defintghersubdomains

G " the functions*(z, ), k = 1,2, which approximate the solution of the bound-
ary value problem (2.2), (2.1) with accura®ye?).

4. Schemes with Improved Accuracy for Problem (2.2), (2.1)

4.1. Scheme with improved convergence for finite

Here we give arz-uniformly convergent difference scheme having (unlikeesoe
(2.5), (2.8)) the rate of-uniform convergence of order close to twozinfor not too
small values of the parameterand of the second order in The finite difference
scheme is constructed by approximation of problem (2.2],)(@sing the first cen-
tral difference derivatives in and the defect correction for the implicit difference
derivative int.

On the set7, we introduce the family of meshes
G =G =w° X wo, (4.1a)

wherewo_; Wo(2.8), W* is a piecewise uniform mesh an; o = w(g_g)(o—) under
the condition
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oc=o0(g,N,l =2) = min (271 d, 2m~‘te 1nN) ;M= M(3.3). (4.1b)

On the meslf@;, we consider the difference scheme

AP z(z,t) = f(x,t), (x,t) € Gy,
(@,t) = f(z,t), (x,1) € Gy 4.2)
z2(x,t) = p(z,t), (x,t) € Sh.
Here
A(2)Z(£C,t) = {AQ + Al} Z(.I,t),
Ay z(x,t) = {ea(x, t) 6zz + b(x, 1) 65} 2(x, 1),  (x,t) € G NG,
0z is the first order central difference derivative;
ea(x,t)0zz + b(x, 1)z ), ife N > M,
NAoz(z, t)= tea(z.1) (=, £)05}2(w, 1) . ’ ,inG, NG,
{ea(x,t)0zz + b(x,t)0, }2(x, 1), if e N < My

Ay z(x,t) = {—p(x,t) 6 — c(x, )} 2(x,t), (2,t) € Gp,

a® = _((Ql)(a), o = 011y, My is any number satisfying the condition

My >2d max (a”'(z,t) b(z,1)).
G

Scheme (4.2), (4.1) is monotoreuniformly. For solutions of scheme (4.2),
(4.1), usinga priori estimates (3.3) and the maximum principle, we obtain thie est
mate for(z, t) € G:

MIN~'+ N1 for eN < M
lu(x,t) — 2(z,1)] < \ . :
M[N72(e+1In"" N)"2+ N, '] foreN > M,
whereMy = M4.2). We have also the-uniform estimate
lu(z,t) — z(z, t)| < M [N"'+ Ny '], (z,t) € Gp. (4.3)
Thus, scheme (4.2), (4.1) convergesniformly with first-order accuracy.

Remark 2. The use of the first central difference derivativerifior not too small
values of the parameter precisely, for

eN > My.2), (4.4)

allowed us to obtain the order of the convergence ratedfose to two. According
to (4.3),

lu(z, t) — z(x,t)| < M {N‘z (e+In! N)_2 + No_l} , (z,t) € Gy,
this estimate isinimprovablewith respect taV, Ny, ¢ (i.e. the estimate can not be

improved with respect any one of the variabMés NV, or ¢ without loss of accuracy
with respect to other variables).
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We now give a difference scheme of improved convergencevigtterespect ta
under condition (4.4). For this we apply an approach baseti@defect correction
technique (see, e.g., [8]); we use scheme (4.2), (4.1) dsabe scheme.

We approximate problem (2.2), (2.1) by the difference sahem

{AEZ?2>Z<2><x,t> — ft) 10w t), (1) € Cn,

(4.5a)
2 (2,t) = p(x,t), (x,t) € Sp.

HereA(® = AE?Q), G = Gha1y, ¥°(, t) is the correcting term

So72M (2,t), t > 27
7 p(a,t) 92 , (4.5b)
—u(z,0), t=r71

2 (x,1), (z,t) € Gy, is the solution of the discrete problem (4.2), (4&), z(x, t)
is the backward second-order difference derivative

So72(m,t) = (67 2(w,t) — S 2(w,t — 7)) /7, (2,t) € Gy, t > 27,

2
7 is the step size of the meshy in (4.1),7 = TNgl; the derivativeg—tg u(zx,0),

x € D, can be found by virtue of the differential equation in (2. call the
function z(?) (x,t), (x,t) € G}, the solution of the difference scheme (4.5), (4.2),
(4.1), (4.4). For simplicity, we assume that the coeffigerit:, t), b(z, t) satisfy the
condition

a(z,t) = g(x)b(x,t), (2,t) € (4.6)
(for examplea(z,t), b(x, t) do not depend or), and the initial condition is homo-

geneous:
o(x,t) =0, (x,t) € Sp. 4.7)

2
Note that, under condition (4.7), the derivatig?z u(zx,0) required to compute
the functionw((ﬁéb)(x, t) for t = 7 is determined by
2 2

5 u(x,0)=—p~ (@, 1) {aa(:c,t) % +b(z,t) % —e(z,t) — %p(:c,t)}

p7 0 @0} ) 2 F), (1) € S

In the case of conditions (4.6), (4.7), the following estiefaolds for the solution
of scheme (4.5), (4.2), (4.1), (4.4) (see its proof for adingroblem, e.g., in [7]):
lu(z,t) — 2P (z, )] < M [N2(e +In ' N) 2+ Ng 2|, (z.,t) € Gp, (4.8)

this estimate is unimprovable with respect¥o Ny, . We have also the-uniform
estimate

lu(z,t) — 2@ (2, ) < M (N2> N+ Ng2), (z,t)€ Gp. (4.9)

Thus, for not too small values of the parameteffor e N > Mg (4.2)) the differ-
ence schemél.5), (4.2), (4.1), (4.4) convergeg-uniformly with the order of the
convergence rate close to twodrand equal to two in.
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Theorem 4.Let conditiong(4.6), (4.7), and also the estimates from Theorerfor
K = 6 be fulfilled. Then the difference sche(i&), (4.2), (4.1), (4.4) converges-
uniformly. The numerical solutions under conditi@hn4) satisfy estimateg!.8) and
(4.9), which are unimprovable with respect6, Ny, e and N, Ny, respectively.

4.2. Schemes based on asymptotic constructs

For small values of the parametgwe construct a higher-order accurate scheme by
approximating problems (3.5a)—(3.5c).

The grid@h(4_1) is decomposed into the sum of grid sets

Gn=G,'UG”, 6 =¢" NG, 0P =rONG, k=12, @4.10)

where k) =) (k)
G = G(3.4) = (3.4)(0'), g = 0'(4.1).

On the grid@,EQ), we approximate problem (3.5a), (3.5b) by the differentesme

{A<1> B, t) = f(a,t), (v.t) €GP,

(4.11a)
Bl t) = plx,t), (2,1) €87,

{ AW 2 (0 1) =—a(m, )6, 22(x, 1)+ (2, 1) +4° (2, 1), (2,t) € G,
0,

22(x,t) = (x,t) € S,(f).
(4.11b)
Here

AWz (z,t) = {b(z,t) 6, — c(z,t) — p(x,t) 6; }2(w,t), (x,t) € Gf),

) Suz 22(x,t), x>0 . ) .
Pz, t) =27 e W b(x, t) { g(A ) } , Rt =2t gt

02z 25 (2, 1), x =0
WO, t) = e gy (.1 %7 (),
Sum 20 (T,1) = Oz 20 (2T 1), 2 = 2.
The function
22(x,t) = 23 (2, t) +e 23 (x,t), (w,t) € 6,52),
is called the solution of problem (4.11a), (4.11b). The aparA") is monotone.
For the functiorz?(z, t), (z,t) € @,52), we obtain the estimate

W2(x,t) — 222, )| < M(2+ N2+ Ny 2), (n,t)€Gy. (4.12)

Note that the functiong , ;,, (2,t), (2,t) € @,52), approximates the function

“3(3.5@ (z,t) only with the first-order accuracy. The use of the additiamatecting
terms
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% (h'b(z,t) 0z + Tp(,t) 607 ) 23 (2, 1)
in the equation from (4.11b) to compute the functidiiz, ¢) allows us to improve
the approximation of the functionz%%a; 3.5b(x’ t) and the accuracy of the numerical
solution of problem (2.2), (2.1) o@ (see estimate (4.12) (ﬁ,?)).

On the grid@f}&,m), problem (3.5c¢) is approximated by the difference scheme

A 2z, 1) ={ea(w,t)0oz + bz, )05 — c(z,t) — p(a, )67} 2 (2, 1)
= f(xat)v (‘T’t) € ngl)a

t tyesVns @19
Zl($,t)—{<p(x7 )a (Ia )6 h ﬂ )

- 22(z,t), (x,t) € S,Sl) \ S.

The operatorl! is monotone on the grid sétgf). The proximity of the solutions

of the boundary value problem (3.5¢) on the Eéi) and of its numerical approxi-
mation (4.13) follows from tha priori estimates for the solution of the differential
problem and from the proximity of the functiong(x,t) and22(x,t) on the set

st ﬂ@m. For the function:! (x, t), (z,t) € @,51), we obtain the estimate
1 1 2 In N —2 —1 A7\ —2 —2
(2, 1) — 2\ (z, 1) gM(s F e AN e+ I N) RN ) (4.14)
0
On the grid@h(u), we define the function(z, t) by the relation
dat) = {F@t), (@) eGy, k=12}, (@t)eGp  (4.15)

where 2*(z,t), (v,t) € @,Ek), are the solutions of problems (4.11a; 4.11b) and
(4.13). The function 4 15)(z, 1), (2,t) € G}, is called the solution of the difference
scheme (4.11), (4.1).

For the solution of scheme (4.11), (4.1), by virtue of bouthd 4), we have the
estimate for(z, t) € Gj:

In N
lu(z,t) — z(z,t)| < M(52 + anT + N 24+t N)2+ NO‘Q). (4.16)
0
Remark 3 For sufficiently small values of the parametdfor ¢ < M N~1) scheme
(4.11), (4.1) converges-uniformly at the rate?(N—21n* N + N, ?):
lu(z,t) — z(z,t)| < M (N2> N+ Ny %), (z,t) € G, (4.17)
this estimate is unimprovable (with respect¥o NV, fore < M N—1).

The scheme of improved-uniform convergence order far e (0, 1] is con-
structed on the basis of schemes (4.5), (4.2), (4.1) andY4(4.1). For e > ¢,
where

g0 =¢eo(N) = M )N, (4.18)
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we use scheme (4.5), (4.2), (4.1), (4.4), while for< ¢y, we use scheme (4.11),
(4.1). The functiorx(z, t), (z,t) € G}, constructed in this way is called the solution
of the difference scheme (4.5), (4.2), (4.11), (4.18),X4.1

From estimates (4.8), (4.9) and (4.17) it follows that theson of scheme (4.5),
(4.2), (4.11), (4.18), (4.1) satisfies the estimate

N_21n2N+N(J_2, e < eg _
lu(z,t) — z(x,t)| < M L ., (z,t) € G,
N2 (e+In7'N) "+ N; 2 e>e
(4.19a)
and also the-uniform estimate
lu(z,t) — 2(z,t)| <M [N In® N+ Ny 2], (2,t) € G (4.19b)

Estimates (4.19a) and (4.19b) are unimprovable with respeé¢, Ny, e andN, Ny,
respectively. Scheme (4.5), (4.2), (4.11), (4.18), (4ahverges-uniformly with the
second order in: up to a logarithmic factor and with the second ordet.in

Theorem 5. Let the data of the boundary value problé2), (2.1) and its solu-
tions satisfy the hypotheses of TheoremMhen the solutions of the difference scheme
(4.5), (4.2), (4.11), (4.18), (4.1) as N, Ny — oo converges to the solution of prob-
lem(2.2), (2.1) e-uniformly at the rateD(N—21n* N + N, ?). The numerical solu-
tions satisfy the unimprovable estimatésl9).

Remark 4For fixed values of the parameter scheme (4.5), (4.2), (4.11), (4.18),
(4.1) converges with the second-order accuracy.

5. Statement of the Problem with Piecewise Smooth Initial D.
Aim of Study

In the domainZ with boundarysS, where
G=GUS, G=Dx(0,T], D={x: z€(~d,d)}, (5.1)

we consider the Dirichlet problem for the singularly pebbeen parabolic equation
with constant coefficients and piecewise-smooth initizhda

L(5.2) U(Iat) = f(ZC,t), (.I,t) € Ga (5 2)
u(z,t) = o(x,t), (x,t)€S. .
Here o2 5 5
L(52) _Ea@—f—ba— —C—pg,

a,b,p > 0,c > 0, the right-hand sidef (z, ¢) is sufficiently smooth orG. The
boundary functionp(z, t) is continuous onS, sufficiently smooth on the set”,

and piecewise smooth on the sgt Fort = 0 the firstaz-derivative of the function
¢(x,t) has a discontinuity of the first kind on the s&t). Here
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5 =8\ 8", SO —{f(zt): z=t=0}, S=5VS,,
Sl andS, = S, are the lateral and lower parts of the boundsyy
SL =SS, Si=S0\S™,

whereS! and S are the left and right parts of the lateral boundafy

By a solution of problem (2.2), we mean a functiere C(G) N C **(G) that
satisfies the differential equation @nand the boundary condition of. For sim-
plicity, we assume that compatibility conditions ensuringal smoothness of the

solution for fixede [11] are fulfilled on the seb, = Sy N 5" Suppose that on the
set@é, i.e., thes-neighbourhood of the sét,, the inclusion

we CHeta2@% 12 ae(0,1) (53)

is satisfied. The derivativ% u(z,t) is continuous oG, whereG "~ = G \ S *);
for fixed e, it is bounded oG * and discontinuous of *).

We are interested in a numerical approximation to the smiutix, ¢), (z,t) €

G. Let us specify the behaviour of the solution. Let
ST ={(x,t): x=7(t), (x,t)€ G},

and letr = «(t), t > 0, be the characteristic of the reduced equation passingghro
the point(0, 0). Ase — 0, in the neighbourhood of the sef$ andS” there appear
boundary and transient layers with typical scalesids'/2, respectively, unlike the
boundary layer, the transient layer is weak (the firsterivative of the transient-layer
function is bounded-uniformly; see estimates (6.4) in Section 6). For simpliave
assume that the characteris$i¢ does not meet the boundasy, that is, the transient
and boundary layers do not interact.

The classical finite difference scheme for problem (5.2)1)%n the case of
piecewise uniform meshes condensing in the layers consergaiformly at the
rateO(N~1/2 + N, '/?) (see estimate (7.6) for solutions of scheme (7.2), (7.5) in
Section 7). This rate of convergence is essentially lowan that for problems with
sufficiently smooth data.

Our aim is to construct a numerical method that convergasiformly at the rate
O(N~'In N + Ny ') for the problem (5.2), (5.1).

Note that under condition (7.9) below, when the main termhaf transient
layer (the functioni?; (z,t) in representation (6.3)) vanishes (see (7.8)), the clas-
sical difference scheme on a piecewise uniform mesh coaserginiformly at
the rateO(N~'In N + N;'). Thus, to construct a scheme with improved con-
vergence it seems appropriate to apply the method of thetiasldiplitting of

singularities when the componelit; (z,t) generated by the discontinuity in the

derivative(% ©(x,0) is separated. The remaining part of the solution (the foncti

w(z,t) = u(z,t) — Wi(x,t)), which is a solution of the boundary value prob-
lem with an initial function having continuous firgtderivative, can be found using
schemes on piecewise uniform meshes. Such an approacHiesddmre to construct
an improved scheme for problem (5.2), (5.1).
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6. A Priori Estimates for Problem (5.2), (5.1)

To derive estimates for the solution of problem (5.2) andl@sivatives, we apply
the technique from [16, 17, 18]. We assume that the functjgnst) and p(z,t)

are sufficiently smooth on the séBandS ", Sy, So_, respectively, and also the
solution of the problem satisfies condition (5.3), where K — 2, K > 4.

The setG is decomposed into the sum of overlapping sets
G=U,G", j=123 (6.1)
where
Gl=GYmY) = {(a.1): [z —y(1)] <m', te(0,T]},
G?=G?*(m?) ={(2,t): 2 € (—d, —d+m?), te(0,T]},
G?=G3(m?) =G\ {Gl(m3)UG2(m3) } . m® < m!, m2
G' andG? are the neighbourhoods of the transient and boundary lagespec-

tively; let @% ﬂ@Q = (). We denote the solution of problem (5.2), (5.1) considered

on the seG’ by u/(z,t), j = 1, 2, 3. Using the results from [16, 17, 18] we find
the estimate

ak-i—ko
Dk otko
The value ofK is defined by the problem datdg > 4.

3w, t)| < M, (2,8) €G°, k+ 2k < K. (6.2)

Let us discuss a behaviour of the solutioh(z, t) on the seG . We represent
the functionu ! (z,t), (z,t) € G, in the form of the sum of functions

wl(z,t) = UMz, t) + Wia,t), (v.t) G, (6.3a)
whereU !(x,t) andW (x,t) are the regular and singular parts of the solutions,

K—1
Ula,t) = Ula,t; ) = Uz, )+ > Wilz,t), (s,t)eG5  (6.3b)

k=i+1
Wh(a,t) =Wz, t; i) = Y Wi(x,t), (2,t) €,
k=1

andi takes one of the values, eitheor 2. HereU (z, t), (x,t) € G' isthe compo-
nent of the solution to the inhomogeneous equation from) (Bafings-uniformly
bounded derivatives im andt up to the orderdgd and2—' K respectively. The func-
tionsWy,(z,t), (z,t) € IR x [0,T], are solutions of the Cauchy problems

L(5.2)Wk(117,t):0, (x,t)GJRX(O,T], k=1,...,.K -1,

k
Wi(x,0) =27 (k) ! [% o(x, 0)} lz]z* 2 € R.
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Here
o o o
|7 0(0)| = 2 e(H0.0) = 2 p(-0.0), =0, k21

k

is the jump of the derivativ%ﬁ—k<p(:c, 0) when passing through the point= 0. For
xXr

example, the functioi; (z, t) is defined by

Wi(z,t) = (6.3c)

— % [% ‘P(O, O):| {(CC - 'Y(t)) ’U(2_1 e~ 1/24-1/2 p1/2 (CL‘ o 'y(t)) t_1/2)

—1-271'71/251/2a1/2p*1/2 /2 exp (— 471571a71p(:c - 'y(t))2 til) }exp(—at),

§
v(€) =erf (§) = 27r_1/2/ exp(—a?)da, €€ R; y(t) =—bp~'t, a=cp .
0

For the components in representation (6.3), taking intoactthe explicit form
of the functiondVy (x,t), k = 1,..., K — 1, we find the estimates

htho (41— k—ko)/2 i+1—k—ko
S U @) < M[1+e p
LRk ) €T (6.4)
ok+ko 1 1—k—ko)/2 - 1—k—k 1-k)/2 1—-k—2k
PR (I’t)‘SM[lﬂLf( ~ko)/2 pl=k—ko | o (1=k)/2 j1=k=2ko]
(1) €G; k+2k < K, i=1,2,
where

p=plz,t;e)=c1/? |z —~(t)] + /2,
m IS an arbitrary constant.

We now consider the solutian?(x, t) of problem (5.2), (5.1) on the sét’. The
solution can be represented as the sum of functions

wl(z,t) =U2(z,t) + V2(x,t), (1,8)€CG, (6.5)

whereU 2 (z,t) andV %(z, t) are the regular and singular parts of the solution. The
functionU ?(z, t) is the restriction of the functioly ¢(x, ), (x,t) € G”, to the set
G>. HereU*¢(x,t) is a solution of the problem

L5 U(x,t) = fo(,t), (x,t) € G?e,
U¢(z,t) = ¢°(z,t), (z,t)€ S2.

The domainG 2¢ is an extension of the domaii? beyond the boundarg!. The
right-hand sidef¢(z, t) is a smooth continuation of the functigitz, ¢). The function
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©°¢(x,t) is smooth on each piecewise-smooth part of theSsét and it coincides
with the functionsp(z, t) andu ! (z, t) on the sets$ 2NS, andS2NG'L, respectively.
The functionV ?(x, t) is the solution of the problem

Lz.2)V?(z,t) =0, (z,t) € G2,
V2(z,t) = ¢(x,t) —U?(x,t), (x,t)€S,
V2(x,t) =0, (w,t) € S2\ S

For the functiond/ 2(z,t) andV ?(x, t), the following estimates are valid:

8k+ko

WUQ(:C,Q‘ < M, (2,t)€G", k+2k <K, (6.6)
8k+ko _ _ 1
sz(z,t)‘ < Me*® exp(—ma 1r((x,t), S )),

wherer((z, 1), ?l) is the distance from the poirftr, #) to the sefS', m is any
constant from the intervaD, my), mo = a~ 1 b.

Theorem 6.Let the data of the boundary value probldm?2), (5.1) satisfy the
condition f € Chl/2(G), ¢ € C1 (S, )NCH (S HNCH2ESHNCS),

Iy = | + «a, and let the solution: of the problem satisfy conditiofb.3), where
I =K, a € (0,1). Then the solutiom and its components in representatidigs3),

(6.5) satisfy estimate&.2), (6.4), (6.6).

7. Classical Finite Difference Approximations on Uniform and
Piecewise-Uniform Meshes. Problem (5.2), (5.1)

We construct a difference scheme that allows us to apprdgitha solution of prob-
lem (5.2), (5.1k-uniformly.

First we consider a difference scheme based on classicedxiptions. On the
setG 5.1y, we introduce the rectangular grid

G, =Dy, x Dy = X Do, (7.1)

wherel andi, are meshes on the segmepptd, d] and[0, T, respectively, the mesh
w has an arbitrary distribution of its nodes satisfying ohly tonditiomh < M N1,
whereh = max; h?, h* = 't — 2%, 2%, 2*t! € @, the mesho, is uniform with
step-sizer = TNo‘l. HereN +1 andNy + 1 are the numbers of nodes in the meshes
w andwy, respectively.

We approximate problem (5.2) by the difference scheme [14]

{A(7_2)z(x,t) = f(z,t), (x,t) € Gy,
2(x,t) = o(z,t), (x,t) € S,

(7.2)

where



408 G.l. Shishkin

A(7.2) EEQ5§§+Z)(SI —c—p5g

Consider the difference scheme (7.2) on the uniform mesh
Gh =G, =wx . (7.3)

Usinga priori estimates (6.2), (6.4), (6.6) for the solutions of probl&n2), we find
the estimate

(e, t) —z(z,t)| < M((e+ N"H TN 4 NV24 Ny V2, (2,8) € Gy, (7.4)

Thus, scheme (7.2), (7.3) converges for fixed values of thanpaters, at the rate
O(N—Y2 4+ Ny'/%).
We now construct a difference scheme convergamtiformly. On the se@, we

construct a mesh condensing in a neighbourhood of the boytedger, similar to
that constructed in [2, 12, 16, 17, 18],

GnL =Dy xwWy=w" X wo, (7.5a)

wherewy = wy7.1), w* = W*(0) is a piecewise uniform mesh dr-d, d], o is
a mesh parameter dependingo@and N. The value ofs is chosen to satisfy the
condition
oc=0(N,e)=min(8,2m 'elnN), (7.5b)

where is an arbitrary number in the half-open interval d}, m = m.¢). The
segmenf—d, d] is divided into two part$—d, —d + o] and[—d + o, d]; on each part
the mesh step-size is constant and equaltd = 2do 3~ 'N~! on[~d, —d + o]
andh® = 2d(2d — ¢)(2d — B)"*N~'on[—d + o,d], o < d.

The difference scheme (7.2), (7.5) convergasmiformly with an error bound
given by

| u(a, t) — z(z,t) |[< M (N2 4 Ng'?), (2,t) € G, (7.6)

Theorem 7.Let the solution of problent5.2), (5.1) and its components in repre-
sentations(6.3), (6.5) satisfy estimate$6.2), (6.4), (6.6) for K = 4. Then the
difference schem@.2), (7.5) (schemé7.2), (7.3)) converges-uniformly (for fixed

values of the parameter) at the rat® N ~'/2 + Ngl/z). The numerical solutions
satisfy estimate&r.4), (7.6).

Remark 5If the component/' (z, t) is absent in representation (6.5), i.e., if
V(z,t) =0, (z,t)€CG", (7.7)
we have the error estimate

|u(z,t) — z(x,t)| < M (N_l/2 —i—Ngl/Q), (z,t) € Gh.

Thus, under condition (7.7) scheme (7.2), (7.3) convergasiformly and the con-
vergence rate i©(N~1/2 + No_l/Q). Provided that
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flz,t) =0, (z,t) €CG, o(x,t)=0, (z,t)€ S,
the boundary layer is absent, so condition (7.7) holds. hvewé¢he condition
fla,t) =0, (x,t) €G°, @(,t) =0, (1,t) € SNG,
is generally not sufficient for (7.7) to be valid.

Remark 6 On the mesh (7.5), the numerical solution approximatesitigeiar com-
ponentV/ (x, t) e-uniformly with accuracyO(N ! In N + Ny ).

Remark 7 Let the componenit/’; (z, t) be absent in representatigh3), i.e.,
Wi(z,t) =0, (2,8)€q; (7.8)

in this case the derivativ@/dx) ¢ (x, t) is continuous ors, and satisfy orf () the
relation

0
= - ()
[8:1: cp(x,t)} 0, (z,t)esS™. (7.9)
When using schem@.2), (7.5), we obtain the estimate
lu(z,t) —z(z,t)| < M (N"'InN + N;''), (a,t) € Gy.
In the case of conditiond.7) and(7.8), on the mesi{7.3) we have the estimate

lu(z,t) — 2(z, )| S M (NP + Ng),  (x,t) € Gy

8. Improved Scheme of the Additive Splitting of Singularities for
Problem (5.2), (5.1)

To construct the improved difference scheme (in compatis@cheme (7.2), (7.5))
we apply the method of splitting singularities.
The solution of problem (5.2), (5.1) is decomposed into tira sf functions

u(z,t) = ui(2,t) + ua(x,t), (z,t) €G, (8.1a)

where B
ug(z,t) = Wz, t) = W(16'3)($,t; i), (x,t)ed, i=1.

The functionu; (x, t) is a solution of the problem
L(5.2) Ul(CC,t) = f(I, t)v (.I,t) € Ga
ui(z,t) = ¢1(z,t), (z,t) €S,

where
(,Ol(I,t) :(p(I,t)—Wl(I,t), (Iat) ESv
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the functiony, (z, t) and its first derivative inc are continuous o1y.
We approximate problem (8.1b) on mesh (7.1) by the diffezesohieme

Aiz.oy 21(z,t) = f(x,t),  (x,t)€ G, (8.2a)
21(z,t) =1 (2, ), (z,t)€ Sh.

Using the functionz; (z,t), (z,t) € Gy, we construct the functiom; (z, ),
(z,t) € G, which is the extension of; (z,t), (z,t) € G}, ontoG; namely,z; (z, t)
is the bilinear interpolant on elementary rectangles geerdrby straight lines paral-
lel to the coordinate axes and passing through the nodes ofiéish),. Further, we
construct the function

ul(z,t) = Z1(x,t) +ug(z,t), (2,t) €G, (8.2b)

whereus(z,t) = uas.1a)(z,t). The functionuf(z,t), (z,t) € G, is called the
solution of scheme (8.2), (7.1), which is the scheme basetheimethod of the
additive splitting of singularities (namely, the main teofithe transient layer).

Consider the difference scheme (8.2), (7.5). Taking es&m@.4) into account,
we have

luy(z,t) — 21 (2, t)] < M[N"'InN + Ny, (2,t) € G
For the functioru} (z,t), (x,t) € G, we obtain the estimate
lu(z,t) —uf(z,t)| < M[N"'InN + Ny, (2,t) € G. (8.3)
Scheme (8.2), (7.5) convergesiniformly at the rateD(N ! In N + No‘l).

Theorem 8. Let the hypothesis of Theorenie fulfilled. Then the difference scheme
(8.2), (7.5) converges-uniformly with the error bounds.3).

The author is grateful to Pieter W. Hemker for interest distons of high-order
accurate numerical methods for singularly perturbed m@molsland the participants
of the 10th International Conference MMA2005&CMAM2 (Tralathuania, 2005)
expressed a deep interest in results of the present paper.
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Stipr us nauji aukstos eiés tiksl us skaitmeniniai metodai singuliariai
sutrukdytiems konvekcijos-difuzijos uzdaviniams

G.l. Siskinas

Straipsnyje nagrigiami nedidelio tiksluma — tolygiai konvertuojantys skaitmeniniai meto-
dai, singuliariai sutrikdytiems krastiniams uzdaviniarRaraboliniam konvekcijos-difuzijos
uzdaviniui konvergavimo &ilnevirSija vienos antrosios, jeigu uzdavinio duomenygwkanka-
mai glod us. T&au trukiems pradiniams duomenimszgjta ne aukstegnuz 2~ . Sio tipo

uzdaviniams, naudojant naujai iSvestus metodus, darbnstrkiotoss — tolygiai konvertuo-
jan¢ios schemos aukstesniu tikslumu.



