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Abstract. In this paper we investigate parallel numerical algorithms for solution of the tran-
sient stimulated scattering processes. A new symmetrical splitting scheme is proposed and a
parallel version is given. The efficiency of the parallel algorithm is investigated for two cases.
The first one describes a case when the computation region is constant during the whole time
of computations. The second one describes the initial phase of the process, when the com-
putational region increases linearly in time. In order to distribute more evenly jobs between
processors a dynamical the grid redistribution algorithm is is used. We also give a proof of
one result about optimal static grid distribution in the case of linearly increased problem com-
plexity. The results of computations are presented. They were obtained on different parallel
computers and clusters of workstations.

Key words: finite-difference schemes, symmetrical splitting method, parallel algorithms, grid
redistribution, nonlinear optics

1. Introduction

Scientific investigations in various fields and different technological applications re-
quire laser systems satisfying a number of requirements. They should be able to
generate short pulses in various spectral ranges with tunable pulse duration, the gen-
erated pulses must be easily synchronized with external events and have a good sta-
bility and low jitter [18]. The progress of solid-state lasers with nonlinear-optical
phase conjugation and pulse compression will support these objectives for extension
of the fields of laser applications [5, 13, 22]. Using different schemes for the stim-
ulated Brillouin scattering (SBS) compressor, it is possible to achieve pulses with
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durations shorter than 100 ps [4, 5, 6, 13, 22]. Note that a consecutive cascade com-
pression provides a set of precisely synchronized (with the accuracy of several ps)
pulses of different wavelengths and pulse durations [13, 19].

In the SBS compression experiments, Fourier-transform-limited laser pulses with
Gaussian transversal intensity distribution are commonly used. Therefore, it is of
great practical interest to investigate the statistics (energetic, temporal and spectral)
of Stokes pulses for different pump pulse parameters and optical schemes of SBS
compressor and amplifier. For optimization of SBS compression schemes detailed
three-dimensional numerical simulations of the transient backward SBS process for
different focusing geometries of phase–modulated pump pulses with different pulse
shape and durations starting from spontaneous scattering level are needed.

Performing this type of calculations is also interesting from purely scientific point
of view, because a number of works appeared lately [1, 2, 3, 20, 21], presenting some
results that contradict the results of our earlier works [7, 8, 16, 17]. It should be
pointed out that calculations of the transient stimulated scattering processes, espe-
cially in the three-dimensional case, require lengthy computation times. Therefore,
without application of the parallel algorithms, the investigation of statistical pecu-
liarities of these processes is practically impossible.

We start from the algorithm developed in [9, 12] for the solution of nonlinear
problems with strongly focused beams. It is based on the expansion of the fields of
the interacting beams into the series of eigenfunctions of the Laguerre-Gauss type.
Such algorithm can be modified into a parallel algorithm easily enough by using data
parallelization paradigm [10], see also a paper by Elisseev [15], where a parallel code
is obtained using HPF.

This work presents a novel more efficient splitting type scheme and its parallel
version. This scheme was tested for a three-dimensional problem of transient stim-
ulated scattering of focused beams. Thus, our goal is to investigate the efficiency
of the parallel version of the proposed symmetrical splitting scheme. We study the
influence of different nonlinear effects on the accuracy of the obtained numerical so-
lution in order to determine a region of application of the proposed parallel numerical
algorithm.

The rest of the paper is organized as follows. In Section 2 we describe a mathe-
matical model of SBS. In Section 3 the new finite difference scheme is presented. A
parallel version of this algorithm is presented in Section 4. This section also describes
the load balancing problem for the front moving case. Section 5 contains analysis of
the obtained numerical results and the last Section 6 draws some conclusions.

2. Mathematical Model

A schema of the numerically modelled SBS compressor is presented in in Fig. 1. At-
tempts are still being made to investigate this phenomena analytically, but inclusion
of the material non-stationarity can be taken into account only numerically.

The presented work gives a new parallel numerical algorithm for solving the
system of equations, which describes the nonlinear interaction of laser, Stokes and
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Figure 1. A schema of the SBS compressor.

sound waves. In 0 ≤ z ≤ L, 0 ≤ r ≤ R, 0 ≤ t ≤ T the following system of
equations is given [7, 16]:


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)
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∂t
+ γ2σ = iγσuv∗ + γf ,

(2.1)

here A = 1

r
∂
∂r

(r ∂
∂r

) is the transverse Laplacian, u, v and σ are slowly varying com-
plex amplitudes of laser, the Stokes and the sound waves, respectively. γL, γS , γσ

are coupling constants, γf is the thermal noise parameter, γ0 and γ2 are hypersound
wave parameters (related to the period and relaxation time). System (2.1) is supple-
mented with the boundary and initial conditions:

u(z = 0, r, t) = g0(r, t), v(z = L, r, t) = g1(r, t), 0 ≤ r ≤ R ,

r
∂u

∂r

∣

∣

r=0
= 0, r

∂v

∂r

∣

∣

r=0
= 0, 0 ≤ z ≤ L, 0 ≤ t ≤ T ,

u(z, R, t) = 0, v(z, R, t) = 0 ,

u(z, r, 0) = 0, v(z, r, 0) = 0 .

Since for focused beams the diameter of the beam waist in the cuvette is by fac-
tor 20-50 and more times smaller than the diameter of input beam, adaptive grids
are required in order to solve the problem accurately and efficiently. Such adaptive
strategies have proved to reduce significantly the computational cost for obtaining a
numerical solution.

The Schrödinger equation looks very similar to the heat equation, but there are
great differences. We note mainly, that the Schrödinger equation does not have a reg-
ularizing effect of the contractivity as for the heat equation. Therefore the develop-
ment of adaptive algorithms for solving the Schrödinger type nonlinear equations re-
quires new techniques. The most popular adaptive schemes are based on application
of transformations, which use the properties of solutions of the linear Schrödinger
equation. Extensive numerical comparison of different mesh adaptation techniques
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and transformations is presented in [9]. A new adaptive transformation is proposed
in [23], it was also used in [17] for numerical solution of the SBS problem using a
splitting finite-difference scheme.

We note that general mesh adaptation techniques are also applied for the Schrö-
dinger problem (see, e.g. [14]). The basis of such procedure is a posteriori error
estimate that has to be derived for the obtained discrete solution. Then local error
estimators indicate the regions of the computational domain where we have to refine
the mesh in order to improve the accuracy of the approximation.

In this work we propose a new symmetrical splitting scheme, in which the diffrac-
tion subproblem is solved using the expansion into the Laguerre-Gaussian modes.
The accuracy of such an approximation is investigated in [12].

Modelling of nonlinear effects of SBS pulse compression requires to resolve the
evolution of all dynamically significant scales of motion. This can be done only via
variable mesh densities. The obtained discrete problems often are too large to fit into
serial computers, either because of computational demands or memory limitations,
or both. Parallel computers and algorithms are the most effective solutions of this
problem.

3. Finite Difference Scheme

This section contains a brief description of the numerical algorithm. We introduce
the following discrete meshes:

ωz =
{

zn : zn = nτ, n = 0, 1, . . . , N, τ =
L

N

}

,

ωt =
{

tk : tk = kτ, k = 0, 1, . . . , K
}

,

ωr(z) =
{

rj : rj = jh, j = 0, 1, . . . , J, h =
R(z)

J

}

,

here ωr depends adaptively on the coordinate z and generally this mesh is also
nonuniform in r. We use the following notation for discrete functions:

Uk
nj = U(zn, rj , t

k), (zn, rj , t
k) ∈ ωz × ωr(z) × ωt .

We approximate problem (2.1) by the following splitting algorithm.

Symmetrical Splitting Algorithm

for k = 0, K
/* First diffraction step */
for n = 0, N

U
k+ 1

3

n+ 1

2

(r) =
P
∑
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p(zn) Wp(zn+ 1

2

, r), r ∈ ωr(zn+ 1

2

)

V
k+ 1

3

n+ 1

2

(r) =
P
∑

p=0

dk
p(zn+1) W p(zn+ 1

2

, r)
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end for

/* Nonlinear Interaction */
for n = 0, N
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end for

/* Second diffraction step */
for n = 0, N

ck+1
p (zn+1) =

(

U
k+ 2

3

n+ 1

2

, Wp(zn+ 1

2

)
)

,

dk+1
p (zn) =

(

V
k+ 2

3

n+ 1

2

, W p(zn+ 1

2

)
)

,

Uk+1

n+1(r) =
P
∑

p=0

ck+1
p (zn+1) Wp(zn+1, r), r ∈ ωr(zn+1)

V k+1
n (r) =

P
∑

p=0

dk+1
p (zn) W p(zn, r), r ∈ ωr(zn)

end for
end for

The analysis of the algorithm complexity

1 step: Diffraction.

In this step the equations of wave propagation and diffraction are solved in the ele-
ment [zn, zn+ 1

2

]. The total complexity of this step is O(JP ) operations.

2 step: Nonlinear Interaction.

Using predictor–corrector numerical integration scheme we solve a system of ODEs
describing the nonlinear interaction of laser, the Stokes and the sound beams. The
complexity of this step is O(J) operations.

3 step: Diffraction.

We complete the diffraction step, i.e. the laser and Stokes waves again propagate in
the second part of the element. The complexity of this step is O(JP ) operations.

Thus the total complexity of the splitting numerical algorithm is O(NJP ) oper-
ations.
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Due to symmetrical splitting algorithm the accuracy of the finite difference
scheme is O(h2 + (τ4 + P−α)/h), where α depends on the smoothness of the exact
solution (see, [12]). We note that the error can accumulate linearly with respect to
N , thus in order to reduce the global error we need to change also τ and P . This
phenomena is investigated in detail in [12].

4. Parallel Algorithm

We use an one–dimensional mesh of virtual p processors. The finite difference grid
ωz is partitioned in p blocks, which are distributed among processors (see Fig. 2).

p
-
1
p
-
2
…
1
0
 p
-
1
p
-
2
…
1
0


Figure 2. 1D block data distribution.

It follows from the proposed numerical algorithm, that each processor needs to
exchange information (i.e., coefficients cj and dj) corresponding to the boundary
points of its local domain. It is important to note, that communication is done only
between neighbour processors. After the communication step each processor has all
required information. Now all computations can be performed efficiently in parallel
and the results are also stored locally on each processor.

4.1. The analysis of algorithm complexity

First we estimate the parallel execution time of the proposed algorithm during real-
ization of one time step. The discrete problem size can be expressed as follows

W = JN(C1P + C2) .

The communication step on most network architectures can be done in time Tcomm =
α + βP . Thus the parallel execution time Tp on p processors is given by

Tp =
JN

p
(C1P + C2) + α + βP .

The additional cost of parallel algorithm can be expressed as follows

T0(W, p) = pTp − W .

We solve the equation

W = eT0(W, p), e =
Ep

1− Ep

, Ep =
W

W + T0(W, p)
,
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where Ep is a selected efficiency of the parallel algorithm. Since p ≤ N, and J =
O(N), we get that the proposed parallel algorithm is highly scalable.

The code was implemented using MPI library and performed on IBM SP4 com-
puter. In Table 1 we present speed-up Sp = W

Tp

and efficiency Ep =
Sp

p
data obtained

for two discrete problems of different sizes:

a) N = 201, J = 101, P = 15 (denoted by S1p in Table 1),

b) N = 301, J = 151, P = 45 (denoted by S2p in Table 1).

Table 1. The speed-up and efficiency of the parallel algorithm.

p S1p E1p S2p E2p

2 1.971 0.986 1.968 0.984
4 3.934 0.984 3.904 0.976
8 7.591 0.949 7.692 0.962

16 14.67 0.917 15.20 0.950
32 24.94 0.780 27.89 0.872

These results fully confirm our theoretical predictions.

4.2. Front moving case

If the boundary condition for the Stokes wave is equal to zero, then during initial
transition time 0 ≤ tk ≤ L the domain involved in computations enlarges dynami-
cally

ωz(t
k) =

{

zn : 0 ≤ zn ≤ tk
}

and the problem size at the k-th time step is given by kJ(C1P + C2) instead of
NJ(C1P + C2). Then the static mesh partitioning among processors using a block
distribution scheme is not optimal. It is shown in [11] that the speed-up of the parallel
algorithm is equal to Sp ≈ p

2
, even when the communication costs are not taken into

account.

As it was stated in [11] the computation costs can be reduced if we decompose
the grid not uniformly. It was proposed to divide the grid into p + 1 parts and assign
the last two subdomains to the last processor. A simple analysis proved that this
heuristic gives optimal static block distributions for p ≤ 3. In the case of p ≥ 4 the
efficiency of the proposed heuristic was investigated numerically.

Now we will give a proof of this statement. In fact, we will show that the first
p − 1 processors should get equal numbers of grid points D0 if computations are
done at least till time moments t ≥ pD0. Here we have assumed that the front moves
one grid point per time step.

Theorem 1. Let consider the static block data distribution, when the grid is divided
into p + 1 parts and the last processor obtains the last two subdomains. Such distri-
bution scheme is optimal among static block distributions.
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Proof. The proof is based on induction. It is sufficient to consider the following
grid distribution:

• the first (p − 2) processors obtain D0 grid points;
• the (p − 1)th processor gets D1 grid points;
• the pth processor gets D2 grid points.

These subproblems satisfy the following relations:

M + D2 = N, (p − 2)D0 + D1 = M . (4.1)

Next we compute the complexity of the computational problem. The solution of the
problem till T1 = D0 requires

W1 =

D0
∑

j=1

j =
D0(D0 + 1)

2

basic operations. The complexity of the problem for D0 + 1 ≤ t ≤ M −D1 + D0 is

W2 =

M−D1+D0
∑

j=D0+1

D0 = D0(M − D1)

basic operations. The last part of the problem till t = M requires

W3 =
M
∑

j=M−D1+D0+1

(j − M + D1)

operations. The total number of operations is given by

W = W1 + W2 + W3 =
1

2

(

D2
1 + D1 − 2D0D1 + 2D0M

)

.

Now we can find the optimal grid distribution among (p − 1) processors, when
the problem is solved only till t = M . Optimality in this case means that we consider
only two free parameters, i.e. D0 and D1. By using (4.1) we get

∂S

∂D0

:= (p − 2)
(

pD0 − M − 0.5
)

= 0 ,

D0 =
M

p
+

1

2p
, D1 = M − (p − 2)D0 =

2M

p
−

p − 2

2p
.

Thus we confirm the result, that the (p − 1)th processor should get the two last
subproblems.

Now let consider the situation, when we still continue computations for M +1 ≤
t ≤ M + K. Then we obtain the following estimate of the algorithm complexity:

W̃ = W +

M+K
∑

j=M+1

D1 = W + K
(

M − (p − 2)D0

)
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and from the optimality equation it follows that D0 = M+K
p

+ 1

2p
. It is easy to find

K such, that D1(K) = D0(K):

M + K

p
=

M

p − 1
⇒ K =

M

p − 1
.

Thus we have proved, that for any number of processors p, the first processors
should get subproblems of the size M

p−1
and only the last processor gets a subproblem

of the size 2M
p−1

. Again, if the computations are continued for t > N , then the optimal
grid distribution converges to the static block distribution scheme. �

Dynamic data redistribution

In general, if we distribute the grid using the static block distribution scheme, then
the parallel execution time Tp on p processors is given by

Tp =
N

p
J
(

N −
N

2p
+

1

2

)

(C1P + C2) +
p − 1

p
N(α + βP ) .

The following data redistribution algorithm is analyzed theoretically in [11]:

• Initial Ns points of the mesh ωz are partitioned statically among processors using
a block distribution scheme.

• Starting from the time moment tk = Nsτ after Ks steps of the algorithm data is
redistributed among processors in order to preserve a load balancing.

The algorithm for determination of Ns, Ks is given in [11].

This algorithm introduces additional communication costs, but they are compen-
sated by improved load balancing and therefore a total efficiency of the parallel algo-
rithm is increased. Computational experiments are performed on IBM SP4 computer
at CINECA. In Table 2 we present speed-ups Sp = W

Tp

of the parallel algorithm for
different values of redistribution starting point Ns and the same remaining discrete
parameters N = 400, P = 200, K = 400.

Table 2. Speed-up of the parallel algorithm with data redistribution.

p Ns = 400 Ns = 200 Ns = 100 Ns = p

2 1.332 1.750 1.910 1.966
4 2.270 3.292 3.707 3.816
8 4.143 5.928 7.021 7.265
16 7.676 11.238 12.826 13.248

As predicted by theoretical analysis the adaptive redistribution algorithm in-
creases essentially the efficiency of the parallel discrete algorithm even for fixed
size problems.



124 R. Čiegis, A. Dement’ev, G. Šilko

5. Numerical Results

These numerical experiments were performed on VGTU cluster of 10 SMP PCs.
Each PC contains two 1.4 GHz Pentium III processors. All nodes run Linux. In order
to estimate the computational power of this cluster we solved the problem with the
following parameters: N = 1200, J = 1200, P = 100, K = 4200 .

Table 3. Execution time, speed–up and efficiency of the parallel algorithm.

p Tp Sp Ep

1 141029 1.0 1.0
8 17751 7.95 0.99
10 14231 9.91 0.99
20 7166 19.68 0.98

In Table 3 we present execution time Tp, speed-up Sp = W
Tp

and efficiency Ep =
Sp

p
. These results fully confirm our theoretical predictions, the parallel algorithm is

highly scalable.

6. Conclusions

Parallel algorithms for solution of one important problem of nonlinear optics have
been investigated. It has been shown that the parallel domain decomposition algo-
rithm for this problem is highly scalable and it’s efficiency is near to one. Detailed
modelling of practically interesting cases of pulse compression will be published in
physical journals.
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[10] R. Čiegis, A. Dement’ev and P. Ratė. A parallel algorithm for solving one problem of
nonlinear optics. Mathematical Modelling and Analysis, 4, 58 – 69, 1999.
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Trumpų lazerio impulsų spūdos skaičiavimo lygiagretusis skaitinis algoritmas

R. Čiegis, A. Dementjevas, G. Šilko

Nagrinėjamas priverstinės Brijueno sklaidos fokusuotuose pluoštuose uždavinio lygiagretusis
skaitinis sprendimo algoritmas. Sukonstruota simetrinio skaidymo baigtinių skirtumų schema,
kurios tikslumas yra antrosios eilės. Lygiagretusis algoritmas gautas naudojant duomenų ly-
giagretumo paradigmą. Detaliai nagrinėjamas dinamiškai didėjančio sudėtingumo uždavinys,
modeliuojantis Brijueno sklaidos procesą, kai neužduodama kraštinė sąlyga Stokso ban-
gai. Įrodyta hipotezė apie vieno stacionaraus blokinio duomenų paskirstymo algoritmo op-
timalumą. Eksperimentiškai ištirtas dinaminis duomenų perskirstymo algoritmas, patvirtintas
jo efektyvumas net ir fiksuoto dydžio uždaviniams. Darbe pateikti skaitinio eksperimento, at-
likto naudojant VGTU 20 procesorių klasterį, rezultatai. Jie patvirtino gautuosius teorinius
rezultatus, išsam ūs fizikiniai rezultatai bus išspausdinti kituose darbuose.


