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Abstract. In the paper elliptic equations with alternating-sign coefficients at mixed deriva-
tives are considered. For such equations new difference schemes of the second order of ap-
proximation are developed. The proposed schemes are conservative and monotone. The con-
structed algorithms satisfy the grid maximum principle not only for coefficients of constant
signs but also for alternating-sign coefficients at mixed derivatives. The a priori estimates of
stability and convergence in the grid norm C are obtained.
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1. Introduction

For the development of difference schemes of the high order of approximation it
is important to save properties of both monotonity and conservativeness because
monotone schemes lead to the well-posed systems of algebraic equations. Iterative
methods converge significantly better in the case of diagonally dominant matrices.

Problems of the development of difference schemes for equations with mixed
derivatives were studied in papers [1, 2, 4, 11]. The conservative difference schemes
for elliptic equations with mixed derivatives were considered in [5, p. 286], [6,
p. 175], but these schemes do not satisfy the grid maximum principle. For ellip-
tic and parabolic equations with mixed derivatives the monotone and conservative
difference schemes were proposed in papers [7, 8, 10], but these schemes can be
used only in the case of constant-sign coefficients. If coefficients at mixed deriva-
tives changed their sign, then differential equation was rewritten in non-divergent

1 The author thanks Prof. Oleg Iliev and Prof. Raimondas Čiegis for the statement of the
problem, Prof. Piotr Matus and Dr. Mikhail Chuiko for the discussion and useful comments
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form with first derivatives and monotone schemes were developed by means of the
regularization principle [5, p. 183]. But after such a transformation the property of
conservativeness was lost. Such situation is typical in theory of difference schemes.

In the present paper, for elliptic equations with mixed derivatives new mono-
tone and conservative difference schemes for both constant-sign and alternating-sign
coefficients are proposed. The main idea is based on using the stencil functionals
with absolute values of the coefficients at mixed derivatives. For proposed difference
schemes the a priori estimates of stability and convergence in the grid norm C are
obtained. Numerical experiments confirm the theoretical results.

2. Difference scheme

In the rectangle Ḡ = {0 ≤ xα ≤ lα, α = 1, 2} with the boundary Γ we consider
the Dirichlet problem for elliptic equations with mixed derivatives







Lu− q(x)u = −f(x), x ∈ G ,

u = µ(x), x ∈ Γ, x = (x1, x2) ,
(2.1)

where

Lu =

2
∑

α,β=1

Lαβu, Lαβu =
∂

∂xα

(

kαβ(x)
∂u

∂xβ

)

, q(x) ≥ c0 > 0.

We suppose that the following ellipticity conditions are satisfied

c1

2
∑

α=1

ξ2α ≤

2
∑

α,β=1

kαβ(x)ξαξβ ≤ c2

2
∑

α=1

ξ2α, x ∈ G, (2.2)

where c1, c2 > 0 are positive constants, ξ = (ξ1, ξ2) is an arbitrary nonzero vector.
In the rectangle Ḡ we consider the uniform grid ω̄h = ωh ∪ γh:

ω̄h = {x = (x
(i1)
1 , x

(i2)
2 ) : x(iα)

α = iαhα, hαNα = lα, iα = 0, Nα, α = 1, 2},

where ωh is the set of inner grid nodes, γh is the set of boundary grid nodes.
Further we will use the following notations of the theory of difference schemes [5]:

v(±1α) = v(x(iα)
α ± hα, x

(i3−α)
3−α ), α = 1, 2,

y = y(x
(i1)
1 , x

(i2)
2 ), yx̄α

=
y − y(−1α)

hα
, yxα

=
y(+1α) − y

hα
.

On the grid ω̄h we approximate differential problem (2.1) by the difference
scheme







Λy − dy = −ϕ, x ∈ ωh ,

y = µ(x), x ∈ γh ,
(2.3)
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where

Λy =
2

∑

α, β=1

Λαβy, Λααy = (aααyx̄α
)xα

, α = 1, 2 ,

Λαβy =
1

4

(

(a−αβyx̄β
)xα

+ (a
−(+1α)
αβ yxβ

)x̄α
+ (a+

αβyxβ
)xα

+ (a
+(+1α)
αβ yx̄β

)x̄α

)

,

a−αβ = aαβ − |aαβ |, a+
αβ = aαβ + |aαβ |, α 6= β .

Here d ≥ c0, ϕ are some stencil functionals of the coefficient q and the right-hand
side f respectively. The stencil functionals aαβ can be chosen as follows

aαβ = kαβ iα−
1

2
, iβ

= kαβ(xα − 0.5hα, xβ) ,

aαβ =
kαβ iα, iβ

+ kαβ iα−1, iβ

2
=
kαβ + k

(−1α)
αβ

2
,

aαβ =
2kαβk

(−1α)
αβ

kαβ + k
(−1α)
αβ

, α, β = 1, 2 .

A difference scheme is called conservative (divergent), if we have algebraic sums
of unknowns or functions of them only along the boundary after summation of the
scheme equations over all grid nodes of the domain [3, p. 280]. If we sum up differ-
ence scheme (2.3) over grid nodes of the domain ωh, we obtain algebraic sums of
functions only along the boundary Γ . Hence, the proposed scheme is conservative.

We consider aαβ = kαβ(xα − 0.5hα, xβ) and show that the grid operator Λ
approximates the differential operator L with the second order. Let the coefficients
kαβ(x) of equation (2.1), all partial derivatives up to the third order inclusively of the
coefficients and up to the fourth order inclusively of the solution u(x) be bounded.
By using Taylor expansion of the functions Λαβu in the neighbourhood of the point
x ∈ ωh, we obtain

Λααu− Lααu = O(h2
1 + h2

2) = O(|h|2), α = 1, 2,

Λαβu− Lαβu =
hβ

4

∂3u

∂xα∂x2
β

(
∣

∣

∣

∣

kαβ +
hα

2

∂kαβ

∂xα

∣

∣

∣

∣

−

∣

∣

∣

∣

kαβ −
hα

2

∂kαβ

∂xα

∣

∣

∣

∣

)

+O(|h|2), α 6= β .

Using the inequality
∣

∣|a+ b| − |a− b|
∣

∣ ≤ 2|b|, we have

|Λαβu− Lαβu| ≤
h1h2

4

∣

∣

∣

∣

∂kαβ

∂xα

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂3u

∂xα∂x2
β

∣

∣

∣

∣

∣

+O(|h|2) = O(|h|2).

Hence,
Λαβu− Lαβu = O(|h|2), α 6= β.

We suppose that the stencil functionals d(x) and ϕ(x) satisfy the usual conditions of
approximation of the coefficient q(x) and the right-hand side f(x) with the second
order
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d(x) − q(x) = O(|h|2), ϕ(x) − f(x) = O(|h|2).

So, difference scheme (2.3) approximates differential problem (2.1) with the second
order. The stencil of difference scheme (2.3) is presented in Fig. 1.

h1

h2

x

Figure 1. Stencil of difference scheme (2.3).

3. Grid maximum principle

To obtain the a priori estimates of stability in the grid norm C with respect to the
right-hand side and the boundary conditions we will use the grid maximum princi-
ple [5, p. 258]. Therefore, we have to reduce the difference scheme to the canonical
form

A(x)y(x) =
∑

ξ∈S′(x)

B(x, ξ)y(ξ) + F (x), x ∈ ω̄h, (3.1)

and verify the following sufficient conditions on the coefficients

A(x) > 0, B(x, ξ) ≥ 0, D(x) = A(x) −
∑

ξ∈S′(x)

B(x, ξ) > 0, x ∈ ω̄h. (3.2)

Here A(x), B(x, ξ), F (x) are the known grid functions, S ′(x) = S(x) \ {x}, S(x)
is the stencil of the scheme.

Theorem 1. Let us suppose that conditions (3.2) of the coefficients positivity are
satisfied. Then for the solution of problem (3.1) the following a priori estimate is
valid

‖y‖C̄ ≤ max

{

∥

∥

∥

∥

F

D

∥

∥

∥

∥

Cγ

,

∥

∥

∥

∥

F

D

∥

∥

∥

∥

C

}

, (3.3)

where ‖v‖C̄ = max
x∈ω̄h

|v(x)|, ‖v‖C = max
x∈ωh

|v(x)|, ‖v‖Cγ
= max

x∈γh

|v(x)|.

Let us number the nodes of the stencil of difference scheme (2.3) according to Fig. 1
and reduce the scheme to canonical form (3.1):

Ay =
8

∑

k=1

Bkyk + F, yk = y(xk), xk ∈ S′(x).
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If x ∈ ωh, then values of the coefficients are defined by the following formulas

A =
a11 + a

(+11)
11

h2
1

−
|a12| + |a

(+11)
12 | + |a21| + |a

(+12)
21 |

2h1h2
+
a22 + a

(+12)
22

h2
2

+ d,

B1 =
a
(+12)
22

h2
2

−
|a12| + a12 + |a

(+11)
12 | − a

(+11)
12 + 2|a

(+12)
21 |

4h1h2
,

B2 =
|a

(+11)
12 | + a

(+11)
12 + |a

(+12)
21 | + a

(+12)
21

4h1h2
≥ 0,

B3 =
a
(+11)
11

h2
1

−
2|a

(+11)
12 | + |a21| + a21 + |a

(+12)
21 | − a

(+12)
21

4h1h2
,

B4 =
|a

(+11)
12 | − a

(+11)
12 + |a21| − a21

4h1h2
≥ 0,

B5 =
a22

h2
2

−
|a12| − a12 + |a

(+11)
12 | + a

(+11)
12 + 2|a21|

4h1h2
,

B6 =
|a12| + a12 + |a21| + a21

4h1h2
≥ 0,

B7 =
a11

h2
1

−
2|a12| + |a21| − a21 + |a

(+12)
21 | + a

(+12)
21

4h1h2
,

B8 =
|a12| − a12 + |a

(+12)
21 | − a

(+12)
21

4h1h2
≥ 0,

D = d ≥ c0 > 0, F = ϕ .

For x ∈ γh, the coefficients of the canonical form are given by:

A = 1, B = 0, D = 1, F = µ .

Further we will assume that the following condition is satisfied

max{k1, k2} ≤
h1

h2
≤ min{k3, k4}, (3.4)

where

k1 =
|a12| − a12 + |a

(+11)
12 | + a

(+11)
12 + 2|a21|

4a22
,

k2 =
|a12| + a12 + |a

(+11)
12 | − a

(+11)
12 + 2|a

(+12)
21 |

4a
(+12)
22

,

k3 =
4a11

2|a12| + |a21| − a21 + |a
(+12)
21 | + a

(+12)
21

,

k4 =
4a

(+11)
11

2|a
(+11)
12 | + |a21| + a21 + |a

(+12)
21 | − a

(+12)
21

.
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Lemma 1. Let coefficients of differential equation (2.1) satisfy the following inequal-
ity

kαα ≥ |k
(±1α,±1β)
αβ |, α, β = 1, 2. (3.5)

If we choose h1 = h2 = h, then condition (3.4) is always satisfied.

Proof. Let condition (3.5) be satisfied and h1 = h2. In order to prove that in this
case condition (3.4) is always satisfied, we have to show that

k1 ≤ 1, k2 ≤ 1, k3 ≥ 1, k4 ≥ 1 .

First we prove that k1 ≤ 1, i.e.,

|a12| − a12 + |a
(+11)
12 | + a

(+11)
12 + 2|a21| ≤ 4a22. (3.6)

Let a12 = 0.5(k
(−11)
12 + k12), a21 = 0.5(k

(−12)
21 + k21), a22 = 0.5(k

(−12)
22 + k22).

In this case formula (3.6) can be rewritten in the form
∣

∣k
(−11)
12 +k12

∣

∣+
∣

∣k12+k
(+11)
12

∣

∣+2
∣

∣k
(−12)
21 +k21

∣

∣−k
(−11)
12 +k

(+11)
12 ≤ 4

(

k
(−12)
22 +k22

)

. (3.7)

As condition (3.5) is valid, then k22 ≥ |k21|, k
(−12)
22 ≥ |k

(−12)
21 | and we have

|k
(−12)
21 + k21| ≤ |k

(−12)
21 | + |k21| ≤ k

(−12)
22 + k22 .

Thus instead of (3.7) we have to prove that

|k
(−11)
12 + k12| + |k12 + k

(+11)
12 | − k

(−11)
12 + k

(+11)
12 ≤ 2(k

(−12)
22 + k22). (3.8)

1. Let assume that k(−11)
12 + k12 ≥ 0, k12 + k

(+11)
12 ≥ 0. Then inequality (3.8)

can be rewritten in the form:

k12 + k
(+11)
12 ≤ k

(−12)
22 + k22.

It is easy to see that this inequality is valid under condition (3.5).

2. Let assume that k(−11)
12 + k12 ≥ 0, k12 + k

(+11)
12 ≤ 0. In this case from (3.8)

we obtain: k(−12)
22 + k22 ≥ 0. From ellipticity condition (2.2) for ξ = (0, 1) we have

0 < c1 ≤ k22 ≤ c2. Hence, the required inequality holds true.

3. Let assume that k(−11)
12 + k12 ≤ 0, k12 + k

(+11)
12 ≥ 0, then formula (3.8) has

the form:
−k

(−11)
12 + k

(+11)
12 ≤ k

(−12)
22 + k22.

This inequality is valid under condition (3.5).

4. Let assume that k(−11)
12 + k12 ≤ 0, k12 + k

(+11)
12 ≤ 0. In this case we rewrite

inequality (3.8) in the form:

−k12 − k
(−11)
12 ≤ k

(−12)
22 + k22.

This inequality is true under condition (3.5).
Hence, k1 ≤ 1 if condition (3.5) is satisfied. Analogously we prove that k2 ≤ 1,

k3 ≥ 1, k4 ≥ 1. �
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Theorem 2. Let us suppose, that for all x ∈ ωh condition (3.4) is satisfied. Then
difference scheme (2.3) is stable with respect to the right-hand side and the boundary
conditions, and for its solution the following a priori estimate is valid

‖y‖C̄ ≤ max{‖µ‖Cγ
, c−1

0 ‖ϕ‖C}. (3.9)

Proof. It is easy to see that the coefficients B2k ≥ 0, k = 1, 4 without any limita-
tions. The coefficients B2k−1 ≥ 0, k = 1, 4 under condition (3.4):

B1 =
1

h1h2

(

a
(+12)
22

h1

h2
−

|a12| + a12 + |a
(+11)
12 | − a

(+11)
12 + 2|a

(+12)
21 |

4

)

≥
1

h1h2

(

a
(+12)
22 k2 −

|a12| + a12 + |a
(+11)
12 | − a

(+11)
12 + 2|a

(+12)
21 |

4

)

= 0,

B3 =
1

h2
1

(

a
(+11)
11 −

h1

h2

2|a
(+11)
12 | + |a21| + a21 + |a

(+12)
21 | − a

(+12)
21

4

)

≥
1

h2
1

(

a
(+11)
11 − k4

2|a
(+11)
12 | + |a21| + a21 + |a

(+12)
21 | − a

(+12)
21

4

)

= 0,

B5 =
1

h1h2

(

a22
h1

h2
−

|a12| − a12 + |a
(+11)
12 | + a

(+11)
12 + 2|a21|

4

)

≥
1

h1h2

(

a22k1 −
|a12| − a12 + |a

(+11)
12 | + a

(+11)
12 + 2|a21|

4

)

= 0,

B7 =
1

h2
1

(

a11 −
h1

h2

2|a12| + |a21| − a21 + |a
(+12)
21 | + a

(+12)
21

4

)

≥
1

h2
1

(

a11 − k3
2|a12| + |a21| − a21 + |a

(+12)
21 | + a

(+12)
21

4

)

= 0.

Coefficient A > 0, if the following condition is true

max

{

|a21|

2a22
,
|a

(+12)
21 |

2a
(+12)
22

}

≤
h1

h2
≤ min

{

2a11

|a12|
,

2a
(+11)
11

|a
(+11)
12 |

}

.

This statement follows from the following inequalities

A =
1

h2
1

(

a11 −
h1

h2

|a12|

2

)

+
1

h2
1

(

a
(+11)
11 −

h1

h2

|a
(+11)
12 |

2

)

+
1

h1h2

(

a22
h1

h2
−

|a21|

2

)

+
1

h1h2

(

a
(+12)
22

h1

h2
−

|a
(+12)
21 |

2

)

+ d ≥
1

h2
1

(

a11 −
2a11

|a12|

|a12|

2

)

+
1

h2
1

(

a
(+11)
11 −

2a
(+11)
11

a
(+11)
12

|a
(+11)
12 |

2

)

+
1

h1h2

(

a22
|a21|

2a22
−

|a21|

2

)

+
1

h1h2

(

a
(+12)
22

|a
(+12)
21 |

2a
(+12)
22

−
|a

(+12)
21 |

2

)

+ d = d > 0.
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Note, that the above condition is weaker than condition (3.4), i.e., it holds true if con-
dition (3.4) is valid. We verify directly that for any grid node x ∈ ωh the coefficient
D > 0:

D = A−

8
∑

k=1

Bk = d(x) ≥ c0 > 0.

For x ∈ γh, the coefficients of the canonical form are given by: A = 1 > 0, B =
0, D = 1 > 0 . Now, all the conditions of Theorem 1 are satisfied. A priori
estimate (3.3) provides the required inequality (3.9). �

4. Convergence

Let us consider now the problem of convergence of the proposed difference scheme.
Substituting y = z + u into equations (2.3) we get the following problem for the
error of the discrete solution

{

Λz − dz = −ψ, x ∈ ωh ,

z = 0, x ∈ γh ,
(4.1)

where ψ = Λu − du + ϕ denotes the error of approximation of difference scheme
(2.3) corresponding to the exact solution of differential problem (2.1). It was shown
above that the proposed difference scheme approximates the given differential prob-
lem with the second order, thus

‖ψ‖C = M(h2
1 + h2

2),

where M > 0 is a positive constant which does not depend on the grid steps h1, h2.

Using Theorem 2 for the solution of problem (4.1), it can be verified that the
following theorem takes place.

Theorem 3. Let us suppose that for all x ∈ ωh, condition (3.4) is satisfied. Then
the solution of difference scheme (2.3) converges to the exact solution of differential
problem (2.1), and the following a priori estimate

‖y − u‖C ≤
M

c0

(

h2
1 + h2

2

)

is valid.

Remark 1. Results above can be easily extended to p–dimensional (p ≥ 2) elliptic
equations with mixed derivatives.

Remark 2. The proposed approach can be also applied for the development of the
conservative monotone difference schemes for multidimensional parabolic equations
with mixed derivatives.
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5. Numerical results

To solve problem (2.1) by means of difference scheme (2.3) we use the modified
strongly implicit method [9]. Therefore, we reduce difference scheme (2.3) to the
system of algebraic equations

[A]y = C .

Here A is a nine-diagonal matrix. Then we consider matrix [A + P ], which is the
product of the lower triangular matrix [L] and the upper triangular matrix [U ], and
develop the iterative process

[A+ P ]yn+1 = C + [P ]yn .

Since [A+ P ] = [L][U ] we obtain the following numerical algorithm

[L][U ]yn+1 = C + [P ]yn .

Matrices [L], [U ] and [P ] are defined in [9].

Numerical experiments were carried out in domain Ḡ = [0, 1]×[0, 1]. We choose
the coefficients: k11 = 1, k12 = k21 = cos(π(x1 + x2)), k22 = 1, q = 1 . It is
easy to see that kαβ satisfy ellipticity condition (2.2). The exact solution is given as
u = sin(4πx1) sin(4πx2) . By substituting the exact solution into (2.1), we obtain
the boundary conditions and the right-hand side f .

Table 1. The convergence order of difference scheme (2.3).

N × N 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

zN 0.043264 0.010734 0.002687 0.000654 0.000167

DN 0.049900 0.010923 0.002690 0.000672 0.000164

pN 2.19 2.02 2.00 2.03 2.04

The results of the numerical experiments are presented in Tab. 1, where

zN = max
x∈ωh

|yh(x) − u(x)|

is the global error of the discrete solution. Since the exact solution is usually un-
known, we have computed the solution on the grids ωh, ωh/2, ωh/4, etc. Then the
aposteriori error estimate of the solution yh can be obtained by using the Runge
estimator:

DN =
1

3
max
x∈ω2h

|yh(x) − y2h(x)| .

Here we take the difference between the values of the solution on the grid with N/2
nodes and the solution at the same point on the grid with N nodes.

The second aposteriori estimator pN = log2(D
N/2/DN) estimates the conver-

gence order of the approximation yh.
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6. Conclusions

In this paper new difference scheme for elliptic equations with mixed derivatives
and alternating coefficients is presented. The proposed scheme is conservative, has
the second order of approximation and satisfies the grid maximum principle. For the
developed numerical algorithms the a priori estimates of stability and convergence
in the uniform norm are obtained.

The proposed approach to the construction of monotone conservative difference
schemes can be also applied to the development of monotone and conservative nu-
merical algorithms for multidimensional parabolic equations with mixed derivatives.
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Monotoniškos ir konservatyvios baigtinių skirtumų schemos eliptinio tipo lygtims su
mišriomis išvestinėmis

I. Rybak

Straipsnyje nagrinėjamos eliptinio tipo lygtys su mišriomis išvestinėmis. Šioms diferencia-
linėms lygtims pasiūlytos naujos antros eilės baigtinių skirtumų schemos, kurios yra mono-
toniškos ir konservatyvios. Sukonstruoti algoritmai tenkina skaitinį maksimumo principą, kai
koeficientai prie mišriųjų išvestinių gali būti bet kokio ženklo. Gauti aprioriniai įverčiai mak-
simumo normoje. Įrodyta baigtinių skirtumų schemų stabilumas ir konvergavimas.


