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Abstract. New finite difference method for numerical study of phase transition
process in multi-component alloys is proposed. The algorithm is based on conser-
vative fully implicit scheme and the simultaneous determination of concentration
distribution in solid and liquid phases, and the interface position. The numerical
procedure appears to be unconditionally stable. It is compared with a commonly
used technique, which determines concentration distribution and interface position
(growth rate) consequently.
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1. Introduction

In resent years computer simulation for mass transfer in the systems with
phase transition becomes one of the most challenging problems in compu-
tational fluid dynamics. The research in this field is encouraged by the im-
portant role of phase change processes in modern technology, especially in
crystal growth. Modelling activities accompany any development of a new
crystal growth facility, as well as improvement or up-scaling of the existing
setup [12]. A lot of advanced numerical algorithms have been introduced for
computer simulation of solid/liquid phase transition [15]. Most of them are
based on classical Stefan problem and deal with the process in pure mate-
rials or dilute alloys, and very few consider the solidification in non-dilute
multi-component media. The last problem is more sophisticated because in
such processes the phase transition temperature depends on the composition
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of the liquid and solid phases. That distinguishes it from the classical Stefan
problem where the transition temperature is constant.

Here we propose the numerical procedure for simulation of solid/liquid
phase change in ternary solution. The problem is considered in 1D approach.
The mathematical model takes into account diffusion in the solid and the lig-
uid phases and evolution of the phase volumes due to the interface motion.
There are mass balance conditions and phase diagram of the system, which
connects solution concentration to the composition of the solid phase and tem-
perature, imposed at the solid-liquid interface. The model is self-consistent. It
allows to predict both growth and dissolution processes as well as species dis-
tribution in the solid phase, that is of primary importance for crystal growers.

Special efforts are required to design stable and reliable algorithm for solv-
ing such problems, no matter one dimensional. The main difficulties are asso-
ciated with strong coupling between the composition of the liquid and solid
phases and with wide range of time scales introduced by interface motion,
diffusion in the crystal and in the solution.

We describe the proposed algorithm considering the epitaxial growth of
monocrystal layers as an example. The numerical procedure developed in this
study is suitable for the simulation of general phase transition processes in
ternary alloys.

2. Mathematical Model

The basic principle of liquid phase epitaxy (LPE) is similar to the growth
of salt crystals from a saturated saline solution [2, 6, 16]. A solution of the
components A and B in liquid C is brought into contact with a substrate
AC or A;B;_,C. If the solution is slightly supersaturated, components A
and B precipitate out of the solution onto the substrate, providing crystal
growth process. Supersaturation is usually maintained by gradual cooling of
the system. The numerical study for LPE process of A,B;_,C is based on
the following assumptions [5, 6]:

a) the growth takes place under quasi—equilibrium conditions;

b) at the solid/liquid interface the composition of the two phases are re-
lated by the phase diagram of the system;

¢) due to high thermal conductivity of the materials and slow cooling, the
temperature distribution is uniform throughout the system and changes in
time according to a prescribed rule.

2.1. Governing equations

The system is described by the concentration distribution of the solid and
liquid phases and by the interface position.

The domain D; = {X; < x < Xa}, denoted as the solid phase, consists of
the substrate and epitaxial layers. Dy = {X2 < x < X3} corresponds to the
liquid phase, %2(t) is time-dependent coordinate of solid/liquid interface (see
Fig. 1).
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Figure 1. Computational domain.

We consider the solidification of a ternary alloy, where components A, B
are dissolved in the melted C. There are three compositional variables that
define the composition of the liquid phase: z(*) and z(%) and z(©) which must
satisfy the equality

W 4 2B 4 20 = 1.

Here 2(4), 2(5) and 2(©) are respectively the mole fractions of components A,
B and C in the liquid. It means that only two variables, let it be z(4), z(B),
are independent.

In the solid phase, only one compositional variable x is needed to describe
the composition, since

2@ =05z, 2B =05(1-2), 259 =05. (2.1)

Here 25(4) | 25(B) and 2°(%) are the mole fractions of components A, B and C'
in the solid, x is the mole fraction of AC in A, B,_,C.

Mass transfer in bulk phases is determined by diffusion

o s(A) 52 s(A) _
¢ —p@Zf %) <X < Xoft)

or ox2
dct) L 920) N (2.2)
T D' R (t) <x<x3, j=A, B,

where % is Cartesian coordinate, # is the time, D*) and D'U) are the diffusion
coefficients of the component j in the solid and the liquid phases, ¢*/) and
) are the volume concentrations of the corresponding component in the
solid and liquid phases respectively. Concentration of the component B in the
solid phase is found from condition (2.1).

Boundary conditions at X = X; and X = X3 are given as follows !:

9c3(A)
— =0, X =X
0% (2.3)
9ctd)
5o =0.  X=% j=ADB
X

! In the sequel all parameters related to the solid phase will be referred with sub-
script "s". Parameters without subscripts relate to the liquid phase.
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2.2. Solid-liquid interface conditions

The conditions at the interface represent the mass balance and phase equilib-
rium between two phases.

1. Mass balance:
5(4)
s 2

1)
Dl 9
o

ox

%2(t)—0 %2(t)+0

j:Aa Ba izi?(t)a

where v, = X5 (t) is the interface rate.
2. Phase diagram. Composition of the two phases at the solid/liquid is
related by phase diagram of the system, that can be written in the form

[4]:

AHmelt Tmelt _T
5o = 4ya M 2@ exp( AC_ZAC ) ,

RTRS T
(2.5)

AHmelt Tmelt -T
50 =4vB z(B) z(©) exp( BC_~BC ) .

RIge T

Here T is the temperature, R is the universal gas constant, AHE@”,
AHZE are the entropies of fusion, T75!, THe!t are the melting points,
v; (j = A, B) are the polynomial expressions. The coefficients have been
determined by the least — squares fitting of the available experiment data
[4, 5.

In order to obtain the equation that is used in the simulation, %, and
z% from (2.5) are substituted into (2.1):

Ui

(4) B _ N
vk = e Ty

(2.6)

where

AHglélt Téncqlt _T
ETP e
p_ 1B RTRE T 1

=— ;= :
A AHTFE TRt — T ) AHTE TR — T
el.p me ’YA el.p me
RT7S T RTyE T

We rewrite (2.5), (2.6) in volume units. The concrete form of the phase

diagram is not important for the further statement, so it is represented as
F(eW, By =,

, N B - (2.7)

O = [N P T) j=A B, x=%f)

It should be noted, that transition from mole fraction to volume units is a
nonlinear transformation.



Implicit Numerical Algorithm for Solution of Phase Transition Problems257

3. Numerical Method

3.1. Coordinate transformation

To handle evolution of the solid/liquid interface, we map the moving boundary
problem (2.2) - (2.4), (2.7) to the new coordinate system (see Fig. 2). The
reference frame moves with the solid — liquid interface at the velocity vpp, i.e.
in the new coordinate system the interface is fixed.

% %(b) X3 0 1 2

Computational

Physical space space

Figure 2. Coordinate transformation.

Coordinate transformation from the physical space (Z,1) into the space of
computational variables (z,t) reads:
T+ xl’, 0<x <1,
To+(x -1, 1<z<2,
1%, 1" are widths of solid and liquid phases respectively. In the new coordinate
system the interface is located at the point x = 1.

The governing equations in the solid phase (0 < z < 1) take the following
form [1]:

dcs(A) ocs 9 <DS<A) 605(‘4)>
s - ,

o PTor  ox\ 0 o
(aa +ac)c*™ + (ap + ac)esP) = p* (3.1)
Acs(A)
9 =0.
z=0

The second equation in (3.1) was obtained from condition (2.1) written in the
form
25 L geB) _ L
2
and translated into volume units. Here p® is the density of the solid, a4, ap
and a¢ are atomic weights of component A, B and C respectively.
Equations in the liguid phase (1 < x < 2) are given as:
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lacl(j) o) 9 [ D9 §) '
' ———pt—F— = — - ., J=A B,

ot ox ox\ It Oz
3.2
ocld) A 42
= == B
ox 0 J ’
r=2
Phase transition interface equations are given at = = 1:
s(A) 5,.5(A) 1(A) Hel(A)
D™ oc _ Do () (A
s ox [ ox P ’
2=1-0 x=1+40
s(B) 9.s(B) I(B) §cl(B)
Ds5) §c D' e o (e(B) (D)) (3.3)
s ox I ox P ’
z=1-0 x=1+40
F(eD,e®) =0, D) = f(éD, P, T), j=4A, B.

The transformed equations contain several additional terms and coefficients
are not found in the generic conservation equations. The terms actually de-
pend on interface rate v,,. They contribute to each equation in the system
(3.1) — (3.3) emphasizing the coupling between the processes in the solid phase,
fluid and at the interface.

3.2. Finite difference scheme

The numerical procedure for the solution of equations (3.1) — (3.3) is based
on the conservative and implicit finite difference scheme that is obtained in
new coordinate system by the control volume method [14].

Unknown functions ¢*()| ¢5(B) v () ¢(B) are computed at the grid
nodes, while ¢, I°, I', D, D! are calculated at the center of the grid cells.
Coefficients, which correspond to the coordinate system transformation and
depend on the interface movement rate vy, are treated in an implicit way.
Additional transport terms are approximated by the second—order central dif-

ference. Schemes with central difference provide reliable results if mesh size h
2D(s/D)
satisfies the stability condition h <
Uph
to choose the step in the solid and liquid phases. Grid nodes are numbered
from —N7 to N3 and the solid/liquid interface corresponds to grid node num-

ber 0.

[7, 8, 9]. So we use this condition

The finite difference scheme can be written as?:

2 Subscript indicates the number of a considered grid node, variables with a hat
correspond to the advanced time level.



Implicit Numerical Algorithm for Solution of Phase Transition Problems259

o~ hifl o~ hl 1
T 3 (As(A) ?(A)) 47 +3 (éf(A) _ Cf(A))
2 2
@t As A ~s(A @t ~s(A ~s(A
7 ( )~ 1( 1)) + ) (614(-1) - Cz’( ))] (3.4)
z—— X¢+1
Ds AS(?) _ ES(A) Ds(A) AS(A) AS(?)
=T = H— h ! = A — P _Nl < 1< 07
ls i+d ls i1
(aa +ac)i'"™ + (ap +ac)e]™ = p*, —N1<i<0, (3.5)
h_1 ) ) 1 .
5 —3 (68(3) - CS(J)) +l (Al(J) l(J))
2 2
@t ~s(j ~s(j @t Al(F (7
_ Tl? (CO(J) . c}{)) + 5 (cl(J) . CO(J))‘| (3.6)
I7% x%
ol Dl(j) él(j) _ él(j) Ds(j) 65(3) _ és(j)
=T —(éO(J) (J))’U h+ —= L I — 0 —1 ,j=A4A, B,
ll hl ZS h,l
2 2
F@eM,ePy =0, &9 =@M, eP. 1), j=A, B, (3.7)
hi_1 ) ) hi, 1 )
7 3 (é'li(J) _ Cé(J)) —|—l (Al(J) {(J))
2 2
@t AL(F NIG) @t AL(F AL(g
-7 [7 @ -+ 5 @i- cﬁ))] (38)
117% I'H»%
D) A1) Al) DI A7) _ ANG)
oA s 2 % TR << Ny, j=A4, B,
It hi+% Il hi—%

where x;_;/, is the center of the cell [x; 1,7], hi_1/2 = x; — x;_1. The
approximation of diffusion fluxes is of second order accuracy in space and
first order accuracy in time.

The system of nonlinear algebraic equations (3.4) — (3.8) is solved by the
Newton method [14]. Let’s write the full system in the operator notations:

F(¢) =0, (3.9)

~S(A) s ~s(A ~s(A As ~(A) A ~(A ~
here ¢ = (¢ ( ) —(21\373’ —(NZ+1"' CO( ) ( ) Uph,cé ) céB),cg ) 5\]/32)) )

The 1terat1ve process for the solution of (3 9) is determlned as follows

, (B) (k)
F'(¢)i¢+F(¢)=0,
(k+1) (k)

where F’ is the Jacobian matrix, 6 = (¢ — (, k is the Newton itera-

tion counter. The solution from the previous time level is used as a starting
estimate for the iteration.
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At each Newton iteration we have the system of linear equations with
respect to unknown vector §¢, the components of which are increments of
concentrations of all species

589 i=—Ny,..,0, 69, i=0,..,Ny j=A, B

K3

and interface rate dvp,. The Jacobian matrix is defined as:

—N1 —N1 N3
B C 0 |..... S 0
—N;] FI|-Ny F1]—-N; F¥1 —N; +1
0‘ € | 0
—1 71-71 7‘1
o (AT ] :
0 0 0
[ A B Clooooooao.. 0
T T 1 T
0 foveriiii, | & [Asl ] 0
NQ-—l Ny —1|Ng — 1[Ny — 1
0 oo € |
No N3 Na
0 |oeeeiiii £ |..... 0| A| B

The blocks in this matrix have the following structure:

* 0 ) * 0 )
< )7_N1§Z<Oa < )a_N1§Z<07
00 ‘ % %

A7é: é:

* 0 . * 0 .
< )7 0<Z§N27 < )7 0<Z§N27
0 = 0 *
*
<>7 _N1§Z<07
0
*
<>, 0<i<Nsy.
*

0 0 0
A and C are 2 x 5 blocks, B is 5 x 5 block:

¢—

* 0 * 0% %0
0 o 0 % 0 0% %0 *
A, C=100|, B=1]1000:x*=x
00 S ELEE:
00 * % 0 % %

The full column in the center of the matrix corresponds to the unknown
interface rate.
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In order to obtain the solution of the corresponding linear system the
modified Thomas algorithm is used [13]. We represent §cf(A), i=—Ny,...,0,
5653), j=A,B,i=0,...,Na, dvup, in the following form

5Cf(A) = O‘erl&cf-(iﬁ) + By + Y4 10vpn,  —N1 <0 <1,
5c§j) = aé(ji&@l +ﬂf£ji + vé(jf&@h, 1<i< Ny j=A, B.

Coefficients af(A), ﬁf(A), ’yf(A), i=—Ni,...,0, agj), ﬂfj), ’yi(j), i=0,..., Ny,
j = A, B can be easily calculated by the forward and backward elimina-
tion, respectively. Thus the problem is reduced to the system of five equa-
tions at the solid/liquid interface with respect to unknowns (5CS(A), 563(3),
OUph, 60((;4), 6083))T. Its solution is obtained directly by matrix inversion. The
back substitution part of the method gives 5cf(j), i =—Ny,...,0, 6ci(j), i =
0,...,Ns, j = A, B. The Gauss elimination is stable while the Jacobian ap-
pears to be a diagonally dominant matrix.

The solution algorithm can be summarized as follows:

1. Calculation of the Jacobian by using the latest solution ¢*(4), ¢5(B) Uph,

A ¢(B) as a starting estimate for ¢5(A) ¢5(B) o, 64 alB),

2. Determination of coefficients o, 87, 77, i = —Nyp,...,0, aé(j), ﬁi(j),
V) i =0,...,Ny, j = A, B and reduction to the liquid/solid interface.

. Direct matrix inversion for obtaining 5¢5™", 5¢5™, svpn, 6l 5clP).

4. Computing of the unknown functions 1%, I!, ¢; and composition distribu-
tion in the solid and liquid phases at the next Newton’s iteration.

w

5. Estimation of the convergence.
6. Advance to the next time step.

4. Numerical Results and Discussion

In this section the proposed fully implicit coupled algorithm was compared
with a semi-implicit one, where the concentration distribution and interface
location are determined consequently [1]. This technique treats 1%, I, v, in
approximation of (3.1) — (3.3) in explicit way. Additional transport terms are
approximated by the upwind scheme. Coefficients depending on interface rate
vpn are updated after determination of the concentration distribution in the
bulk phase.

The equations obtained from the finite difference approximation are non-
linear only at the solid/liquid interface. As before the Thomas procedure is
applied for the solution of the liner equations, but this time it is used with
respect to unknown concentrations themselves [1, 13]. So we assume that:

~s(A .
=03 &Y 40, —Ni<i< -1,

. - , (4.1)
&V =09 49V 1<i<Nyj=A,B.

3
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Representation (4.1) allows us to reduce the system of governing equations to
the set of four nonlinear equations at the solid/liquid interface with respect to
unknowns &5, e3P (A 2(B) They are determined by the Newton iter-
ation [14]. Composition distribution in the bulk phases is obtained according
to (4.1), then interface rate vy, is calculated. In semi-implicit technique the
Newton algorithm is applied only at the phase transition interface.

Both algorithms are used for the numerical study of liquid phase epitaxy
of ternary alloys. The computer simulations are done for real phase diagram
and experimentally used growth conditions [3, 5]. Diffusion coefficients are

2
5 CIM

DA —5.10" DNA/B) —5.10~ .
S

1o cm?
The time step was taken 7 = 0.5 second. It is two hundred times larger
than the one determined by the stability condition of explicit algorithms:
7 < h?/(2D") =~ 0.002s.

Uniform but different space steps are used in solid and liquid phases. The
number of grid points in the solid is V; = 5000 and in the liquid is N2 = 500.
The grid is sufficiently fine and allows us to predict accurately thin boundary
layers in the vicinity of interface as well as to diminish numerical diffusion
involved by the upwind approximation of transport terms in (3.1) — (3.3).
The number of grid points and consequently the computational time can be
decreased if non-uniform grids have been used. But it is not very important
in the frame of this study, since our main objective is to reveal the advantage
of the fully implicit conservative scheme.

Let us consider the following growth mode. Undersaturated A — B — C
solution at temperature Ty is brought into contact with A, B;_,C substrate.
The composition of the liquid phase is in equilibrium with the solid phase
A, B, C at temperature T < Ty. The growth is initiated by the programmed
cooling: T'= Ty — at. At the early stage of the process the substrate, playing
the role of material source, dissolves and feeds the solution with components
A and B. Two processes contribute to the saturation of the liquid phase:
substrate dissolution and cooling of the system. As soon as the solution at the
vicinity of the interface becomes slightly supersaturated the process changes
its direction from dissolution to growth.

This process was simulated by both methods. Fig. 3 demonstrates yielded
composition distribution of AC' in the solid phase. It is evident that the re-
sults provided by both algorithms are practically identical. It should be noted
that attempts to implement the central difference approximation of trans-
port terms in semi-implicit algorithm failed. Even on very fine time grids we
have observed the substrate dissolution modelling growth regimes that should
proceed without it.

But for another growth model the semi-implicit algorithm does not provide
physically approved results. For instance, undersaturated solution is brought
into contact with AC substrate instead of A, B;_,C. All the other parameters
are the same as in the previous run. This time at dissolution stage the liquid
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Figure 3. Composition distribution of AC' in the solid phase.

phase is enriched only with component A, while component B diffuses from
the liquid phase into the substrate. Thus, in the liquid phase, in vicinity of
the interface concentration of component A increases, while concentration
of component B decreases. The evolution of the liquid phase composition is
shown on phase diagram of the system (Fig. 4). In the picture, the solid lines
are the isotherms corresponding to Ty, 71, the dashed ones are the lines of
constant solid composition x. Sections of both curves give the composition x
of a solid which is in equilibrium with a fluid of composition z(Y), z(B) at a
certain temperature. Thick line shows the calculated composition of the liquid
phase at the interface in the considering growth mode. Point 1 denotes the
initial composition of the liquid phase, point 2 is the equilibrium composition
which immediately sets up at the interface when undersaturated solution is
brought into contact with the substrate. Point 3 is the final composition of
the liquid phase.

For the fully implicit coupled algorithm a transition of solution concentra-
tion at the interface is given in Fig. 4a. Due to dissolution of AC substrate
concentration of component A in the liquid phase at the interface increases,
while the solution becomes depleted with respect to component B.

In Fig. 4b for the semi-implicit scheme, we see that at the initial stage
of the processes concentration of component B increases at the interface as
if there is an artificial source of component B. This result is not physically
valid, though the Newton method at the interface converges. The behavior of
the solution does not improve if the time step is decreased.

The proposed fully implicit coupled algorithm allows us to perform full
scale simulations for LPE process. Fig. 5 illustrates the early stage of the
substrate dissolution. In the vicinity of liquid/solid interface concentration
of component A gradually increases (Fig. 5b). At the same time component
B diffuses into the solid phase producing a very thin boundary layer in the
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 x=0.216

0,190+
0,185+
0,180+

0,175+

B [atomic fraction]

0,170+

0,011 0,012 0,013
A [atomic fraction]

a) Implicit algorithm.

0,195+
0,190
0,185+
0,180+

0,175+

B [atomic fraction]

0,170+

0,011 0,012 0,013
A [atomic fraction]

b) Semi-implicit algorithm.

Figure 4. Evolution of liquid phase composition at the phase transition interface
during growth process.

solid phase. This process equilibrate the substrate, that is two component
in the bulk, and ternary liquid phase (Fig. 5¢, 5d). For the application, it
is important to emphasize, that implicit algorithm does not require any ad-
ditional adjustment of initial composition of liquid and solid phases for the
convergence of iterations.

5. Conclusions

New numerical procedure is proposed for studying 1D self-consistent mathe-
matical model of phase transition processes in ternary alloys. It is based on
coupled solution of governing equations with respect to all unknown quanti-
ties. In fully implicit procedure the time step is chosen from accuracy consid-
erations and is not dictated by stability demands. Variation of time steps from
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Figure 5. Composition distribution in the vicinity of solid/liquid interface at the
early stage of LPE process. Implicit algorithm.

0.001 second to 1 second does not influence on the quality of the solution. Also
fully implicit algorithm does not require any preliminary adjustment of initial
data as it usually happens in simulation of phase transition in multicomponent
systems [10, 11].

The feasibility of the method is confirmed by numerical study of liquid
phase epitaxy of ternary compounds. The simulations has been done for real
phase diagram and practically used growth conditions.

References

[1] O.V. Chtcheritsa, O.S. Mazhorova and Yu.P. Popov. Diffusive models for crys-
tallization of multicomponent solutions. The Keldysh Institute of Applied Math-
ematics, Preprint 24, Moscow, 2003. (in Russian)

[2] I. Crossley and M.B. Small. The physical processes occurring during liquid
epitaxial growth. Journal of Crystal Growth, 27(1), 35 — 48, 1974.

[3] I. A. Denisov, O. S. Mazhorova, Yu. P. Popov and N. A. Smirnova. Numerical
modelling for convection in growth/dissolution of solid solution C'd,Hgi—.Te
by liquid-phase epitaxy. Journal of Crystal Growth, 269(2), 284 — 291, 2004.

[4] I.A. Denisov, V.M. Lakeenkov, O.S. Mazhorova and Yu.P. Popov. Mathematical
modelling for liguid phase epitazy of Cdy Hgi—Te solid solution. The Keldysh
Institute of Applied Mathematics, Preprint 65, Moscow, 1992. (in Russian)



266 0.V. Chitcheritsa, O.S. Mazhorova, Yu.P. Popov

[5] I.A. Denisov, V.M. Lakeenkov, O.S. Mazhorova and Yu.P. Popov. Numerical
study for liquid phase epitaxy of Cd, H g1—.T e solid solution. Journal of Crystal
Growth, 245(1), 21 — 30, 2002.

[6] L.A. Dmitrieva, O.S. Mazhorova, Yu.P. Popov, E.A. Tvirova and A.A.Shlenskii.
Mathematical Modelling. Production of Bulk Crystals and Semiconductor Struc-
tures. Computer simulation for solutal convection in liquid phase epitazial
growth of semiconductor materials. Nauka, Moscow, 1986. (in Russian)

[7] S.V. Ermakov, O.S. Mazhorova and Yu.P. Popov. Mathematical modelling
of electrophoretic separation of bio mixtures. Part 1. Differential equations,
28(10), 1810 — 1821, 1992.

[8] S.V. Ermakov, O.S. Mazhorova and Yu.P. Popov. Mathematical modelling
of electrophoretic separation of bio mixtures. Part 2. Differential equations,
28(12), 2129 — 2137, 1992.

[9] K. Fletcher. Computational techniques for fluid dynamics. V.1., V.2. Mir,
Moscow, 1991. (in Russian)

[10] M. Kimura, S. Dost, H. Udono, A. Tanaka, T. Sukegawa and Z. Qin. A nu-
merical analysis for the conversion phenomenon of GaAs to GaAsP on a GaP
substrate in an lpe system. Journal of Crystal Growth, 169(1), 697 — 703,
1996.

[11] M. Kimura, Z. Qin and S. Dost. A solid — liquid diffusion model for growth
and dissolution of ternary alloys by liquid phase epitaxy. Journal of Crystal
Growth, 158(1), 231 — 240, 1996.

[12] G. Miiller and J. Friedrich. Challenges in modeling of bulk crystal growth.
Journal of Crystal Growth, 266(1), 1 — 19, 2004.

[13] A.A. Samarskii and E.S. Nikolaev. Methods for the solution of grid equations.
Nauka, Moscow, 1978. (in Russian)

[14] A.A. Samarskii and Yu.P. Popov. Finite difference schemes for the solution of
gas dynamics problems. Nauka, Moscow, 1992. (in Russian)

[15] A.A. Samarskii and P.N. Vabishchevich. Computational Heat Transfer. Math-
ematical Modelling. Vol.1., Vol.2. J. Wiley Sons, 1995.

[16] H.R. Vydyanath. Status of Te — rich and Hg — rich liquid phase epitaxial
technologies for growth of (Hg,Cd)Te alloys. Journal of Electronic Materials,
24(9), 1275 — 1285, 1995.

Neisreikstinis skaitinis algoritmas fazés pernesimo uzdaviniams daugiakom-
ponenéiuose lydiniuose

0.V. Chtcheritsa, O.S. Mazhorova, Yu.F. Popov

Pasiulytas naujas baigtiniy skirtumy metodas fazés perne§imo daugiakomponenéi-
uose lydiniuose skaitiniam sprendiniui rasti. Algoritmas pagristas pilnai konser-
vatyvigja baigtiniy skirtumy schema ir vienalaikiu koncentracijos pasiskirstymo
apibrézimu kietoje ir skystoje fazése, kaip ir saly€io pavirSiuje. Skaitinis metodas
yra besalygiskai stabilus. Jis palygintas su kitais bendraisiais metodais, kurie nu-
osekliai apibrézia koncentracijos pasiskirstyma ir salyCio pavir§iaus padét;j.



