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Abstract. In this work, mathematical models of wet pressing of paper are studied.
Our goal is to compare two mathematical models, which are developed for simula-
tion of filtration processes in paper press machines. Both models were obtained from
the same general model of the compressible porous medium, but different assump-
tions were used. Modified models are developed that describe water losses at the
boundaries of the porous layer and the importance of this factor is investigated.
Numerical algorithms are developed for simulation of the liquid movement in the
deformable porous media. It is proved that the discrete problem is stable if the time
step 7 satisfies the inequality 7 < Ch?. Tt follows from the stability analysis that the
mathematical model describes an ill-posed problem for some values of parameters
used in simulations.
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1. Introduction

The flow of fluid in porous materials occurs in a number of industrial appli-
cations such as drying of wood and paper, soil mechanics, liquid composite
moulding (see [2, 5, 6, 7, 10, 14]). Many mathematical models are developed
for the analysis of such processes. In this work, models of wet pressing of pa-
per are investigated. Our goal is to compare two mathematical models, which
were developed for simulation of filtration processes in paper press machines.
Both models were obtained from the same general model of the compressible
porous medium, but different assumptions were used.

In the paper of Velten and Best [14] it is assumed that water is moving
only in one dimension along the felt. They investigated the development and
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dynamics of the full saturation zones in the porous material. We note that
"no flow" boundary conditions across the porous layer were used.

In the paper of Hiltunen [9] (see also [10]) two liquid phases are taken
into account, i.e. the air phase is added to the model. Contrary to [14] it
is assumed that the velocity of the water along the felt coincides with the
solid phase velocity and the movement of water across the porous material is
investigated. The effect of saturation is neglected in [9], therefore the pressure
equation is simplified seriously.

In Section 2 we formulate a general model of the compressible porous
medium. Evolution of fully saturated zones is investigated in Section 3. We
propose a modification of the model, which was used in [14], and investigate
the impact of water losses to the dynamics of the saturation zones. A three
phase model of a paper press machine is investigated in Section 4. The main
goal of this section is to construct a discrete approximation of the system of
PDE and to investigate the stability of the obtained finite-volume scheme.

2. A General Model of the Compressible Porous Medium

In conventional paper machine a porous layer (paper web) is compressed either
between two rotating rolls or between a rotating roll and a fixed surface (a
pressing shoe). The porous layer is partially filled with a fluid. The mixture
theory is used to describe the flow of fluids in deformable porous materials. In
this section we present general governing equations, which are used to simulate
the processes in paper press machines. Good introductions into mathematical
models describing drying of paper are given in [9, 14].

Let us consider a sample of volume element V' of a mixture in porous
layer. It consist of three phases: fluid and air phases indexed ” f” and ”a”,
and a solid phase, which consists of fibrous solid material and is indexed ”s”.
As always we assume the size of this volume element is large compared with
the size of pores and small compared with the size of the entire system. We
denote the volumes occupied by water, air and solid material by V¢, V, and
Vs respectively. The volume fraction of each component is defined by:

QSO‘:V’ Oé:f,Cl,S.

Due to volume conservation the following constraint should be satisfied:
¢f+¢a+¢s:17 (2'1)

thus it is sufficient to write two equations for determination of two volume
fractions of the mixture. The porosity ¢ of the porous material is defined by

p=1—¢;.
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Mass conservation of three constituents

Assuming that the solid and fluid phases are intrinsically incompressible, (i.e.,
the intrinsic densities of the solid ps and fluid j; are constant), we obtain the
local mass conservation equations in the Eulerian framework:

%—FV-((%VQ):O, a=s,f. (2.2)

Since the air is a compressible liquid, we get the following equation:
0 _ ~
a ((bapa) +V- (¢apava) =0.

Treating the air as an ideal gas, we obtain the equation of state for the gas
phase:

. 1
Pa = FPa,
Cp
Thus the mass conservation equation of the air phase is given by
9, - _
E (¢apa) + V- (¢apava) =0. (23)

Considering the slow flow regime and ignoring the weak time-dependent
effects, we obtain the mass balance equations in the stationary case

{ v'(d)ava)zoa O[:S7f7

2.4
V- (¢aﬁhva) =0. ( )

Momentum balance equations

We will not consider general momentum balance equations. To focus on flows
in porous media, the simplifying assumptions are used. Considering the slow
liquid flow and assuming that excess interaction forces between the solid and
liquids are proportional to the velocity differences v, — vs, a = a, f, we write
the general momentum balance equations as (see [1]):

¢a(va_vs) = _&vﬁa; O[:a,f, (25)

Mo

where p,, are the viscosity coefficients and K, are the permeability tensors.
Equations (2.5) are the three-phase flow Darcy law for the case of moving
porous medium.

The permeability coefficients K, = K, (¢, S) depend on the porosity ¢ of
the porous material and the saturation S of water, where S is defined by

_ %
s=2.

Different models are used to describe the permeability of the porous medium
(see, [9, 14]) and they generalize the well-known Kozeny—Carman equation

[3]-
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External forces

The rolls exert large forces on the liquid and solid phases. These forces are
taken into account by using the classical Terzaghi principal as discussed in [14].
It is noted in [9] that for highly compressible porous materials the Terzaghi
principal may not be applicable and instead of it a more general form should
be used.

To connect the Terzaghi principal with the other equations of the model
of multiphase flow in the deformable porous medium, it is necessary to spec-
ify a model for the deformation of the porous material. In most papers the
viscoelastic model is used.

In the following sections we consider two examples of simplified models,
which are obtained from this general equations.

3. Evolution of Fully Saturated Zones

It is stated in [14] that evolution of a fully saturated zone critically determines
the effectiveness of the drying process. For example, the press felts need to be
unsaturated in some part of the rolling zone, in order to be able to take up
significant amount of water from the paper.

The mathematical model is developed in [14], which is based on two—phase
flow equations in one dimension. It is used to predict the evolution of fully
saturated regions and to estimate the sizes of the saturation region [14].

We note that "no flow" boundary conditions are used for fluid phase in this
model. Our goal is to generalize the model in order to include water losses and
to consider the dynamics of the saturation under various scenarios of water
losses.

3.1. Formulation of the model

It is assumed that a porous layer is moving in the positive x direction. The fol-
lowing basic assumptions are used to simplify the multidimensional equations
of mass conservation (2.4) and momentum balance (2.5):

e The y direction (following the roll axes) is neglected since the rolls are up
to 10 m long.
The water flow in the z direction is neglected.
The air phase is neglected, i.e. it is assumed that ¢, =0, p, = 0.

Mass conservation of the fluid
We consider the flow regime in the region:
D={(z,2): xzq<ax<ap, Alx)<z<B(x)},

where A(z), B(x) are the lower and upper boundaries of the porous layer,
respectively. Let d(x) = B(z) — A(x) be the thickness of the porous layer.
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Since we consider the mass flux only in the = direction, then taking a small
volume [z, x + h] we can write the discrete mass balance equation

_d¢f”f|m+h + d¢fvf|m =hJ,

where J estimates water losses through the lower and upper boundaries of the
volume element. If "no flow" boundary conditions are assumed, then J = 0.

Dividing both sides of the equation by h and taking the limit A — 0, we
obtain the one-dimensional mass conservation equation:

—(d¢pvr) =T (3.1)
We note that J = 0 is taken in [14].

A different mass balance equation can be obtained if apriori assumptions
are changed. For example, let us consider a case, when the derivative of the
flux in the x direction does not depend on the remaining coordinate z. Then
integrating the stationary mass conservation equation (2.4) in the region

AD ={(2,2): z1<x <2, zo=21+h, Alx)<z<B(x)}

we get
zo B(x) 8 T2
B(x)
| | mesodzdns [ (oop)lits) da=o.
z1 A(z) T1
The term

T2
1 B(z)
n=5 [Gruapliis) ds
T

defines water losses (or increment) through the lower and upper surfaces of
the finite-volume. Using the assumption given above and integrating the first
integral by parts we get a discrete mass conservation equation

z2

~(doyop)|,, + [ddgup)], + /d/¢fvf de = hJy .

x1

Taking the limit A — 0 gives the differential mass conservation equation
—(d¢svg) +d dgvp = Jy.

The Darcy law
Momentum balance equation (2.5) becomes

Kf dpf
) = — LB 3.2
¢r(vf — vs) i o (3.2)
where vy, v, and Kf(¢, S) are real valued functions depending on the z argu-
ment.



272 R. éiegis, M. Meilunas, A. Stikonas

Substituting (3.2) into mass conservation equation (3.1) we obtain a con-
vection — diffusion equation for unknown py(z)

Ky o\ r
—(du—fpf) + (dosv,) = —J.

We note that in [14] a factor d is omitted in the first term on the left-hand
side of this equation.

The obtained equation also depends on S and ¢;. Additional constitutive
relations are used to close the system. By using the definition of the saturation
we express ¢ as ¢y = S ¢.

From experiments we know the relation between capillary pressure p. =
Pa — py and saturation S (see, e.g. [1])

S = g(pc)'

In our case p, = 0, therefore we obtain the needed relation S = g(py).
Substituting these expressions into the convection — diffusion equation we
get the nonlinear differential equation in the unknown p¢(z):

K , 2\ ’
_(dwpf) + (d¢g(pf)vs) =—J. (33)

Boundary conditions were defined in [14] as follows:
pr(=zp) =g~ (o), d—pf|,_, =0,

where z;, is some large number, such that no influence of x; on the solution
py is observed.

Constitutive relations

Since our goal is to investigate the influence of water losses on the saturation
dynamics, we use the same parametrized function g(py) as in [14]

1

9(ps) = 1—1300 + (%)

1

n+$°°7 pf§07

; py >0,

where parameters s..,a,n were selected to fit the experimental data. The
obtained saturation — pressure function g(py) is shown in Fig. 1a.

A constitutive relation for K is expressed as a nonlinear function of poro-
sity and saturation (see [14]):

¢3
1—¢2

Ky (,8) = ko 534, (3.4)
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where kg is the permeability factor.
We note that in [9, 10] a similar but different expression was used to
describe this nonlinear function

¢3
(1—-9¢)?

In the case of full saturation of water, (3.5) reduce to the widely used em-
pirical Kozeny — Carman equation, which relates porosity and permeability.
Nevertheless, in order to compare our results with [14], we have used formula
(3.4) in all numerical experiments.

K(6,8) = ko 534, (3.5)

8
T
J
£
=9
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3
T
|
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b)
Figure 1. a) Saturation — pressure function: sec = 0.11, a = —1.2, n = 2, b) press

— strain function.

Model for the deformation of porous material

Let assume that we know the function d(x), which describes the thickness
of the porous layer, and let dy be the thickness of the uncompressed porous
layer. The volume V' (z) of the element of porous material is proportional to
d(x). Let denote by Vi(z) = Cds(x) the volume occupied by the solid phase.
Assuming that the solid phase is not deformed and only the pore space is
compressed, we get the equality

ds(a) = ds(x) .
Dividing it by dy and rearranging some terms we obtain the equation

1—¢0=(1—¢($))%7

from which the porosity ¢(x) can be computed
do

¢($):1—m(1—¢0)-
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The following model was proposed in [14] to determine d(z) in the de-
formed felt. Function d = d(z;d,,in) expresses the thickness of the porous
layer as a function of x and the minimum distance between the roll surfaces

dmin:

do, @ < m1dmin) = — /B2~ (3(do — dunin) — R)’,
2R + dppin — 2V R2 — $2, xl(dmin) <z< xr(dmin) .

In the first interval the porous material is uncompressed, in the second one
it follows the geometry of the roll surfaces until stress 7., becomes zero at
& = Xy (dmin ). The nonlinear Kelvin — Voigt law is used to take into account
viscoelasticity of the felt:

a

Tz () = E(z) + USAda:

E(z),

where A is a viscoelastic time constant. The stress — strain function F is fitted
to data given in [14]:

E(e) = 35¢** [MPa].
The obtained function is shown in Fig. 15.

For x > x,(dmin) the strain € = e(z;dpmin) = 1 — d(z;dmin)/do is deter-
mined from F(z), which satisfies the initial value problem

d 1
B(@) = ——E(). 55

E(xr(dmin)) = E(e(fh dmin); dmin) .

Thus we get:

Ad(@; dmin) = do(1 — €(2)), @ > 2 (dmin).

The parameter d,,;, is obtained from the Terzaghi equation. The forces
Fy and Fy can be computed as

zr(dmin) zr(dmin)
d
T
zi(dmin) z1(dmin)
therefore we get the nonlinear equation for d,,;,:
$r(d7n'in) d
/ (pf + E(x; dmin) + USA%E(J:; dmm)) de =F. (3.7

Ty (drn'in)
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3.2. Discretization of the model
Let us introduce the uniform grid
wp = {xz r; = —xp+ih, 1=0,1,..., N, xN:a:b}.

In the following we will denote the discrete approximations of continuous func-
tions using a subscript ”h”, e.g. the pressure function p; will be approximated
by the function

Pfhi = pf,h(mi) = pf,h(xia dmin) .

The hydrostatic pressure function is defined as follows:

Ppn = Spy+ (1 —8)pa .

Iterative algorithm for solving equation (3.7)

Approximating integrals in (3.7) by the trapezoidal rule

o~ Phi+Phi1+ Eleni) + Bleni1)
Sh(dmin) = i:%;l > h
+0ud (Blenng) = Blenn,))
we get the discrete nonlinear equation
Sh(dmin) — F =0.
The obtained nonlinear equation can be solved by many iterative algorithms.

Since function S}, is monotonical, we use the bisection method to find d,,;,.

Finite volume scheme for solving the pressure equation

During each bisection iteration (or outer iteration) we should solve a nonlinear
problem, which approximates the boundary value problem for the pressure
function.

Let us introduce the following notation of finite differences:

Phri — Ph,i—1 Ph,i+1 — Ph,i
O_phi = %7 04 Phi = % .

Applying the finite-volume method we approximate equation (3.3) and
boundary conditions by the following conservative finite-difference scheme (see

[6])
=iy 1 (Pn) 04Pni + a;_ 1 (pn) 6-pri + wig(pni) — wi—19(Pn,i-1) = —Jih,
prho = g~ *(So), ay_1(pn)0—pan =0,

where we use notation
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ai(pn) = d(z;) M, w; = d(x;)Ppivs -
K
Since we are interested in monotonous approximations, the convection term is
approximated by upwinding formula. Therefore the total truncation error of
the discretization is only of order O(h). The accuracy of the obtained solution
is estimated a posteriori by using the Runge rule.

The nonlinear discrete problem is linearized by the following iterative al-
gorithm:

—azy 1 (07) 0403 + a1 () 6-p}F +wig (05,)p5

_wiflgl(pi,i—l)pf:ril—l = —wig(ph;) + wi—19(p}, ;1)
+wig (ph:)P7; — wirg' (D51 )P} 1 — Jih,

pret =971 (S0), an_1(p}) s_piit=o0.

3.3. Computational experiments

In numerical examples we take parameters and coefficients from [14]. The
water viscosity s was set to 4.7 x 1074 Pa s. In the expression for the relative
permeability K, the factor ko was set to kg = 10719 m?2. The viscoelastic time
constant A was set to 0.0004 s. The parameters of paper machine and porous
layer were taken as

dp =2.5mm, R=100cm, F =70kN/m, Sy=0.5, ¢o=0.52.

1 — y=0.01 1
r v=0.001 . —_——
— —  v=00001 -
09 = v=0.00001 09
08 08
(20 [
07 07
[ 06
05— ————~ 05
015 0125 -01 0075 005 0025 0 0025 005 01 0075 005 0055 0 0025 005
x[m] x[m]
a) b)

Figure 2. Saturation profiles for different solid velocities: a) 1 x 1075 < v, < 0.01,
b) 0.01 < v, < 5.

First, following analysis presented in [14], we assume that "no flow" bound-
ary conditions are valid, i.e. J = 0. The saturation of water profiles for solid
phase velocities between vs = 0.0001 and 0.1 m/s are shown in Fig. 2a. The
full saturation S = 1 zone arises only at sufficiently large solid phase velocity.
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For small velocities the pressure profiles are close to the constant pressure
pso (see equation (3.3) for J = 0 and v, small) and saturation profiles are
very smooth.

Our results are different from results presented in [14], where it is stated
that for small solid velocities the water amount practically remains unchanged
at each point of porous material and therefore the saturation increases around
the center of the rolling zone at = = 0, reflecting the decrease of the porosity
¢ in the rolling zone. Such profiles can not be obtained from the presented
mathematical model, since the pressure remains almost constant, therefore
the water amount should be redistributed according the saturation — pressure
equation.

Our main goal of this section is to include water losses into the formulation
of the mathematical model and to consider the dynamics of the saturation
under various scenarios of water losses. We assume that water losses take
place mostly at the center of the rolling zone (see [9]) and describe it as

J(z) = Jops(z)S(x)e(x).

04

0.2

01 0075 005 -0025 0 002 00
x[m]

Figure 3. Saturation profiles for different solid velocities.

We have fixed the solid phase velocity to v = 1m/s and simulated the
process for different values of Jy. The obtained saturation profiles are shown
in Fig. 3. We see, that for sufficiently intensive water losses the saturated
zones disappear. It is interesting to note that about 50 percents of water is
taken away for Jo = 0.001. It agrees well with results presented in [9], where
full saturation of water is not considered in the mathematical model.

4. Three Phase Model of Paper Press Machine

In this section we consider the mathematical model, which was proposed by
Hiltunen [9].
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4.1. Formulation of the model

The following main assumptions are assumed to be valid:

Time — dependent effects are small and can be neglected.
The y direction (following the roll axes) is neglected since the rolls are up
to 10 m long.

e The flow of both liquids, i.e. water and air, is purely transversal in the rest
frame of the mat entering the nip. This means that

x x

vy =vY, a=a,f.

We will use simple notations of velocities

Vo =V, @ =a, [, s.
In the press section of a paper machine, water is squeezed out of the
paper web into the felt, thus we consider the flow in the following region

D = D,UDy, where D,,, Dy are the paper web and felt regions, respectively:

L L
Df:{(x,z): 3 <z < 3 —7¢(z) §z§0},
L L
Dw:{(x,z): —Egmgg, nggfyw(x)}.
With these assumptions we get from (2.4), (2.5) the following mass balance
equations
0%4‘3((]50(”(1):07 O[:S,f,
or 0z
9 9 (4.1)
—(®aD = (PaPnVa) = O,
o (¢abn) + 5 (Gabno )
and the momentum balance equations
K, 0p
¢a(va_vs)_ _%7 a—a,f,
Lo Oz
) (42)
aps _]5 a(bs _ ¢§Nu(v —w ) + (bf:uf(v o )
0z h oz K, ' “ 5 Ky ! a

Summing up all equations of (4.2), we get that

opr _
0z ’
where the total pressure is defined as
PT =DPa +Pf +Ds =Ps+ (1 - ¢S)]5h-

Using the generalized Terzaghi principle we write the pressure balance equa-
tion in a form
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pr(@) = pst(s) + f(s(x, 2)) a(2, 2) | (4.3)
(bsO

where s = 1— is the strain and ps; is the structural pressure in the absence

S
of hydrostatic pressure. It is noticed in [9] that porous material can show
hysteresis and suffer permanent deformation, hence the structural pressure is
parametrized as

S . .
o during compression,
r 0
Pst = Psto , TI'= (44)
1—r S —ESm . .
———, during expansion,
So — €Sp

where s, is the maximum strain achieved by a certain point.

It remains to get the equation for the solid phase velocity vs. Summing up
all three mass conservation equations (4.1) we get the first order differential
equation for v:

% (¢5us + batia + vs) = _fa (c% + (ug + vs)

ﬁh Ox %) ’

0z
where u, = vy —vs, @ = f, a. Using the relation (4.3) and the mass conserva-

tion equation for the solid phase we convert the xz—derivative of the hydrostatic
pressure into the known xz—derivative of the total pressure:

Da Ovg . _@ c apT(x) B 0o _2
(1+Z~7_h¢sq) 0z ﬁh(f(¢s) op  Ua 3z) 92 (prus+data), (4.5)
where
_ Dnf'(@s) + Pt (¢s)
f(9s) '

The gradient of the hydrostatic pressure is assumed to be constant in the

felt _ ~
Opn(z,2)  Apn

0z qs(x)
where Apy, is the total pressure drop across the felt.

, (x,2) € Dy, (4.6)

Boundary and continuity conditions

On the surface of the upper roll

Ly={(z2): -

e

L
SCES 57 Z:/y’w(x)}a
we assume that "no flow" boundary conditions are valid
Vo =05, aa=ua,f, (x,2)€ly. (4.7)

On the lower surface
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Iy ={(a,2): —ggxgg, z=77(r) }

the hydrostatic pressure is given and the water and air move freely out of the
felt:
Pn(x,2) = Py -
The web — felt interface I%, s

Nt~

L
Loy ={(z,2): — Sxﬁa, z=0}

is fixed, therefore
vs =0, (z,2)€ Lyy.

The water and air flows are assumed to be continuous on the interface I, ;.

4.2. Discretization of the model

In this section we present a finite—volume scheme for solving the described
above mathematical model of paper press machine.

We define discrete meshes which are dynamically adapted to the moving
boundary of the solid phase. The mesh in x—dimension is given by

L L
n n n—1 n—1 0 N
;= : = +77 ", n=1,2,... N, =——, =— ;.

The mesh in z—direction is also non-uniform and it depends on the position
of boundaries vy and ,,:

wp(a™) = {2} 2 =2+ R}y, j=-J/2,...,0/2},
where
= 0 = Yeps 232 = Y

Here and in the following we use the notation u} = u(z", z;) for any discrete
function u.

Let assume that the solution is known for x = z", i.e. discrete functions
5, @, vy, vy, 2" are given. The finite—volume discretization is defined by

the following main steps of the algorithm.

1. Determination of the mesh wj'™.

In the web region the nodes at t"*! are defined as
n

vt
n+l _ _n n _SJ .
=2+ > i=1,2,...,J/2. (4.8)

In the felt region and at the web—felt interface the nodes are not moving;:

=20 j=-J/2,,...,0.
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2. Discrete mass conservation equation for solid fraction.

Since grid nodes are moving with velocity v, the solid volume fraction values
are given by

BT 4 7
n+l _ n J j—1 .
by =05 W, —J/2<j<J/2, (4.9)
¢n+ n hﬁ(]/2 ¢n+1 _ hg/2 1
s, J/2 s,—J/2 thrl ’ s,J/2 T SJ/2 thrl .
—Jj2 J/2-1

3. Discrete mass conservation equation for water fraction.

Numerical methods for solving equations describing the fluid flow problems
in a moving coordinate system are presented in many papers, see [4, 11, 12].
Here we will apply the discretization method, which was used in [6]. First we
obtain the integral formulation of the mass balance equation

0
20y 2 (prup) =

Integrating it in the elementary volume [zs(x), z¢ ()] and using the equality

(z)
2 [oswras = [ S de e B g 0,2y - Tl 2, ),

gives the integral mass balance equation

5 (x)
d
car [oste2)de s (@)~ @) =0, (410
zs(x)

where

fa(@) = [vp(z,20(2)) — vs (2, 20(2))] @5 (2, 2a(2)) -

Taking elementary volume [z;_ 1(2), 2541 (x)] and applying the finite-
volume method we approximate the integral equation (4.10) by the following
conservative explicit finite—difference scheme

hn+1 ¢n+1 h?f%(bf

7—77.

+F( J+17¢fj+17¢?j) - F (w?,%7¢?‘77¢f‘7 1) = 7
where the numerical flux F (wj +1 ¢j+1,¢j) is defined as follows [6]:
1 1
F (wj+%a¢j+la¢j) = SWits (P41 + @) = Slwip 1| ($j+1 — 65)

n n
Wl =™ — " [ — hy b
its fits  Tsdts? Vi—g 2
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The boundary conditions are approximated by

1 1
hig gb}l’t%_hiilgbn’_% n n n [n
HF (W g )y dfg) — Ty =0,

2Tm

n+1l n+1
h1_1¢ s —hy }Li
2 )2 2 ’ 2

n n n .
5 —F(w) 0] 4. 0], ) =0,

where F™ , defines the "free out—flow" and "no-inflow" flux:
2

0, if w”, >0,
FTL,: 2
e yeh s i W, <0,
2 v 2 2

The saturation of water fraction should always satisfy the conditions
1 1
0< S;};r <1, ze€ wp(z" ).

Therefore, after finding ¢"*! from the discrete mass balance equation, an
artificial limiter is additionally applied:

n+1 . n+1
gl Py 0SS <1,
fi - n+1 ¢7.7’+1

i otherwise.

j b
3. New values of the air fraction.

The new values of the air fraction are obtained from (2.1)

gt =1-¢n " — ¢tz cwp(@™t). (4.11)

sj

4. The hydrostatic pressure equation.
The new values of the hydrostatic pressure are obtained from (4.3)
1

Sl _ pr(z"th) —pit

" Fs

zj € wp(z™), (4.12)

where the structural pressure is computed from (4.4)

n+1
n+l rj
Pstj = DPstoT— 37 -
L—r;

5. The new values of relative velocities.

The new values of velocities relative to the solid phase are obtained from the
Darcy law:

Phj+1 ~ Phy
1 Y
fha it

n+1 _n+1 n+1
¢n+1 _Kozj

1
[e%} nr )

Uaj = a=a,f, zj€wp(z
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6. The new values of all velocities.

Velocity of the solid phase v?*! is obtained by solving a discretized equation
(4.5). Then the water and air velocities are given by

n+1).

n+l _  n+1l n+1
v = Vg U

o , a=a,f, zj €wplx
In this model the pressure equation is solved explicitly (we note, that in

the previous model the pressure equation was global in z—direction). Such

simplification of the model was possible due to two assumptions:

e The pressure is deformation driven and only the difference between the
total pressure (which does not depend on z) and the structural pressure is
taken into account.

e The flow is purely transversal.

The constitutive relation between the saturation and capillary pressure
is not used in the model to close the system, thus gradients in the initial
distribution of the saturation are not smoothed by the pressure. For example,
let us assume that the porous mat is not compressed pr(z) = 0 and the
following initial conditions are valid:

v =0, vy =0, v)=0, ¢o;=0, ¢2;, =03, z €wn(z?),

0.6 if j=jo,

¢}, =
03 if j#£ .

Then the water distribution remains unchanged for any =" € w;, i.e. ¢ = ¢(}.

4.3. Stability analysis

In this subsection we consider the stability of the obtained finite—volume ap-
proximation. In [9] the stability analysis is done separately for each equation.
Since mass conservation equations (4.9) and (4.10) are hyperbolic, we get that
explicit approximations are stable if discrete steps 7" satisfy the following es-
timates

v T < mjin Ry, vpTt < mjin R .

We note that such analysis is not sufficient in order to prove the stability
of the system of equations. Let consider a simplified model of two—phase flow,
which is described by the mass conservation equations

0¢ O B
oz + 55 (0m) =0
9¢; 0 _

5z + 3z (9r00) =0,

and the Darcy equation
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_ Ky 9pn
(bf(vf US) - ,Uf 82’ .

Summing up mass conservation equations we get that

0

&(Qbsvs_"d)fvf) =0,
or

Vs + (bf(vf - Us) = 07

where C' is a constant. Taking into account the Darcy equation, we get the
mass balance equation of the solid phase

Obs  ~0bs _ 0 ( S%%)'

- _ = 4.13
Ox + 0z 0z (4.13)
It was shown above that the hydrostatic pressure is defined as a function

Pr = P(¢s). If P! <0, we get from (4.13) a parabolic equation

00 06 O K ., . 00,
Oz +C 0z az((bs % [7(05)] 32)'

(4.14)

Then the algorithm presented above is equivalent to discretization of (4.14)
by the explicit Euler scheme

¢?+1 B ¢? n K n n
7+Caz7h¢s = OUz,h (¢S_f|Pl(¢s)|az7h¢s)7

T ,uf
where 0, j, defines a finite-difference operator. It follows from the maximum
principle (see [13]) that this scheme is stable only if

7 <cminh?.

If P/ > 0, then the proposed mathematical model (4.13) becomes ill-
conditioned (similar to so—called heat—conduction equation with the inverse
direction of time)

99 Dps

ox +C 0z

3(258)'

_ 9 (5B pr
=5 (02 P00

and special numerical methods should be used to find its solution [8]. For
example, the hydrostatic pressure function from (4.3)

" _ pr(x) = ps(s)
ph(ﬂ?,Z) - 1_¢s($7z)

was used in numerical experiments presented in [9]. In Figure 4 the graphic
of this function is presented, when

x=0, pr(z)= g(l + cos (%Ta:)) .
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We see that for s € [0.25,0.35] the hydrostatic pressure grows up, leading

to an ill-posed problem. There is no experimental data that such a phenomena
was observed experimentally.

72

7.1

P(S)

6.9

632 03 04 05

Figure 4. The hydrostatic pressure function for x = 0.
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Vandens srauty popieriaus preso masinoje matematinis modeliavimas
R. Ciegis, M. Meilinas, A. Stikonas

Darbe nagrinéjami drégmés iSspaudimo i§ popieriaus matematiniai modeliai. Si-
ame straipsnyje palyginti du matematiniai modeliai, kurie naudojami modeliuoti
filtracijos procesus popieriaus preso masinoje. Abu modeliai i§vedami i§ ty paéiy
bendryjy spudZiosios poringosios terpés modeliy, ta¢iau naudojamos skirtingos
prielaidos. Straipsnyje pasiulytas patikslintas modelis, kuris apraSo vandens iSte-
kéjimg poringosios terpés sluoksnio kraste, ir iStirta Sio faktoriaus jtaka skyscio
judéjimui. Pasiulyti skaitiniai algoritmai skys¢io judéjimo poringoje terpéje mod-
eliavimui. Jrodyta, kad tiriant diskreCiojo uZdavinio stabilumg neuZtenka nagrinéti
tik hiperbolinj pernesimo lygé¢iy artinj, o reikia jvertinti ir slégio lygéiy poveikj. Paro-
dyta, kad diskretusis uzdavinys yra stabilus, jeigu diskretizacijos pagal laikg Zingsnis
tenkina salyga = < Ch?. I3 stabilumo analizés i§plaukia, kad prie kai kuriy modelio
parametry reik8miy modelis apraSo nekorektiska uzdavinj.



