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Abstract. The cooling of a hot free thin viscous film attached to a rectangular
colder frame is considered. The film is under the action of capillary and van der Waals
forces and is symmetric with respect to a middle plane. The one-dimensional case
of the corresponding non-stationary nonlinear thermo—dynamic problem is solved
numerically by a finite difference scheme. The numerical results for the film shape,
longitudinal velocity and temperature are obtained for different Reynolds numbers,
dimensionless Hamaker constants and radiation numbers.
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1. Introduction

The cooling of thin liquid films is important during some processes, e.g. non-
isothermal film dynamics, when the temperature distribution influences the
liquid film physical properties, leading to Marangoni convection, or phase
changes processes, when the liquid film solidifies (as discussed in [7, 8]).

If the film is very thin (its thickness is less than the critical thickness
10~7"—107%m), it can rupture under the action of the intermolecular attractive
van der Waals forces [4, 9]. The latter forces have destabilizing effect on the
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thin film dynamics. In [4] the effect of varying the magnitude of van der Waals
forces (through the dimensionless Hamaker constant A) on the drainage and
rupture of a thin free film is studied. It is shown that if A = 0.01 and Re = 1,
then the van der Waals force is extremely weak and no rupture occurs, while
for higher values of A and Re the rupture is observed.

It is also interesting to examine how these intermolecular attractive forces
influence the heat and/or mass transfer. In [10] the 2D evolution equations
of a planar film dynamics and surfactant distribution are studied numerically
in a case of free thin films and films, coating solid surfaces. The surfactants
are found to accumulate at the thicker part of the films and to break up at
the rupture zones. This result is confirmed in [1] as a special case of a more
general 3D model of curvilinear free film dynamics and surfactants transfer.
The following special cases of practical interest are also discussed in [1]: closed
spherical bubbles, infinite cylindrical films and catenoids. In [11] the dynamics
of a film, formed between two surfactant-coated drops approaching each other
at constant velocity, is studied by using the lubrication theory, when the
van der Waals forces are taken into account. It is proved that the surfactant
concentration depletes in the film drainage regions.

Previous analysis have taken into account only dynamics and surfactant
transfer, while the heat transfer in thin films has been poorly investigated
[7, 8]. The solidification of a free thin film in a thermostatic approach is
considered in [8]. The 3D problem is reduced to a 2D counterpart because the
film is close to a free liquid/solid shell-like body with variable small thickness
symmetric to a middle plane.

The current work is an extension of papers [3, 4], here we incorporate
the heat transfer into the system describing the dynamics of a free thin film
attached to a rectangular frame surrounded by an ambient gas. The film is
assumed to be initially hot and it is cooled by conduction, convection and ra-
diation with the colder ambient gas. The film is under the action of capillary
and van der Waals forces and is symmetric with respect to a middle plane.
The model is based on the evolutionary system, which is derived in [7] for the
nonstationary nonlinear thermo—dynamic problem. Its one—dimensional form
is solved numerically by a finite difference scheme. Numerical results describ-
ing the film shape, longitudinal velocity and temperature are presented for
different Reynolds numbers, dimensionless Hamaker constants and radiation
numbers.

2. Problem Formulation

2.1. Energy equation

The fluid is taken as Newtonian viscous liquid with constant density p, dy-
namic viscosity u, surface tension o, thermal conductivity x and heat capacity
c. For the considered problem (as in [3, 4]), the thin liquid film is supposed
to be symmetrically attached to a rectangular horizontal frame with a stable
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center plane z = 0. Although the film media is considered as a fluid contin-
uum, the film is assumed to be thin enough for the intermolecular van der
Waals forces to act on it and to neglect the gravity action.

A Cartesian coordinate system (z,y, z), which is connected to the frame
x = £a, y = +b (a < b), is introduced. The mean thickness of the film ea
is much smaller than the characteristic length a, i.e., ¢ << 1. Then the film
free symmetrical surfaces have positions z = +h/2, where h(z,y,t) = O(e)
determines the film shape. Since the film is symmetric with respect to the
middle plane z = 0, the temperature field is also symmetric 6*(z) = 6*(—=z)
and the symmetry condition on z = 0 reads [8]:

0; =0, for z=0. (2.1)

By using the symmetry assumption, we sought the temperature function
0*(z,vy, z,t) as an asymptotic expansion

- h
0 (2) = 0 + > 2™, —5 <2< (2.2)

k=1

h
-

This form satisfies identically (2.1) and the symmetry assumption.

At the absence of heat sources the energy conservation law for the liquid
film is given in the integral form:

%/ch*dU = —/q* ‘nds, (2.3)

where the integration is done over the whole film volume and surface, respec-
tively. Here q* is the heat flux and n the unit outward normal vector to the
film surface. The heat flux is supposed to obey the Fourier law, q* = —xV6*
inside the film and to be due to radiation with ambient on both film free
surfaces:

Q" -n=0806" -0 at z=+h/2 (2.4)

where 3 is the radiation coefficient and 6, is the ambient temperature.
Integrating equation (2.3) along the film thickness z € [—h/2, h/2], taking

into account (2.2) and (2.4), we obtain the local form of the energy balance

equation (see [2, 7, 8]). A leading term of order O(e) is given as follows:

00
pCh{a_tO V- Vbt = KV (AV400) + 2662 — 62), (2.5)

where v = (ug, vo) is the surface film velocity vector and V the surface gra-
dient. We note that (ug, vo) are the leading order terms in a similar asymptotic
expansion as (2.2), but for the longitudinal velocity (see (2.1) in [3]).

2.2. Dynamic system

Here we shall recall the dynamic system, which was developed in [3, 4]. It
describes the film thickness and surface velocity evolution of order O(e):
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ht + vs ' (hvs) = Oa

Dv, 1v 4 (2.6)
T A
where T = —P + T is the surface film stress tensor, P is the pressure tensor

P = —0.50 [hV2hI; + 0.5(Vh)*Ls — V h ® Vih] + 1.5he,

and the viscous stress tensor T is given by
T = 2uh {(vs Vo) Is +0.5 | Vv + (VSVS)T} } .

Here I is the identical surface tensor, ¢ = A'h~3/(67p) is the potential func-
tion of van der Waals forces, A" is the Hamaker constant (A" ~ O(10720.]))
and 7 stands for transposition. Equations (2.6) are obtained after a simi-
lar asymptotic analysis of the full Navier-Stokes equations with appropriate
boundary conditions on free surfaces of the film.

2.3. One dimensional model

If the length of one frame is much bigger than the other one, i.e., b > a, then
the effects in y direction are negligible on the dynamics and cooling, and the
thermo-dynamic problem depends only on (z,t). The system (2.5) — (2.6) in
its dimensionless form simplifies to:

ou ou e 93h 4 9/ Ou A Oh

5t = oo t e oe (o) T i (2:8)
OT 9T 1 8/, 0T\ Ra ., ..

il i — (= — 2.
ot oz Pehaa:( 8m)+Peh(Ta T)’ (2.9)

where Re = paU/p is the Reynolds number, We = ReCa = 2paU?/o
the Weber number, Ca the capillary number, A = A'/(27pU2ac®) the di-
mensionless Hamaker constant, Pe = RePr = pcalU /r the Peclet number,
Ra = 28a63,/c k the radiation number, 6, the solidification temperature
below which the liquid film becomes solid.

The characteristic scales used to derive system (2.7) — (2.9) are the fol-
lowing: a for length, U for velocity (capillary or viscous), a/U for time, ca for
film thickness and 6,,, for temperature (here z, ¢, u and T are dimensionless).

Since during the derivation of system (2.7) - (2.9) the terms of o(¢) order
have been ignored, then the following inequalities should be valid:

Re<e !, We<1l, A>e, Pe<e !, Ra>cPe.

The boundary conditions for i, v and T are the following:
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u(0,t) = u(1,t) =0, (2.10)
oT

%(07& =0, T(lvt) _Tga (211)
oh oh

%(O,t) =0, %(l,t) = tana, (2.12)

. . . ™ . .
where T}, is the dimensionless frame temperature and 5 —ols the wetting

angle with the frame. The initial conditions are given by:
h(z,0) =1, u(z,0) =0, T(z,0) =T, (2.13)

where Tj is the dimensionless initial temperature of the film.
The mass conservation of the film during its thinning is expressed as:

/1(h —1)dz =0, (2.14)
0

its validity is proved by integrating (2.7) and taking into account (2.10).

The non-linear non—stationary problem (2.7) — (2.14) is solved in time till
one of the following stop conditions is satisfied:

a) at finite time moment ¢ = 7 a minimum value of h is reached, which
corresponds to a stable film shape

lim h(z,t) = h(z), lim u(z,t) = u(x), lim T(x,t) =T(x), (2.15)

b) at time moment ¢ = 7 the effective critical film rupture thickness is
reached, at which the actual film rupture occurs at some point x,

h(zp,7) =0, (2.16)
¢) computations are continued till condition T'(x, 7) ~ 1 is satisfied.

We assume that the solution of system (2.7) — (2.14) possesses the required
smoothness u,h, T C CH2)in 2 ={0<z<1}for0<t<T.

3. Numerical Scheme

The finite—volume method is used to construct the discrete scheme, which
satisfies the mass, momentum, heat flux balances on each control volume and
therefore on the whole problem domain.

We define a nonuniform time grid

ﬁt:{thrl:tj—f—Atj, Atj>0, 7=0,...,J, to=0, tJT:T}.

The space grid is also nonuniform, the adaptation of grid nodes is done
dynamically during realization of the algorithm. For more accurate approx-
imation of the boundary conditions we introduce two grids displaced with
respect to each other. Functions u and T are defined on the grid
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W:{xi:iA@ i=0,...,N+1, 20=0, any11 =1},
while function h is defined on the grid
Qh ={z;_05=(i—05)Az, i=1,...,N+1}.

In this way the problem will be solved on a staggered space grid.
At each time step notation of discrete functions is simplified and indexes
are omitted [5].

Two types of control volumes are used: one for v and 7', and another for
h. Control volumes with centers at the grid nodes are applied to discretize
equations (2.7) — (2.9).

The difference approximation of (2.7) is obtained integrating it on the
control volume [z;_1,z;]

AM — AM_ .
het =—————=0, i=1....N+1, (3.1)
where AM = AM,; =< h >;< u >; . The notation <>, similarly as in [6],
means that the values of h and u are taken on the current cell border. We
also use notation

AM; = u:rhz + u;hHl, U; = u:r +u; ,

uf = 0.5(u; + ui]) >0, u; =0.5(u; — |ui]) <0.

Summing up (3.1) over the grid 27 we obtain the equality

It approximates the mass conservation equation (2.14) with the accuracy
O(Axz). If the boundary values h(0,t;41) and h(1,¢;11) are found from bound-
ary conditions (2.12), then the equality

N+1

Z h1A$ =1
=1

gives O(Ax?) approximation of (2.14).

For some values of parameters, e.g. for large Re, which correspond to strong
convection dominance, we obtain singular problems with small coefficients at
the derivative of the leading order (boundary layer problems). In practice,
such problems are characterized by boundary layers, where solutions change
very fast. We note that these regions also change in time according to the
problem specifics. In order to approximate solutions of such problems, it is
necessary to develop special difference schemes.

For approximation of the velocity equation such a scheme have been pro-
posed in [4]. It has a sufficiently good accuracy for small and large velocities. In
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our model equation (2.8) has similar features, with the convection or diffusion
dominance for different Re. For its numerical solution an improved variant of
the scheme from [4] is proposed

1 . € A
ug + §(U+0.5U):E = (fi+0.5 Uz)z + mhiri - g(h S)gc, (3.2)
where h = 1 (h + hy1),
. 4 h 1 h
ft05 = pyosFB(Ri05), Hto0s = ETH, Rigs= 3 Re Az U405

and the function F is a piecewise linear approximation of cpR-1

The temperature equation also has similar features, when it is solved in the
system of equations with dominant convection terms. We propose a discretiza-
tion, which is constructed using the same principle. Moreover, a restriction
connected with physical correctness of the solution is imposed, at least in
some simple cases, which occur as particular cases of the considered process.
For example, let us consider a heat transfer problem without heat exchange
with the ambient gas on boundaries, i.e. we consider thermally isolated film
surfaces (there is no source term in (2.9) at Ra = 0). Then the temperature
of film remains in the limits of the initial temperature and the frame temper-
ature. However, if the radiation with a colder ambient takes place, then the
film temperature cannot be less than the ambient temperature.

Such tests have been performed with a few discrete schemes, approxi-
mating the considered equation. Taking into account the requirement of the
maximum principle for the solution and using experimental results obtained
with different discrete schemes, we have selected the following discretization,
which is an analogue of the combined scheme and is constructed similarly as
in [4]:

- Ra
(NT)i + (hrur05T)a = (405 To)s + (T -1). (3.3)
where
- hia
P05 = po Fp(S405), Stos=AvutosPe.

Integrating (2.9) over the control volume [0, zo 5] and taking into account
the boundary condition at zo = 0, we get the boundary discrete equation:

) 2 2 Ra/, 4 4
(hT)z0 + A hiuo.s5To = Ay P05 Tz + Pe (Ta To) . (3.4)
The iteration process for h and u is described in details in [4], therefore it
will not be presented here. The nonlinear system (3.1) — (3.4) is solved by an
iterative process, considering h**! and u**! as already found:
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(s;rLlsir_’l) n 2 szl s+1 Sir"l 2 s+l s+1
_ “ 4 _ 4 i
ot Z h1tosT o= wo5 T 71
Ra S s+1 s
+ 5, (=415 T o + T4 +3T4)
stlstl s+l 541 s+1 s+l sl
(h T)i+(hs1t4057T)z=(Pros T z)z (3-5)
R Sos+1 s
o (—ATST T 4+3T%), 1<i<N,
e
s+1
T ny1 =Ty

We note that the presented linearization of the source term in (3.3), (3.4)
preserves the physical correctness of the solution.

The solution of system (3.5) is found by the Thomas algorithm, which
takes into account that matrix of the system is three-diagonal

s+1 s+1
—CoTo+ByT1+Fy=0,

s+1 s+1 s+1 .
AT —-CTi+B;T i +F,=0 1i=1,...,N,
s+1
T N+1 — Tg
with
T s+1 T s+1 T s+1
Ai =—— 0, —_— iy Bz = D . ,
(ACE)2 ® i-05 =+ Az h (Ait)g ' 140.5
s+1 T stl 511 T s41 s+1 4T7Ra *4
Ci= hi+ (Aa:)2((pi_0'5+ <P¢+0.5)+A_x U 405 h i+1 + Peo T,
v oo TRa
Fy=hT; + — (3T} + T}
+ Pe ( it a)

The stability condition of the Thomas method requires the positiveness of
the coefficients A;, B; and D; = C; — A; — B;. It follows from formulas given
above, that inequalities A; > 0 and B; > 0 are satisfied unconditionally. The
positiveness of

s+1 T s+l s+1 s+1 s+1 47Ra 4
Di=h +——(%it05 h i+1— Wi—05 h i) T
Ax Pe

depends on the change of quantities S;rll and “4" and it can be achieved, for
example, by diminishing the time step. The violation of the stability condition
leads to some restrictions on time steps. Therefore, in order to obtain the
correct solution of the problem, it is necessary to check this condition during
computations.

If the iterative process is finished when a relative change of both functions
u and T at two successive iterations is less than a given small value, then we
have reached the steady thermal and dynamic solutions (2.15).
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Condition (2.16) cannot be fulfilled exactly and there exists a critical thick-
ness her; > 0, at which the actual rupture of the film occurs, therefore (2.16)
is changed to

h(zy, T) = herie (3.6)

We note that the differential problem becomes singular in the region, where
h approaches h¢p;.

4. Numerical Results

The film drainage in time and its longitudinal velocity were investigated in
[4] by a similar numerical scheme as described here. In [4] the analysis was
done for various values of the Reynolds number Re (1 < Re < 100) and di-
mensionless Hamaker constant A (0.1 > A > 0), when the capillary number
Ca and ¢ were fixed to Ca = ¢ = 0.01 (We depended only on Re, since
We = 0.01Re). It is found in [4] that the rupture point z, moves to the right
side from the central symmetry point x = 0 towards the frame point x = 1
and a "dimple" of the film is formed that enlarges in shape with the growing
values of Re and A. This means that the inertial forces have a destabilizing
effect on the film and lead to its drainage and rupture at A > 0. The van
der Waals forces also destabilize the film dynamics and accelerate the film
rupture.

In the present work we focus on the influence of the inertial and van der
Waals forces on the heat transfer, and namely on cooling. Also we consider
various radiation magnitudes and study their effect on the cooling process as
a whole. The presented numerical results are obtained for constant values of
coeflicients

Ca=0.01, e=0.01, =137, Pr=1.

Figure 1. Evolution in time of functions h, u at A = 0.1, Re = Pe =1, We = 0.01,
To =119, Ty =To =1, a« = 1,37: a) h(z,t); b) u(z,t).
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In Fig. 1 the evolution in space and time of the film thickness h, longi-
tudinal velocity u and temperature 7' are given for the following values of
parameters

A=0.1, Re=Pe=1, We=001, To=1.19, T,=T, = 1.

Two different radiation numbers Ra = 0 and Ra = 10 were used. The rupture
of the film is observed at z = 0 for a time moment t = 2.4 [4].

120 4 120 o
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115 o ‘\\

1,15

7 Vv vy,

110 -| T, 110 -|
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00000000000IREEcaTT T TSN
kbt e ¥aid
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e,
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00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

a) b)

Figure 2. Evolution in time of the temperature T at A = 0.1, Re = Pe = 1,
We=0.01, 7o =119, T, =T, = 1, « = 1,37: a) T(z,t) at Ra = 0, b) T'(z,t) at
Ra = 10.

In Fig. 2 we present results showing dynamics of the temperature. It is
seen that the temperature becomes constant and equal to the solidification
temperature at different time moments, that are less than the time of rupture.
The cooling mechanism is due to convection and conduction in the case of
Ra = 0 (Fig. 2a), while at Ra = 10 (Fig. 2b) it is dominated by radiation and
the larger radiation causes faster cooling. These conclusions are confirmed by
additional numerical simulations performed with other values of Ra, T; and
T,.

For larger Re (Re > 1) the velocity u and the thickness h have large
amplitudes and the rupture point moves from the center x = 0 towards the
frame point x = 1. In the case of Re = 100, We =1 and A = 0.1 the rupture
is achieved the time moment ¢t = 1.757 in the point = 0.53 [4]. These results
are shown in Fig. 3.

In Fig. 4 and Fig. 5 the cooling of the film is presented for the same dynamic
parameters and Ty = 1.19, but two different frame and ambient temperature
regimes are considered:

a)Ty,=1, T,=1 (see Fig. 4),
b) T, =1.15, T, =0.9 (see Fig. 5).
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Figure 3. Evolution in time of functions h, v at A = 0.1, « = 1,37, Re = Pe = 100,
We=1.,Ty =119, Ty =T, = 1: a) h(z,t); b) u(z,t).
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Figure 4. Evolution in time of 7" at A = 0.1, « = 1,37, Re = Pe =100, We = 1.,
To =119, Ty =T, = 1: a) T(x,t) at Ra = 0; b) T'(x,t) at Ra = 10.

Computations are done for radiation numbers Ra = 0 and Ra = 10. If
there is no radiation (Fig.4a), then the convection dominates and the tem-
perature profile protrudes towards the point of rupture z = 0.53 reaching the
solidification temperature 7' = 1 for a time moment smaller than the rupture
time, ¢ = 1.37.

If the radiation is included, then a cooling of the film till the solidification
temperature is accelerated, but the temperature protrusion is visible again
(see Fig.4b and Fig.5) towards the point z correspondent to the minimum
of film thickness at the current time moment, i.e., x = 0.55 at ¢t = 1.3668
for the first regime and x = 0.56 at t = 1.3245 for the second regime. The
ambient and frame temperature regimes do not have a significant influence on
this observation and the only difference is that for T, = 1.15, T, = 0.9 the
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Figure 5. Evolution in time of T(x) at A = 0.1, = 1,37, Re = Pe = 100, We = 1.,
To = 1.19, T, = 1.15, T, = 0.9, Ra = 10.

cooling is slightly faster. This can be explained by the the larger value of the
radiation term in (2.9).

The temperature profile protrusion tending to break up at the thinner re-
gion of the film is confirmed by additional numerical calculations with different
frame—ambient temperature regimes and radiation numbers. These results are
not given in the present work.

The van der Waals forces have no visible effect on the cooling process, if
Re < 1. The influence of the inertial forces on the convection due to increased
Re > 1 at the presence of the van der Waals forces is evident when we compare
the plots of Fig. 2 with those of Fig. 4. In the latter case the singularity of
the dynamic problem is transferred to the thermal problem.

5. Conclusions

In the present work we study the cooling of a free thin film attached to a
rectangular frame under the action of van der Waals forces. On the basis of
the local form of the energy equation derived in [8] and the dynamic equations
derived in [3, 4], the 1D nonlinear thermo—dynamic problem is formulated.
For its solution, a conservative difference scheme on a staggered space grid is
proposed.

Numerical results for the film thickness, its longitudinal velocity and tem-
perature evolution in time are obtained for different Reynolds numbers Re
(I < Re < 100), dimensionless Hamaker constant 4 (0 < A < 0.1) and
radiation numbers Ra (1 < Ra < 10). The following numbers are assumed
fixed:

e the capillary number C'a = ¢ = 0.01, i.e., the Weber number We = 0.01Re,
e the Prandtl number Pr =1, i.e., the Peclet number Pe = Re.
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As a result of the performed numerical analysis, we can make the following
conclusions:

i) the increase of radiation leads to faster cooling and reaching the solidi-
fication temperature before eventual rupture;

ii) the heat convection causes temperature break up in space points corre-
sponding to the thinner film regions, and these times moments are less than
or approaching the time moments of film rupture.

The latter conclusion is similar to one obtained for surfactants (mass)
transfer, as reported in [2, 10, 11]. Therefore the inertial forces together with
the van der Waals forces, which destabilize the film dynamics [4], have the
same effect on the temperature field.

The solidification problem, taking into account phase—change conditions
(i-e., the Stefan problem) and the film dynamics will be studied in a continu-
ation of the present work.
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Apie laisvosios plonosios plévelés atvésinima, atsiZvelgiant j Van der Valso
jégu poveikj
G. Gromyko, S. Tabakova, L. Popova

Nagrinéjamas kar§tosios laisvosios plonosios klampiosios plévelés, prikabintos prie
statiakampio Saltesnio rémo, atvésinimas. Plévelé yra veikiama kapiliariniy ir Van
der Valso jégy ir yra simetrika vidurio plokStumos atzvilgiu. Atitinkama nesta-
cionari netiesiné termodinaminé problema vienmadiu atveju yra skaitiSkai i§spresta
baigtiniy skirtumy schemos pagalba. Yra gauti skaitiniai rezultatai plévelés formai,
iSilginiam greiCiui ir temperaturai skirtingiems Reinoldso skai¢iams, bedimensinéms
Hamakerio konstantoms ir radiacijos parametrams.



