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Abstract. Standard Galerkin approximations, using smooth splines to solutions
of the nonlinear evolutionary Cahn-Hilliard equation are analysed. The existence,
uniqueness and convergence of the fully discrete Crank-Nicolson scheme are dis-
cussed. At last a linearized Galerkin approximation is presented, which is also second
order accurate in time fully discrete scheme.
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1. Introduction

Consider the Cahn-Hilliard equation

ou  O*u  0?¢(u)

— + = = 2=]0,1 t T 1.1
ot T oni T ez 0 CE€UI0IL e (0T, (1)
with boundary conditions
ou A3y
-~ — - = T 1.2
0z lz=0,1 0, 03 l2=0,1 0, t€(0.T], (1.2)
and an initial condition
u(z,0) = ug(z), x€ 90, (1.3)

where ¢(u) = y(u® — 3%u) and v, 3 are constants with v > 0.

The Cahn-Hilliard equation (1.1) arises as a phenomenological mode for
phase separation in cooling binary solutions such as alloys, glasses and polymer
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mixtures, see Cahn and Hilliard [4], Novick-Cohen et al.[7] and the references
cited therein. Here u(z,t) is a perturbation of the concentration of one of the
phases.

Global existence and uniqueness of the solution for (1.1) have been shown
by Elliott and Zheng [11] and Yin [18]. A continuous in time Morley finite
element Galerkin approximation for (1.1) is presented and an optimal-order
error estimates in L? is derived, see Elliott et al.[10]. A semi discrete finite
element method (with quadrature) for (1.1) was first introduced and analysed
by Elliott et al. [9]. Mixed finite element methods have been applied by Dean et
al. [8]. A finite difference schemes are developed in Choo et al. [5, 6], Furihata
[12, 13], Sun [16].

The plan of the paper is as follows. In section 2, after explaining notation,
the numerical scheme is described in detail. The existence and uniqueness of
the approximate solution are shown in section 3. Optimal rate of convergence
estimates for the numerical scheme is proved in section 4. In the last section, a
linearized Galerkin method is presented which is also second-order convergent.

Throughout this article, C' denotes generic constant, not necessarily the
same at different occurrence.

2. Numerical Method

Let r and [ be integers with » > 4 and 1 <[ < r — 2. We consider a family
of partitions 0 = 29 < 21 < z3 < ... < 27y = 1 of [0,1] into subintervals
Ji = (-1, z;) and set

h = 1%1532(1(;101' —Ti_1).

Throughout the paper, we use D to denote i The norms of L?(£2), L°°(2)
x

and H*({2) are denoted by ||.||,||-]lcc and ||.||s . The semi-norm || D?v|| is de-

noted by |v|s, (v,w) = / vw dx denotes the inner product of L?(2). Let Sy,

0
be a space of the piecewise polynomial splines:
Sy = {X eC (@), x|, €Pi(), i=1,...T; Dx(0)=Dx(1) = o} ,

where P,._1(J;) denotes the set of polynomials on J; of degree less or equal to
r— 1. Let S, C H*(12), where

ﬁQ(Q):{ueHQ(QL %207 xean},

and denote

Sh:Shm{X7(Xﬂ]-):0}'

A natural Galerkin approximation to (1.1) is: find u; € S}, satisfying

(8uh

GoX) + (D D) = (6(un). D). VX ESh  (21)
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with
up(0) = uon, (2.2)
where ug, € Sy, is an appropriate approximation to ug.

We introduce the so called elliptic projection Py, : H 2({2) — S}, defined by
the following problem (see,e.g Elliott et al. [11]): for v € H?(2), the function
Ppv is the unique solution of

{(D2(th —0),D2x) =0, VYyeS, 23)

(Ppv—v,1) =0.

The existence of a unique Pyv satisfying (2.3) follows from the Lax-Milgram
Theorem and the Friedrichs-Poincaré inequality

[wll2 < C(lwls + |(w, 1)]),  Vw e H*(2).
We begin with the following results due to Elliott and Zheng [11]
Proposition 1. With P, defined by (2.3), we have for v € H"(£2) N H?(R),
2

> Wl = Pyol; < CHT|Jo]|s, (2.4)

=0
and if v e H%(R), then

lv = Prvlloe < Ch7llollwy ) - (2.5)

Theorem 1. Suppose that the solution u(t) of (1.1) is sufficiently regular for
a given T > 0 and that the solution of (2.1) satisfies

Jun()loo < Cr, 0<t<T. (2.6)
If uon, = Prug, then
[u(t) = un(t)l|oo < Cr(w)h”, Vte[0,T]. (2.7)

Remark 1. The assumption (2.6) is not a restriction. By a standard argument
and using error estimates (2.7) we may justify (2.6) a posteriori for any T > 0.
(See Thomeée [17], pp. 213 — 214). We shall need the same assumption in
sections 3, 4 and 5.

The Crank-Nicolson fulljg discrete approximation is defined in the following
way: find a sequence {U"},_, C Sj satisfying

(2.8)

(8, U™, x) + (D2U" 2, D2y) = (p(U™"2), DY), Vx € Sh,
UO = UQh-

where ug, € Sy, is a suitable approximation to ug, U™ is the approximation
T
in Sy, of u(t) at t = t" = nk and k = N denotes the size of the time

discretization. In (2.8) we have used the notation
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L1
QU™ = L(U" =U"Y), U"2 = (U4 U,

| =

For continuous function u(t), we write u"~2 = u(t""2).

In this article, the main goal is to approximate the solutions of the
Cahn-Hilliard equation by fully discrete finite element scheme. The standard
Galerkin method is used for approximation in space and Crank-Nicolson-type
second order accurate discretization is used for approximation of time deriva-
tives. We will prove that the scheme is convergent.

3. Existence and Uniqueness

3.1. Existence

In this section we shall prove the existence of a sequence {U "}f:;o satisfying
problem (2.8). For this, we shall use the following variant of the well-known
fixed point theorem of Brouwer [2, 3]

Lemma 1. Let H be a finite dimensional space with inner product (.,.) g, and
norm ||.||r. Let the map g : H — H be continuous. Suppose there exists o > 0
such that (¢(Z),Z)g > 0 for all Z with || Z||g = «. Then there exists Z* € H,
such that g(Z*) =0 and || Z*| < o

We shall need the auxiliary estimates:

Lemma 2. For v € S, we have

1 752
v} < W'U@ + T||U||2- (3.1)

Proof. For v € Sp,, we prove immediately
_(D2U7U) = |’U|%7

from which, we have

i < [vl2]lvll. (3.2)
a? ’762 2
Using the inequality ab < ? + Tb , we prove the lemma. H
80

Lemma 3. For v € S}, there holds
(6(v), D*v) < 752[olf. (3.3)
Proof. For v € Sp,, we have
(6(v), D*) = —(Dé(v), Dv) = —(¢/ (v) Dv, Do),

using the definition of ¢ we find ¢ (v) = ~(3u?—3?) > —v32, which completes
the proof. B
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The proof of existence of {U "}7]:7:0 proceeds in an inductive way. Obviously
U exists. Moreover, assume that {U7} ;01 exists. For Z € S, define g :
Sy — Sy, by

(902),X) = (Z-U"" )+ 5 (D2, D)~ (9(2), D)), Wx € Si- (3.4)

Such a map exists by the Riesz representation theorem, g is obviously contin-
uous. Taking x = Z in (3.4) and using (3.3), we obtain

_ k kB2
(02). 2) 2 |12 - 0" 2) + D12 - T 2
By Lemma 2, we find
n— ky? 5
02), 2) > |21 ~ =z - 2 22
Therefore,
ky?Bt .
(9(2).2) > 201 ((1 - 2120~ o).

8 8
Hence for k < 2 1Z]| = m”Uﬂ_lﬂ + 1, we have (9(Z),Z) > 0.
Then it follows from Lemma 1 that there exists Z* € S, such that g(Z*) = 0.

It is easily seen that U™ = 22* — U"~! satisfies (2.8).

3.2. Uniqueness

Assume that the solution u of (1.1) is sufficiently regular and that the solution
of (2.8) satisfies
U™ |oo <co, m=0,1,...,N. (3.5)

For uniqueness, suppose that V" € S;, and V° = ug, satisfy
(QV",X) + (D*V"73,D%) = ($(V"72),D°X), VX €Sp,  (36)

and
V"o <co, n=0,1,...,N.

Denoting E* = U’ — V¢, with E° = 0, from (2.8) and (3.6), we have for
X € Sh

(QE",x) + (D*E""2,D%) = (§(U""2) = (V""2),D°x).  (3.7)
Now, supposing E"~* = 0 and choosing x = E™~ 2 in (3.7), we obtain

1 n — 1 no1l no1 n—1
s I =B+ B 2[5 < 26U 2)=g(V2)|P+[E" 2[5, (3.8)

] =

Using the continuous differentiability of ¢(.), we get
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(U™ %) — p(V"—%)|| < C||E" 5|, (3.9)

where C' is a constant dependent on ¢y. By (3.8) and (3.9), we find

1 n mn— CQ TL—l CQ n mn—
BRI — B HP) < S B 42 < (1B + 1B,
from which, for k sufficiently small, we get
1
4+ kC?\ 2
E’n <\ En—l A= T v
) < ALE (e )

We see that E™ = 0 and this completes the proof of the uniqueness.

4. Estimation of the Convergence Rate

In this section, we estimate the error of the solution of the fully discrete
problem (2.8). We use the standard error decomposition with u™ = u(t"):

U™ —u" = (U — Pou™) + (Pou™ — u™) = 6™ + p". (4.1)

Theorem 2. Let us assume that regularity assumption (3.5) is satisfied, where
U™ and u are the solutions of (2.8) and (1.1), respectively. Suppose that the
solution u is sufficiently regular. If the initial data satisfy the estimate

1U° —uol| < CH', (4.2)
then we have for sufficiently small k that
[U™ —u(t™)[| < C(h" + k), (4.3)
where C is a constant independent of h and k.

Proof. Since the estimate of p™ follows from (2.4), it is enough to estimate
0™. Using the definition of the elliptic projection P,v in (2.3) with equations
(1.1) and (2.8), we obtain the following equation, which is valid for all x € S},
such that (x,1) = 0:

(08", x) + (D"~ %, D?x) = (p(U" %) — $(u"" %), D2)

u oyt 1

— Oy Ppu™ — 2, x) — (D?( 5 —u""2),D%). (4.4)

By taking x = 9”_%, we obtain
(067,07 %) + 0" T <TI0 2o+ T 6" F | + K672 a,

where ) ) .
I=p(U"2) =" 2)|, J=|0Ppu" —u; *|,
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n n—1
K = ||D2(% - u”*%) I

This yields
1 n |2 n—12 n—% 9o, L1 1o 11
S (10712 = 7 1) + 07 < 517 4 6" B 4 2% + Sl

1 1 1
_KQ - 077,—5 2.
+ 5 + 2| I3

The above inequality becomes
1 3 n— /I’L—l
6™ 17 = 67 H%) < [l67 72 [* + 17 + 7 + K. (4.5)
We have the following estimate (see also Omrani [14, 15])
1 n—4i n—21 77.——
I=[lgp(U"™2) = p(u"2)| < CIU"2 —u"" 2],
here C is a constant dependent on ¢y and 4" 2 || . The continuous differen-

tiability of ¢(-) have been used to derive this inequality.
Therefore we get the estimates

o1 o1 o1 un+un—1 un_|_un—1 7,——
[0 =5 < U™ = Pu(—g) |+ | P — "2 |
<|omz|| + L.
un+un71 n,, | 4 n—1 un_’_unfl o1
5= E (S e < "l 2||p [y L
+ n—1 n,l tn
LZWH | Q(S—tn,l)utt(s)ds—/ (5 — tn)use(s)ds|
tn—1 to_1
n-g

n n—1 tn 1
W et ([ uatoyieas)
th—1

Similarly we get the estimates

n—= n—3

T = P —uf | < 0Py — B + 1|0 — ) Y|

n—

< ([ tpas) - ort ([ futras)”

n—1 tn—1

3 tn 3
ekt ([ 10Pus)Pds)”

tn—1

1 n n— 1 fnt b
=" = g [ = b Pl + [ (5=t Pul)s)
tn—1 t %

n—1

K= |p* (e — )

IN
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Using (4.5) with the estimates of I, J and K, we obtain
1 n n— "Z*l n n—
Z1O™ = = 116" 71 %) < CLI6™ 211+ [lp" 11 + o™ I

1 tn tn
b [ lods 8 [ Q)P + ua P + Do)
tn—1

tn—1

and hence )
16712 = 10" 1* < CE(|6" 2 ||> + Ry),

where the latter equality defines R,,. So we proved that
(1= CR)0"* < (1 +Ck)[0" | + CkRy,
and for small k < kg the stability estimate is valid:

1+Ck
1-Ck

After repeated application, this yields

1 < (228 g2 4 cny D (EEE)
j=1

10717 < (5= ) 16" 7111 + ChR.

Ck 1-Ck
or n
10™(|* < C||6°||* + Ck > R;. (4.6)
j=1
Noting that
16°01% < 110°1> + 1U° = wol?, (4.7)
and by (2.4), we obtain
tn
1™ < CR"([[uollr +/0 [[ue(s)]|rds). (4.8)

Using (4.6), (4.7) and (4.8), we find

T
012 < € (10 = woll + 12 (ol + [ o)l as)

T
+ k4/ (lueee ()12 + llue(s)[I* + | D?uee(5)]|7) dS)-
0
It follows from (4.2) that estimate (4.3) holds. B
Next we will use the Nirenberg inequality [1].
J 1 m

] 1 1
Lemma 4. For - <a < 1, —=*=+4a(-——=)+(1—a)—, there holds:
m p n r nl q

1D70| o2y < C ( HDmU||lir(n)HU||lL;(ag) +vllzace) )

where 2 is a bounded domain in IR™ .
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Theorem 3. Let U™ be the solution of (2.8). Suppose that the solution u of
(1.1) is sufficiently smooth and the initial data is defined as

Uop = PhUQ. (4.9)
Then, for k sufficiently small, the estimate

n __ n T 2
Jmax U —u(t)| < C(h" + k%)

holds, where C is a constant independent of h and k.
Proof. Setting x = 9;6™ in (4.4), we obtain

[10:6™17 + 100" 5 < T340 |2 + T |0:0™|| + K |9:0™ |2

< I? + 110,03 + T2 + 10:0"]1> + K* + 1]9,6™]3 .
The above inequality gives the estimate
%(w”g —10712) < C(I2 + J? + K2), (4.10)
Using the estimates of I, J and K with (4.3), we obtain
WE-WR < o oo + 192 + o2+ 1+ 1 [l as
k kJe,

tn
1 [ (s )P+ )P + D)) ds )
tn—1

Hence the following stability inequality
073 < 10" '3 + C(u)k(h" + k*)* + CkR,
is valid, where the inequality also defines R,,. Hence, by repeated application
of the obtained estimate and (4.9) we get
073 <TC(u)(h" +k*)* + Ck > _R;.
j=1
Therefore,

n T
672 < C(C)(h + K22 + kS 7] + / loe(s)]? ds

j=1

T
+ k4/0 (lueee ()17 + lluee(s)1* + | D*uee()[|*) ds ).

Now, using (2.4), we conclude that, for some constant C = C(u,T)
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10" < C(h" + k%), 0<n<N, (4.11)
and, hence using (4.3), (4.11) and (3.2), we obtain

0", < C(h" + k%), 0<n<N. (4.12)
Applying (4.3) and (4.12), it follows from Lemma 4 with p = oo that

0700 < C(R" +k?), 0<n<N. (4.13)

Together the estimates (2.5) and (4.13) show the Theorem. W

5. A Linearized-Galerkin Method

The above method has the disadvantage that a nonlinear system has to be
solved at each time step. For this reason we shall consider a linearized modi-

fication of the method in which the argument f is obtained by extrapolation

. 1
from U™~ ! and U""2, ie. U™ = gU’H — 5U"*Q, for n > 2,

(DU, x) + (D2U"%,D%) = (¢(U™), D?x), Vx € Sh.  (5.1)

This method will require a separate prescription for calculating U' (see, e.g.
Thomée [17], pp 218 — 222). We analyse a predictor corrector method for this
purpose, which is formulated as follows:

0_
U® = uon,

() (o) .

(O:U*,x) + (D2U%, D2) = (¢(L52) DY), Vx € Sp.

Remark 2. For u(t) sufficiently smooth, we have

1 1
= §u"71 — §u"72 =u""2 +O0(k*) as k—0. (5.3)

Now we will prove that the proposed approximation will give the second
order accuracy.

Theorem 4. Let U™ be the solution of (5.1), with U° and U" defined by (5.2).
Suppose that the solution u of (1.1) is sufficiently regular, and ||U™| oo, ||t™]] 0o
are bounded. If the condition (4.9) is valid, then, for k sufficiently small, we
have the following estimate

n __ n r 2
OglnangHU u(t™)|| < C(h" + k%) (5.4)

with C = C(u, T).
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Proof. Using (2.4), it is sufficient to estimate §™. From (2.3), (1.1) and (5.1),
we obtain for n > 2 the equation for 6™

(00", ) + (D"~ %, Dx) = (¢(U") — (u"" %), D)

u” + un—l

— @ =) - (D

—u""%),D%).  (5.5)
Setting x = 9”*%7 we find
18712 = 1o ?) + 1674 < 207 4 5167+ 2
T Y R
where I’ = ||p(U™) — ¢(u""2)||. Thus
LI — 10712 < 1072 4 17 4 2 4 K (5.6)

Using the differentiability of ¢(-), we find for some constant C' dependent on
rn n—=
U™ [loo and [[u""2 ]

<l -z < (107 + 1" + e — w2 ).
By (2.4) and (5.3), we have
"< C(|0" M+ 110" 21D + C(u) (A" + &2).
Using (2.4), (5.6) and the estimates of I’, J, K, we obtain
1071* < (1 + CE)|[0"H||* + Ck[|0"72||* + C(w)k(h" + k?)2.
This yields
10711 + ClI6" = * < (1 +2CK) (10" + CK[|6"2]1%) + C(u) k(A" + k).
Therefore, for nk < T and n > 2
™11 < C(IOMI1* + kIO + (h" + &)%) (5.7)
Next we shall estimate ||0*||. From equations (5.2) we get the estimate
L8~ 10°1%) < C(JU° — w2+ (7 + 1))
here 010 = U0 — P,ut, 090 = 0°. Tt follows from (4.8) that
100 =¥ || < 6% + 16° + lu® = || < [|6°) + C(h7 + k),

which yields
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(61 = 16°11%) < CCN°I° + 1> + &) .

> =

Thus,
10702 < (1 + CR) 10°1 + Ch(h*" + k%) < C(1|6°1* + h* + &%) . (5.8)
In the same way as above we obtain from (5.2)

U+ u°

(16H1* = 116°1%) < ¢ (ll—

—uz |2+ (A" +K2)?).  (5.9)

> =

Therefore, using (5.8), we estimate the error

U4 U0 L R0 4 g0

|5 —ul < |l + | P —u?

IN

IN

S8 + 16°1) + ) (07 + #2)

< C|I6°) + C(u) (A" + k2) .
With these estimates, (5.9) becomes
[60M]17 < (14 CK)[|6°]* + Ck(R*" + k%) < C(||6°||> + (R + &k%)*) . (5.10)
It follows from (4.9), (5.6) and (5.10), that the estimate
|07 < C(h"+ k%), 0<n<N (5.11)

is valid for some constant C' = C(u, T'). Choosing x = 9;6" in (5.5), we obtain
forn > 2

1007117 + [0:6" 53 < I 846" |2 + T [|00" || + K 0,0 2
12 1 n|2 1 2 n||2 2 1 n|2
SI? 4 L1003+ 77+ (10077 + K2 + 11007 3.
Therefore, by the estimates of I, J, K and (2.4), we obtain
1 n n— n— n— T
i 3= 16"713) < CU" 12+ 167 2)7) + Cu)(h” + k?)*.
Using (5.11), we get
1
E(W"I% —10"713) < Clu)(h” + k).
Consequently, for n > 2 and nk < T, we have
10713 < C(u, T)(10"3 + (A" + k*)?).

Similarly to the analysis given above, we obtain from (5.2) instead of (4.10)
the following estimate
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10112 < C(h" + k%)

Therefore
072 < C(u, T)(h" +k?), 0<n<N. (5.12)

Then using (3.2), (5.11) and (5.12), we obtain
10"y < C(u, T)(h" +k?), 0<n<N. (5.13)
From (5.11), (5.13) and Lemma 4 with p = oo, we get
000 < C(R" +k*), 0<n<N. (5.14)

Now, the result follows from (5.14) and (2.5). B
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Pilnai diskredioji Galerkino aproksimacija Cahn-Hilliard lygé¢iai
K. Omrani

Straipsnyje analizuojama standartiné Galerkino aproksimacija nestacionariajai Canh-
Hilliard lygéiai, panaudojant glodZius splainus. Aptarta pilnai diskrecios Cranko-
Nikolsono baigtiniy skirtumy schemos sprendinio egzistencija, vienatis ir konvergav-
imas. Pabaigoje pateikta tiesiné Galerkino diskrecioji schema, kuri yra antros eilés
tikslumo pagal laika.



