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Abstract. The large number of recently created mathematical models of single-
species insects’ population density dynamics has confirmed the continuing interest
of scientists to this problem. Beginning with Thompson’s work [34] there have been
suggested some mathematical models both for practical purposes (simulation mod-
els), and for revealing some general ecological patterns (qualitative models) [31].

The different approaches that could be applied to mathematical modelling of
density dynamics of single-species laboratory insects’ population by means of non-
linear difference-differential equations with delay are discussed. The main attention
is paid to the mathematical model proposed by Kolesov [15], which takes into account
the age structure within insects’ population.

A computer implementation of all proposed mathematical models has been ful-
filled by using Model Maker simulation system. Various scenarios for simulation of
environmental factors impact on the population dynamics are realized. Simulation
results are compared with results from well-known laboratory experiments on the
single-species population.

Key words: mathematical modelling, insects’ population, differential equations
with delay

1. Introduction

Many species of insects are pests for agriculture and foresting. Therefore the
questions of density dynamics of insects have been widely discussed in eco-
logical literature for a long time. Main causes of mass reproduction of insects
were explained by some universal theories with an one decisive factor only.
However, accumulation of knowledge concerning density dynamics of insects
has proved that such one-sided approach is insufficient to explain this compli-
cated phenomenon. At present there aren’t contradictory opinions about the
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important role of both abiotic and biotic factors affecting the density of in-
sects. The existing differences of opinions are mainly determined by different
approaches to mechanism of density control. The most acceptable seems to be
an idea of automatic density control of insects, it is supported by numerous
theoretical and experimental works together with mathematical methods [38].

The large number of recently created mathematical models has confirmed
the continuing interest of scientists to this problem. Probably, the problem of
insects’ density dynamics is the most difficult in mathematical ecology. Be-
ginning with Thompson’s works [34] there have been suggested some mathe-
matical models both for practical purposes (simulation models), and for re-
vealing some general ecological patterns (qualitative models) [31]. The "bio-
logical model" (i.e. laboratory populations) is extremely effective for devel-
opment of such models. They are very important for outlining phenomena
that could explain mathematical models. A good review of the well-known
laboratory experiments and data obtained in field experiments is given in the
Victorov’s [38, 39], Isajev’s and Girs’ [10], Varley’s, Gradwell’s and Hassle’s
monographs [36].

The mathematical models by means of which mechanisms of density oscil-
lations of insects are investigated can be divided into three groups [11]. Firstly,
they are discrete time models where difference equations are used to describe
density dynamics of insects with non-overlapping generations. Secondly, they
are continuous time models where various classes of non-linear differential
equations are used and which can be used to describe density dynamics of in-
sects’ populations for both overlapping, and non-overlapping generations [14].
Thirdly, they are stochastic (non-deterministic) models, which in opposite to
deterministic models take into account sporadic changes of environment.

The density dynamics for groups of insects with non-overlapping genera-
tions has been described by a logistic differential equation [26]

AN(E) _ r(1- %)N(i) , (1.1)

dt

where N(t) is the number of individuals, r linear growth rate, K the maximum
sustainable population.

The main biological importance of this population dynamics model is due
to the fact of existence of feedback between the size of population and its
growing rate. The logistic law has widely been used by a lot of researches
for explaining the results of experiments. We can mention here well-known
Pearl’s works [26] on laboratory fruit fly (Drosophila melanogaster) popula-
tion, Gause’s works [6] on confused flour beetle (Tribolium confusum Duv.),
Bodenheimer’s works [2] on home bee population and others. Crombie [4]
achieved a very satisfying correlation between the logistic curve and the num-
ber of Rizopertha dominica obtained in a laboratory experiment. However,
many other experimental data have been described unsatisfactorily by the lo-
gistic law. For example, Sang [30] while analysing his own results and those
of Bodenheimer’s [2] experiments on fruit fly (Drosophila melanogaster) came
to conclusion that the logistic law can be used to describe only the strictly
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restricted initial stage of population growth of adult specimens. Attempts to
explain the growth curves of adult specimens on the base of equation (1.1)
seem unsound mainly due to the fact that the age structure of population
is completely ignored in this equation. Sang shows that density dynamics of
adult specimens depends on many factors and there are only rare cases where
it can be explained by the logistic law. The authors of work [3] on the base of
their own analysis of density dynamics of Drosophila laboratory population
draw attention to the fact that the behaviour of ups-and-downs type is more
typical.

In natural conditions numerous species of insects have only one generation
a year. Different development stages of such insects don’t overlap or overlap
only a little in the course of time. In this case the density dynamics can
be modelled by difference equations. It is well-known that the solutions of
such equations can possess very complex dynamics [19]. This approach to
the mathematical modelling of insects’ density dynamics hasn’t shown any
significant progress yet. As an example let’s take Fujita-Utida’s model [5]:

P, = ’L‘l(ﬁ - a) , (1.2)

_(@=/h
Tvg—f,

r
T is duration of one generation, h = 7 is growth rate, K average number

where P, is a population density in n-th generation, f =e™"

of individuals, o average mortality rate of adult specimens in one generation
0<o<1).

Utida [35] has used this model to explain damped oscillations of laboratory
Calosobruchus maculatus population. Rabinovich [28] was trying to explain
results of laboratory experiments on parasitic wasp (N. Vitripennis) popula-
tion with the help of model (1.2). But he failed because the model gave quickly
damped oscillations.

Further, the complex impact of various interacting factors on population
dynamics leads to more and more complicated mathematical models. A lot
of environmental factors simultaneously and differently affect the population
density. On the other hand, importance of particular factors is specified not
so much by the intensity as by variability.

The intention for creating more realistic models leads to necessity of includ-
ing into them the age specific mortality rate [36]. This fact demands making
life tables for several years covering different environmental conditions and
different population density. Key factors playing the decisive role in density
dynamics are determined by means of this life tables. To describe the impact
of these factors the corresponding mathematical models are developed [37].
One of the methods frequently used to analyze density dynamics and to de-
velop mathematical models is multiple regression [21, 40]. This method is
mainly used for construction of prognostic equations. Whether the equation
is usable or not, depends on precision of calculations. However, this method
is not unique by means of which we can clarify in what way and what bio-
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logical mechanisms influence the population density dynamics. The problems
in using multiple regression for population density prediction also occur when
certain interactions between independent variables exist.

2. Single-Species Laboratory Insects’ Population Model
with Delay

2.1. Mathematical analysis of model

The first who drew attention to importance of delay for density dynamics was
Hutchinson [9]. He suggested differential-difference equation:

IND (- MO g

0 I (2.1)

where 7 is the coefficient of linear growth, i the average age of adult individuals
in population, K the maximum sustainable population.
The main features of equation (2.1) are [13]:

. All solutions with positive initial conditions are positive and bounded;
1
. When 0 < rh < —, the solution N(t) monotonically converges to K
e
(Fig. 1, the dashed line);

. When — < rh < g, the solution N(t) converges to K with oscillations
e
near equilibrium (Fig. 1, the solid line);

4. When rh > g, there is only one stable periodic solution (Fig. 1, the dotted
line).

= 4.5

E 4.-'5l = T 0
3.5 i o 7 1
3.0 : : — -
25 L |- e 4 ]!

: _III_]!'_A'F_"IJ il 1 : _L_ ! :

2;5 i I,l' U \,‘.ﬁ_,_n‘-—| i [l T
1?5 .II.I '|le.|' r ; | 1 . ]
1.0 .'rg .-/ b il ! ! | L ;
/A N - U:
0.0 . - .

Figure 1. Solutions of equation (2.1): when h = 1, r = 0.1, K = 2 solution N (%)
monotonically converges to K (dashed line); when h = 1, r = 0.7, K = 2 solution
N(t) converges to K with oscillations near equilibrium (solid line); when h = 5.3,
r = 0.3, K = 2 solution N(t) is periodic and stable (dotted line).
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The approximate solution was constructed after analysis of equation (2.1)
by means of bifurcation theory [13]:

N(t) ~ K1+ 2.32v/rh — 1.57 cos (%T) +0.54(rh — 1.57) (2.2)
x (sin(r7) + 2 cos(n7))],

where h7[l 4 0.17(rh — 1.57)] = t.

2.2. Modelling results

There were efforts to explain the cases of cyclic changes in insects’ population
density by means of equation (2.1) [13, 18, 28]. May in his monograph [18]
compared the results of numerical analysis of equation (2.1) with experimen-
tal data from the classical work by Nicholson [24] on oscillations of density
laboratory population of Australian sheep-bowfly (Lucilia cuprina) and got
satisfying results. The approximate solution (2.2) also fits quite well to the
Nicholson’s experimental data. However, it should be noted that correlation
between theoretical and experimental oscillations could be better (Fig. 2).
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Figure 2. a) Comparison of Nicholson’s [24] experimental data on laboratory popu-
lation of Australian sheep-bowfly (Lucilia cuprina) with approximate solution N (t)
(2.2), b) correlation coefficient r = 0.67.

D. Pratt’s laboratorial researches [27] of Daphnia population in 1943 can be
considered as a classical ecological experiment. Daphnia ontogenesis resembles
the development stages of beetle population. Daphnia density dynamics for
different temperatures is shown in Fig. 3.

Let us consider four methods for definition of parameters r and h of Daph-
nia population. Parameter r is the Maltusian coefficient of exponential growth,
which can be observed only at the beginning of population growth under "com-
petition vacuum" conditions. Let [t1,t; + At] be such time interval within
which N(¢) and N (¢t — h) values are small. Then N'(¢) ~ rN(¢) and

. InN(h + At

L+ (2.3)
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Figure 3. Daphnia density dynamics: a) T=18°C, b) T=25°C.

Delay h is period of time which equals Daphnia development cycle period.
Daphnia development cycle consists of two parts (see Fig. 4):
1) Period of 3-5 days, during which a young Daphnia can be hatched out;

2) Period of at least 2-3 days, which are needed for a young Daphnia to
accumulate fat substances to be ready for laying eggs.

egg young Daphnia egg young Daphnia ¢
M ' I I () >
1 1 4
3-5days 2-3 days
h

Figure 4. Life cycle of Daphnia.

The value of h depends on temperature. When the temperature changes,
this parameter can also vary from 4 till 8 days and even more. From Pratt’s
data charts on birth and death rate dynamics it follows that at T=18°C
delay h ~ 12 days and at T=25°C delay h ~ 9 days. So, when rh = 1.2

1

(- <12< g), K = 135 and r = 0.1, equation (2.1) describes quite well
e

Daphnia density dynamics at T=18°. When rh = 1.62 (1.62 > g), K =30

and r = 0.18, equation (2.1) describes quite well Daphnia density dynamics
on T=25° (see Fig. 5 and Fig. 6).

3. Single-Species Laboratory Insects’ Population Models
with Distributed Delays

Three stages of development - egg, larva and adult species are considered in
Rudd’s mathematical model on insect population dynamics [29]. Distributed
delays are introduced into a system of three differential equations. Such intro-
duction of distributed delays into a model is caused by the inability of discrete
delay model adequately describe some extraordinary factors, e.g., it is impos-
sible to simulate a usage of pesticides including some additional functions into
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Figure 5. Modelling of Daphnia density dynamics when T=18°C: a) simulation re-
sults when » = 0.1, h = 12 and K = 135, b) comparison of Pratt’s [27] experimental
data presented in Fig. 3a with modelling results. Correlation coefficient r = 0.83.
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Figure 6. Modelling of Daphnia density dynamics when T=25°C: a) simulation re-
sults when r = 0.18, h = 9 and K = 30 . b) Comparison of Pratt’s [27] experimental
data presented in Fig. 3b with modelling results. Correlation coefficient » = 0.73.

a model. The model has been tested by experimental data on insects’ popu-
lation of Anticarsia gemmatalis Hubner. The correlation between theoretical
and experimental curves appeared to be quite good. However, it should be
mentioned, that practical usage of model demands vast amount of informa-
tion. We should know the birth and death rate functions at each development
stage, and also functions of age distribution at the initial time moment ¢ = 0.

In work [8] a methodology of construction of single-species laboratory
population dynamics models with respect to age structure is described. The
given methodology can be used for those insects the life cycle of which can be
divided into separated development stages. There has been constructed the
system of differential equations with several delays, which can be used as a
model of the above insect population. The model has been applied to explain
laboratory population dynamics from a classical Nicholson’s experiment [24].
The numerical analysis of the model has shown quite a good correlation with
Nicholson’s experimental data.

The same method was used to construct mathematical models of labora-
tory population dynamics with consideration of various possible effects due to
limited food for larva [25].
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4. Self-Excited Single-Species Laboratory Insects’
Population Models

4.1. Model construction and mathematical analysis

A basically new approach to the problem of insects’ population dynamics
modelling has been started in works by Kolesov [14, 15]. He assumed that
the main cause for density oscillations is a competition within population.
Thus, differential equations describing population dynamics should have auto—
oscillating solutions. Hutchinson’s equation (2.1) is an example of such model.
It is supposed in [15] that insects’ density dynamics can be determined by two
active phases - larva and imago. Therefore, the following mathematical model
is suggested for description of two insects’ development stages:

Ni() = a1 - a1~ 22ty R,
(4.1)
Né(t) _ Tg[Nl(t - (]-I;lhl - h2)) . N;((Qt)}Ng(t)

In system (4.1) N;(¢) is the number of imago, N2 (t) the number of larva, hi(t)
time period between larva and imago appearance, 1 — h; time period between
imago and larva appearance, ho average imago’s population life period per
year, K1, Ky average number of imago and larva, a < 1 characterizes power
of relation between imago’s and larva’s populations, ) = r;(1—a) Maltusian’s
coefficient of linear growth, o larva’s population linear growth coefficient.

When ry — oo and the other parameters are constant, solutions of system
(4.1) are similar to solutions of equation

N'@t)=r[l—a(l=N(t—(1-h)))—N(—h)]N, (4.2)

N- N-
N =S e, 22

=N(t—(1—hy — h2)).

Differential-difference equation (4.2) is simpler than the system (4.1) and ap-
proximates it satisfactorily.

Numerical analysis of system (4.1) and equation (4.2) has been done in [12].
The biological period is close to one, however, there are modes with a period
significantly less than one. The stationary modes of equation (4.2) often have
a complicated form. One can observe gradual increase of oscillations with the
following depression stage, which is a good example of well-known natural
phenomena of density outburst. However, the stationary modes [12] are very
sensitive to even minor changes of model parameters and the ranges of param-
eters values for which the mode period is close to one are very narrow. Thus
such comparison of theoretical and experimental data gives rise to difficulties
because some parameters of models (4.1) and (4.2) are not known. It should
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be also noted that the stationary modes of equation (4.2) are more sensitive
to changes of parameters than the same modes for system (4.1).

In order to explain the laboratory data of insects’ population density, a
modification of model from [15] has been proposed in [7]:

Ni(t)=mr {1 —a(l— %;hl)) + c(l — Nfl{(lt)) — Nl(fK_l h2)}N1(t)7
Nj(t) = ra {Nl (t= (Oﬂ;(: h = h2)) b(l - N2(’;2 h3)) - N;(;)}Ng(t),
(4.3)

where 7' is one generation duration, i.e. time period from egg till imago,
hs is larva final development stage duration, a > 1 reflects the generations
overlapping fact.

Model (4.3) has been constructed on the base of special laboratory exper-
iment on Drosophila melanogaster population. When

b=0, ¢=0, a=1, T=1

we get the system of equations (4.1).

Ttem c(1 — Nll((lt)) in the first equation of (4.3) shows reduction of fertility
of adult species in case their density becomes more than average, as well as
increase of their death rate within such periods of time. Parameter 0 < ¢ < 1
characterizes the power of this additional inner feedback at the imago stage
of insects’ population. The additional term in the second equation of (4.3)
reflects the impact of competition within population on density dynamics
of larva. Delay hs equals the period of time within which the competition
between larva is the strongest. Parameter b characterizes the acuteness of
this competition. Factor a > 1 appears due to overlapping of generations in
laboratory population ( see Fig. 7).
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Figure 7. Life cycle of Drosophila.

The linear analysis has shown that when

CT1h2>g, c<1, bT2h3>g, b>1

and a is small, system (4.3) has two—frequency steady mode near steady state
Nl(t) = Kl, Ng(t) = KQ.
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Let consider the following model:

y aN(t — h)
T ey

where a > 0 is coefficient of production, 8 > 0 coefficient of reduction, n > 0
the order of environment non-linearity, K > 0 average number of individuals.

— BN(1), (4.4)

The differential-difference equation (4.4) has a more complicated dynam-
ics of solutions than equation (2.1) and a smaller sensitivity for changing the
model’s parameters compared with equation (4.2). Production rate in (4.4)
is described by the Michaelis-Menten law for fermentative kinetics [20]. The
delay has been introduced with respect to the Mackey—Glass work [17]. Elec-
tronic analog of (4.4) has been presented in [23].

The main properties of equation (4.4) are the following [32, 33]:

1. The convergence of N (t) to the steady state N(t) = K p/5 — 1 follows in
two ways:
a) monotonically, if

(o= B)fn

n—ﬁﬁ 1

0< o hel+Bh’

b) oscillating around the nontrivial steady state, if

1 (a —pB)psn W
hel+Bh < o —6< (7)2—'—62’

where w, is the solution of the equation

——w=tanw, w,€ (0,7).

Bh

2. Differential-difference equation (4.4) has non-constant periodic solutions.
3. Solutions of equation (4.4) can behave chaotically.

The same properties are also valid for the equation:

N(1) = aN(t —h)

which has a steady state solution N (¢) = K and for the equation:

N =a- NSy N,
N (4.6)

7(N) = hexp (’y(l

N
‘KW))'

where the delay 7 = 7(N) depends on N(t).
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4.2. Modelling results

All numerical results were obtained by applying fourth order Runge-Kutta
method built in the Model Maker simulation package [22].

Modelling results of system (4.3) were compared with the laboratory ex-
periments data on Drosophila melanogaster population, Birch’s laboratory
experiments on Sitophilus oryzae L. population [1], Lloyd’s laboratory exper-
iments on Tribolium castaneuwm Hrbst. population [16] and others. In Fig. 8,
Fig. 9 results of numerical solutions of model (4.3) are compared with insects’
density dynamics data from Nickolson’s laboratory experiments on Australian
sheep-bowfly (Lucilia cuprina) population [24].
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Figure 8. Adult flys’ density dynamics when larva have got 25 g of meat per day.
a) Nickolson’s laboratory experiments data. b) Modelling results when 7' = 15; hy =
10;he = 13;hg = 6;r1 = 13.8;7r2 = 24;a = 0.495;b = 1.8;¢c = 0.715; ¢« = 3; K1 =
350; K2 = 700.
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Figure 9. Adult flys’ density dynamics when larva have got 50 g of meat per day.
a) Nickolson’s laboratory experiments data. b) Modelling results when 7' = 15; h; =
10;he = 13;hg = 6;r1 = 13.8;7r2 = 24;a = 0.495;b = 1.8;¢c = 0.715; ¢« = 3; K1 =
900; K2 = 1700.

Model (4.6) has been applied to compare with the Nicholson’s experimental
data [24]. The data and computer simulation results are shown in Fig. 10.

A qualitative comparison of numerical solutions received for models (4.3)
and (4.6) with experimental population density can be regarded as good.
However, a calculated correlation of numerical solutions with experimental
data is not high enough in these cases (r < 0.6). It should be mentioned
that systems (4.3) and (4.6) contain a number of different delays and their
solutions demonstrate the periodic behaviour, which is very sensible to the
initial conditions. Therefore, small changes in parameters values could cause
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Figure 10. Modelling of Australian sheep-bowfly (Lucilia cuprina) population
density. a) Nicholson’s experimental data [24]. b) N(¢) modelling results when

o=

10; 8 =1;7v=0.5;h =4;n =7.7; K = 2800.

a switch from periodic solution to chaotic behaviour. In such a situation a
correlation coefficient and some other quantitative measures of the fitting are
not very useful for comparison of simulation results with experimental data.
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LABORATORINIU VABZDZIU POPULIACIJU SKAITLINGUMO DI-
NAMIKOS KOMPIUTERINIS MODELIAVIMAS

D. SVITRA, V. DENISOVAS, N. JUSCENKO

Straipsnyje nagrinéjami izoliuotos vabzdZiy populiacijos skaitlingumo dinamikos
kompiuterinio modeliavimo klausimai. Salia klasikiniy Sios srities darby apZvalgos
pateikiami autoriy gauti rezultatai. Siulomi netiesiniy diferencialiniy-skirtuminiy
lyg¢iy pagrindu sudaryti matematiniai modeliai buvo realizuoti modeliavimo aplinkoje
Model Maker. Kompiuterinio modeliavimo rezultatai palyginti su klasikiniais labo-
ratoriniais bandymais.



