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ABSTRACT

In this paper an optimal control problem for the elliptic boundary value problem with
nonlocal boundary conditions is considered. It is shown that the weak solutions of the
boundary value problem depend smoothly on the control parameter and that the cost
functional of the optimal control problem is Frechet differentiable with respect to the control
parameter.
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1. INTRODUCTION

In the paper of Buikis and Fitt [1] a mathematical model was given for the
process of the oil burn-out from glass fabric sheets. This model shows that
during burn-out process the heat transfer via radiation is playing an essential
role. In order to investigate the dependence of the inner temperature of the
glass fabric from the surface temperature of the furnace’s heaters, we consider
a steady state heat transfer process within fabric sheet-furnace system and
neglect the impact of the oil burning process.

Let the infinite cylinder Qo = ¥ x R C R® represents the glass fabric
sheet which is dragged through the furnace with a constant speed. For reason
of simplicity we suppose that the cylinder {2, is convex and the furnace is
formed from two convex heaters 7 and Q.

We assume that at an appropriate distance from the furnace the temper-
ature inside the cylinder Q. is not affected by incoming heat flux from the



2 K. Birgelis

furnace heaters. Thus we consider only a finite subdomain Q¢ of the cylin-
der Q, which lies directly nearby furnace and inner temperature of which is
supposed to be highly dependent on the surface temperature of the furnace
heaters.
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2F

Figure 1. Geometry of the physical model.

We consider the steady state heat exchange when the conduction and con-
vection occur inside the domain y. The temperature Tj, is known on the
contact surface ¥;, between the parts Qp and Q4 \ Qo of the glass fabric. If
T is the temperature inside the domain g, and g, is the heat flux through
the surface X;, then overall heat balance inside the domain €2y is determined
by the following state equation:

/ (ko (VT - V) + ke Ty ) do + /
Qo

gsds =0 Vi € Vs, (L1)
s
where Vj is an appropriate functional space.

Heat exchange between the furnace heaters and the glass fabric occurs via
heat radiation emission and absorption on the surface X,,q = Xs U X U Xs.
If T}qq4 is temperature of that surface, and p = p(z) is outgoing heat radiation
amount from the same surface, then both of them are tied with the integral
equation:

p—(1—€)K(p) = €0|Tyaq|*Traa- (1.2)

We assume, that temperature Tp; on the surface Yp; = X1 U Xg acts as
control parameter. If we denote the temperature on the surface X as T then
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after solving the equation (1.2) we can rewrite (1.1) in the following form:

/ (kl(VT-V¢)+k2Twlzp)dv+/ G1 (TSP T,) ds
Qo s
= —/E G2(|Tht|3Tht)’lﬁds V¢ S V5, (1.3)

where GG1, G2 are some bounded linear operators.

Further, in order to minimize the temperature gradients within the Qg by
finding optimal temperature T}; on the surface ¥;;, we define the integral
cost functional:

I(T) = / |VT|? dv.
Qo

In this paper we show that the solution of the equation (1.3) can be repre-
sented in the functional form

T= lI;(irh,t)a

where operator ¥ is continuous and Frechet differentiable in the appropriate
functional spaces. We also show continuity and Frechet differentiability of the
functional I(¥(Ths)).

2. HEAT TRANSFER EQUATION

In this section we formulate the boundary value problem, which describes
heat exchange within the fabric sheet-furnace system. We also show existence
of the solutions for that boundary value problem. It is important to note,
that here we widely use the methodology from the paper [4], which deals with
similar mathematical models of the conductive-radiative heat transfer.

Let us define geometry of the fabric sheet-furnace system:

Qoo == {z € R : (x2,23) € B},
QO = {;L' € ]R3 0< x1 < l;($2)l’3) € E}’

where [ is a positive constant and ¥ C R? is a convex domain. Let 2; C R®,
Q5 C R3 be convex domains such that

Qo N =0, QunNQa=0, N =0.
In addition, let us define:

Qrad := Qoo U Q1 U Qa,

3o = 000, X1 := 001, Xg := 00,

She =B U0, 58, :=30\00, Erad 1= Zpe U X,
Y i ={2 € Q21 =0} U{z € Q : 21 =1}.
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Let us also introduce notations for the physical characteristics:
e T'=T(x) - temperature in the domain g;
e Troqa = Trea(x) - temperature on the surface X,.q4;
e p = p(x) - outgoing heat radiation amount from the surface ¥, ,4;
® ¢rad = Grea() - radiative heat flux through the surface X,,4;
e g; = gs(x) - radiative heat flux through the surface ¥g;
e ¢ - Stephan-Boltzmann constant;
e 0 <e=¢€(x) <1 - emissivity of the surface ¥, .q4;
e T, = T,(x) - temperature on the surface Xg;
e T}y = Thi(x) - temperature on the surface Xpy;
e T;,, = T;,(x) - temperature on the surface X;;,;
e k1 > 0 - thermal conductivity of the glass fabric;
e ko - normalized pulling velocity of the glass fabric sheet.

In the points (z,y) € Tred X Lreq We define functions

0(z,y) = 1, if{zeR:z=Xz+(1 -y, 0<A<1}NQpuq =0,
)= 0, otherwise,

bog) o 02 =) cos (0), (2 =)

7r|m—y|2 (Sﬂ,y),

where v(z), v(y) are outward normal vectors with respect to the surface X,q4.

The function k(z,y) is defined almost everywhere on the set Yppq X Epad-
This statement follows from the fact, that domains Qg, 21, 2> are convex and
therefore outward normal v is defined almost everywhere on the boundaries
of these domains.

The following result can be proved:

Lemma 2.1. The mapping

o / Kz, 9)p(y) ds(y) (2.1)

rad
defines the integral operator K € £(L1(Xrad), Loo(Xrad)). In addition,
1K e(2p(Sraa)Lp(Sraa)) <1, 1< p < o0l

Notation 1. Here and in the following text by £(X,Y’) we denote the stan-
dard space of linear bounded operators from X into Y.
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We assume that radiative heat exchange within the fabric sheet-furnace
system occurs via heat radiation emission and absorption on the surface X, ,4-
Therefore the physical characteristics Troq € L4(Xrad), p € L1(Xreq) are
connected by the integral equation

(I = (1= OK)(p) = 0|Tradl*Traa, (2.2)

as well the characteristics ¢rog € L1(Zrad), p € L1(Zreq) are tied by the
following equation

qrad = (I - K)(p)

The following results are valid.

Lemma 2.2. For known parameter T,oq € Li(Xqq) the equation (2.2) has
exactly one solution p € L1(Xqq4). Therefore, if Trqq € Li(Zrqq), then we
have the following representations:

p=I-1-eK) " (eo|Tradl*Traa),
raa = (I = K)(I — (1 = € K) " (e0|Traal* Traa)-

Lemma 2.3. If T; € Ly(X;), The € Ly(Zpt), then we have the following
representation:

s = G1(|Ts°Ts) + G2 (|The|*The)
= E1(|T5|3Ts) - Fl(lTslsTs) + G2(|Tht|3Tht)7 (23)

where G1 € £(L1(Xs), L1(Zs)), G2 € £(L1(Zrt),
E, € S(Ll (ES)aLl (ES)); F e £(L1 (ES),LOO(ES)
In addition, the following properties hold:

o G1 € £(Ly(Z5), Ly(%s)), Er € £(Lp(Es), Ly(Xs))
and ||I — Gillgz,(s.),L,(x.)) <1 for all constants 1 <

p
o ifu € Li(X;) andu > 0, then (I —G1)(u) > 0, Ey(u) > 0 and Fi(u) > 0;
o if u € L1(Zpt) and u > 0, then Ga(u) > 0;
o there ezists a constant 0 < ¢ < 1 such that (I — G1)(1) < ¢

LOO(ES)))
).

< oo

/ES Gi(uw)vds = /Es uG1(v)ds

for all elements u € Ly, (X;), v € Ly, (Xs), where constants 1 < p1,p2 < 0o
and 1/p1 +1/ps = 1.
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In order to formulate the state equation, which describes the heat balance
within the domain )y, we introduce specific functional spaces

Vp = W3(Q0) N Lp(s),
‘./;,Z={u€vp:u|gin=0}, 1<p< o
The following results are valid.

Lemma 2.4. The integral

nmmmo=/“wavw+vyvm+wxu+wmwnw

Qo

+/'Gam+w%u+mwws
s

is defined for all elements v € Vi, u € Vs, ¢ € Vs. The mapping
(U,U) = Il(u; v, )

defines an operator A; : Ve x Vi V5*, which has the following properties:
o it maps the set Va, X Vi in the space Vs
e the mapping A1(-,v) is coercive for all elements v € Vs;

e the mapping Al(-,_v) can be represented as sum of a radial monotone
operator B, : Vs = V' and a weakly continuous operator C, : Vs — V¢* for
all elements v € V.

Lemma 2.5. The integral
Bz )=~ [ GalsF2 ds
s

is defined for all elements ¢ € Va, 2z € Loo(She). The mapping
2+ Ix(z,-)

defines an operator As : Loo(Tpt) — Vz*, which has Frechet derivative A; [2]
for all z € Loo(Zhe).

The physical characteristics T € Vs, g5 € Ls/4(X;) are tied by the following
heat balance equation

/XMWTVM+MQMM+/
Qo

gstpds =0, Vip € Vs, (2.4)
s
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Further we assume that there exists an element wy € V5 such that it’s trace

on the surface %;, is equal to Tj,. We also assume that the temperature
T € Vi can be represented as the sum

T = w+ wy,

where w € V5
Then from the equation (2.4) we get the final equation

Ar(w, wo) = Az(The), (2.5)

which ties the temperature Th; € Loo(Xpt) with the parameters w € V5,
wo € Vs.

Lemma 2.6. For known parameters Th; € Loo(Zrt), wo € Voo the equation

(2.5) has at least one solution w € V. In addition, the following estimate is
valid:

lwlly,, < cwo, The)llwlly,-
Proof Properties of the operators A;, As ensure existence of the element
w € V3, which is a solution of the equation (2.5) ([2]). Boundedness of the
solution w € Vj can be proved by using Mozer’s iteration method. Here it is

possible to adopt the already existing proof for the case, when boundedness
of the solutions for an elliptic Dirichlet problem is proved([3]). W

3. LINEARIZED EQUATION

In this section we study the linearized equation of the equation (2.5).
The following results can be proved:

Lemma 3.1. The integral
Bu$) = [ ((Va- V%) + kouzy ) do
Qo

is defined for all elements u € Va, Y € V. The mapping
u s I3(u,-)

defines an operator Az € S(Vg,Vz*), where also the inverse operator A3—1 €
L(V5*, Va) exists.

Lemma 3.2. The integral

La(u,v, ) = /E G ([o]u) b ds
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is defined for all elements u € Va, v € Ly(X), ¢ € Va. The mapping
(u,v) = I4(u7 v, )

defines an operator Ay : Va x Ly(Z) — Vi, where the operator A;(-,v) €
L(Va,Vy) is compact for all elements v € La(2s).

Next, let us define the linearized equation
/ (k1 (V- V) + ko, ) dv +/ Gi(jvlu)pds = f(1b) VY € Vo, (3.1)
Qo 3,

where v € La(3s), f € V2* are fixed parameters, but u € V5 is the unknown
parameter.

If we take into account definitions of the operators Az, A4, then the equation
(3.1) can be rewritten in the equivalent form

As(u) + As(u,v) = f, (32)
where v € Ly(Z,), f € V3, but u € Vs.

Theorem 3.1. For every parameter v € Ly(X;) there exists an operator

(A3() + Aa(-0)) " € £(V7,VR).
Proof We fix an element v € Ly(X;). Let us prove the fact, that the equation
As(u) + Ag(u,v) =0 (3.3)

can have only a trivial solution u € V5.
Let us assume the opposite, i.e. that equation (3.3) has a nontrivial solution
u € Va. Let us also fix the family of sample functions

{u, = max{min{g, 1},-1}:0< 7 <1}
T

Properties of the operators As(-), A4(+,v) ensure that for a sufficiently small
constant 0 < § <1 we have the estimate

/ (k1(Vu - Vur) + kaug, u,) dv +/ Gi(jv|u)urds >0 V7 € (0,4],
Qo s

which contradicts with the fact, that the element u € Vz is a solution of the
equation (3.3).

Next, the fact that the equation (3.3) can have only trivial solution and
properties of the operators As(-), A4(-,v) ensure that the operator (As(-) +
Aq(-,v))" € L(Vs, V) exists.

|
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4. CONTINUOUS DEPENDENCE

In this section we prove that the solutions of the equation (2.5) depend con-
tinuously on the control parameter Tj; € Lo (Xs). As a consequence we get
the uniqueness of the solutions of (2.5) and continuity of the cost functional
with respect to the control parameter Th; € Lo (Z5)-

Lemma 4.1. Let {T};}nen C Loo(Xs) be a sequence which converges to an
element T, € Loo(E;) in the Loo(X,)-norm. Let {u"}nen C Voo be the
corresponding sequence of the solutions of the equation (2.5) and let u® € Vi,
be the solution of (2.5) that corresponds to the element Tp,. Then sequence
{u"}nen converges to the element u® in the Va-norm.

Proof Let us define sequences:

{073, == Tpy — T bnen,

{0u™ == u™ — u®} nen.
The following equality
Ay (u”, wo) — Ay (u,wo) = As(Thy) — Az (Thy) (4.1)

holds for every index n € N.
It is possible to prove that the equality (4.1) can be rewritten as

As(du™) + Ay (du™,a™) = Ay(b"0T},), (4.2)
where
1
a® = / 4u® + Ty + T6u™® dr,
0
1
b =/ 4|TP, + 76T dr
0
and n € N.

Next, we prove that [|0u"||f,,) = 0 as n — oo. Let us assume the
opposite. Then without a loss of generality we get that for every index n € N
there exists a constant & > 0 such that

6u"l|s(s,) = 6. (4.3)
Properties of the operator A; guarantee boundedness of the sequence

{ll6u™|ly, tnen. Therefore we get that there exists an element du* € Va such
that Ju™ — du* as n — oo.
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Since embedding of the space V2 in the space Lo(X;) is compact then
[|0u™ — du™||Ly(m,) = O
as n — oo. If we take into account the estimate (4.3) then we get
10u*]| L, (z,) > 0.
Without a loss of generality we can prove that
As(du™) + Ag(du”,a™) — Ax(b"0Ty;) — As(du™) + Ag(du*,a”) (4.4)

as n — oo and where
1
a* = / 4u® 4+ Ty + 76u* |2 dr.
0

If we combine the equality (4.2) with (4.4), then we get that the equation
(3.3) has a nontrivial solution u*. But Theorem 3.1 states that such fact it is
impossible, therefore we must assume that [[0u"(|,(x,) = 0 as n — oo.

Next, we prove that ||du"|;, — 0 as n — oo. The fact, that ||0u”||L,x,) —
0 as n — oo ensures that

44 (6u™,a™) = A2 (0"6T3i)ly, —2 0. (4.5)
But then it follows from the equality (4.2) that
n .
1456, — 0. (46)

Since the operator A4 is invertable, then from (4.6) it follows that ||du"[|, — 0
as n — oo.
|

As direct consequences of the Lemma, 4.1 we formulate the following theo-
rems:

Theorem 4.1. For known parameters Ty € Loo(Zrt), wo € Vo the equation
(2.5) has ezxactly one solution w € V.. The mapping

Thtr—>w

defines an operator ® : Lo (Xs) — Va, which is continuous.

Theorem 4.2. The cost functional
I(Tht) = |V((I>(Tht) + w0)|2 dv (47)
Qo

is continuous with respect to Tpy € Loo(Xs).
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5. FRECHET DIFFERENTIABILITY
In this section we prove that solutions of the equation (2.5) depend smoothly
on the control parameter Th; € Lo (Xs). We also get Frechet differentiability

of the cost functional with respect to the control parameter Th; € Loo(X5).

Theorem 5.1. The operator ® has Frechet derivative i3 [The] for all The €
L (%s).

Proof Let us fix an element T, € Loo(X;s). It is possible to prove that

there exists a constant & > 0 such that for every element Th; € Loo(Xs) with
IThe — TryllLo(s,) < 0 the following equality holds:

AL (®(The), wo) = A1 (D(Thy), wo) + As(®(The) — ®(Tyy))
+ Ay(®(Ths) — B(Tyy), 4 ®(TRy) +wol®) + o(||®(The) — B(Ty)lly, ). (5.1)

At the same time
As(The) = As(T9,) + A[T0)(Tnt = TRy) + o(|The = Tillz(z.)  (5:2)

and
1®(The) — B(Tip)lly, < (TR The — Thiell Lo, (5.3)

If we take into account (5.1), (5.2) and the estimate (5.3) then we get

12 (The) — S(TR) — (As + Aa) A [TR)(The — TRy,

=0
1Tt = TRyl 2o (2.)
as [|Tht — Tiylloo(z.) = O-
|
Theorem 5.2. The cost functional
I(Tw) = | [V(®(Tht) + wo)|* dv (54)

Qo

has Frechet derivative for all Thy € Loo(Xs).
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Optimalus valdymas modeliuose su laidZiu-radioaktyviu §ilumos
pernesimu

K. Birgelis

Darbe nagrinéjamas nelokalaus krastinio uzdavinio optimalaus valdymo uZdavinys. Paro-
dyta, kad silpnasis kraStinio uZdavinio sprendinys tolydZiai priklauso nuo valdomojo para-
metro, taigi, optimalaus valdymo tikslo funkcija yra diferencijuojama Fre§e prasme pagal
valdomus parametrus.



