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ABSTRACT

It is obtained the explicit solution to the Riemann boundary value problem for a compound
contour on the torus. An example is presented which illustrates theoretical results.
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1. STATEMENT OF A PROBLEM
Let C/I" be a closed Riemann surface (torus), where I" is biperiodic lattice

I = {2mw + 2m'w'| m, m' € Z},

!
2w and 2w’ are fixed basic periods, m? > 0. All calculations will be carried
out on the basic parallelogram of periods, supposing that the points t, 7 satisfy
one of the relations 7 =t + 2w or 7 = t + 2w’ (see Fig. 1).

Let us denote
A=0, B=2w, C =2w+2w', D=2u"

Let L = U;Zl L; , L C N be a compound piece-wise smooth orientable
contour (graph), where L; are smooth arcs, homeomorphic to the interval
(0,1) of the real line.
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Figure 1. Basic parallelogram of periods: M:= {2mwt+2m'w't’ [0t <1, 0< ¢ < 1}

Let the set A C L consists of the end points of all L; and of the common
points of different arcs L;. The points of A will be called knots of the contour
L. Let J be a given divisor of order m = ord J, consisting of points of set
A, D be a given divisor of order n = ord D, consisting of points of set M\ L.
Let G(t), t € L\ A be a given nonvanishing piece-wise Holder-continuous (H-
continuous) function, continuously extendible up to end-points of all arcs L;,
G(tr) # 0 for all end-points ¢. Let g(t) , t € L\ A, be a given H-continuous
function multiply to divisor J~!. We consider the following inhomogeneous
Riemann boundary value problem:

3t(t) =GB (t) +9(t), T'D'[(®), telL, (1.1)

where |l denotes pseudo-multiplicity (see [5]). Our goal is to find all double
periodic functions ® meromorphic on M\ L, multiply to the divisor D!, H-
continuously extendible up to L\ A, satisfying the boundary condition (1.1).
We suppose also that ® is pseudo-multiply to J ! at knots of L.

The corresponding homogeneous problem has a form

dt(t) =Gt)d (t), J 'D'|(®), teL. (1.2)

Together with the problems (1.1) and (1.2) we will consider the so called
associated problem (see [4]). In particular homogeneous boundary value prob-
lems associated with problem (1.2) is given by

() =GHIT() , ID (), tel, (1.3)

where || denotes quasi-multiplicity (see [5])
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2. INDEX OF THE PROBLEM

Let us determine an auxiliary function which will be used in the construction
of the solution of both problems (1.1) and (1.2). We will find this function
as a special solution of the homogeneous problem (1.2), which is analytic and
nonvanishing on M\ L. In order to do this we first fix an arbitrary continuous
branch of the function In G;(t) on each L;. Let the arc L; begins at a point ¢,
and terminates at a point ¢; (probably ¢ = t;). Let us denote by G;(tx — 0)
and G;(ty, +0) the limiting values of G; at tj from the right and from the left
by orientation. We introduce the following notation

n, = —(ZI arng(tk — 0) — Z”arng(tk +O))7
J

2 -
J

where the sum E" (respectively Z') contains all terms corresponding to arcs
L; which begin (terminate) at a point t;. Numbers sz, depend on the choice
of branches of InG(t). At the changes of branches the values of s can be
changed on integer numbers, but the following quantities

Yo, =) [al,
k

k

are invariant with respect to all possible changes of branches. Here [z] denotes
the largest integer smaller or equal to z.

The value s is called index of coefficient G(t) of problem (1.2). Let us
consider a divisor £ : & = 711!l of the order ord £ = s

We also introduce the following piece-wise analytic function y(z) = el (#) ,

where
I'(2) L/lnG(T)C(T—z)d'r,

21
L

and ((-) = ¢(- ,w ,w") is the Weierstrass zeta-function (see [1]). We denote
by (x) = t7't52...t¥ a quasi-divisor corresponding to the function x(z)
(see [5]). Let us determine the boundary values of the function x(z) on the
different sides of the lines L, AB and AD. Due to Sokhotsky-Plemelj formulas
(see [4]) we have

xt(t) = G(t)x™(t), t € L\(MUA).

Since we are searching a doubly periodic solution then the following rela-
tions

x(t) = C'x(t + 2w'), t € AB\L,

x(t) = Cx(t + 2w), t € AD\L,
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have to be valid with certain constants C' and C'. Combining these relations
we have

X (t) = FC'Gt)x™ (), t € (AB\L)U (ABUL),

X" (t) =FCG(t)x~(t) , t€ (ADN\L)U (ADUL),

' :exp{%/lna(t)dt} , C:exp{C( )/lnG( )dt}.

L L

Here the sign "—" ("+") on the right-hand side is taken when the orientation
of AB or AD coincides (differs) with the orientation of L at the point ¢.

3. THE SOLUTION OF THE RIEMANN BOUNDARY VALUE
PROBLEM

Let us describe an algorithm for determination of the solution of homogeneous
problem (1.2) (see [5]). In our case we put h = 1 and replace an analog of the
Cauchy kernel by the expression (7 — t)dr, where {(-) = {(- ,w ,w'). By [5]
the solution of (1.2) is reduced to the solution of two successive problems — the
Jacobi inversion problem and the construction of a doubly periodic function
multiply to the given divisor.

3.1. The Jacobi inversion problem (see [5])

This problem consist in determination of points ¢; ..., ¢, on a given Riemann
surface R of the genus h, and integer numbers ny, m; satisfying the following
relation

Zwk q;) /lnG )dwy (T +ZBk]mJ, =1,h.

L

Here

wi(q) = [ dwi(t), q#qo

2

is an arbitrary fixed point on the surface, the symbol / means that the

contour of integration does not cross the canonical sections,

Bk] = /dw]@)7 (k7 J :m)
br
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are B-periods of the complex-base (dw1,...,dwy) of the Abel differentials of
the first kind of the given surface .

In our case (h = 1) the Jacobi inversion problem requires finding one point
z and two integer numbers m, m’. Their existence is known a priori (see [5]).

3.2. Construction of the doubly periodic functions

Let Z be a solution of the Jacoby inversion problem (a construction of Z will
be discussed later). Let us define a divisor F = (z1) - (2) 7!, where z; € MO\ L
is an arbitrary point, M° is an internal part of M.

In our notations the general solution of the homogeneous problem has a
form

®(z2) ZQB(Z)eXp{L/IHG(T)C(T—Z)dT—/C(T—Z)dT

21
L
zZ1+2w 2142w’
—m / (1 — 2)dr —m' / C(T—z)dT}, (3.1)

where ¢ is an arbitrary elliptic function, multiply to the given divisor
J ID-1g-1F 1. Here the branch of InG(7) is fixed as above. Let us recall
the following identities (see [1]):

C(u—2w) = ((u) — 2¢(w), ue€[A D],
C(u—2w') = ¢(u) - 2¢(w'), u€[A,B] (32)

Then the exponential term in (3.1) will be doubly periodic if and only if

1 -
21+ 57 /ln G(r)dr = Z 4 2mw + 2m/w'. (3.3)
T
i3

This relation is a particular case of the Jacobi inversion problem. We deter-
mine now integer numbers m and m’ and a point 2z € [0,2w) X [0,2w') from
(3.3). Since w and w' are linear independent over the field R, we can represent
the left-hand side of (3.3) in the form

1
21+ 57 /ln G(r)dr = 20w + 2d'w’ |, where o, o’ € R
i
L

Combining this relation with (3.3), we obtain:

m=[a], m' =[a'], Z=2{a}w+ 2{a'},
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where [-] and {-} denote integer entire and fractional parts of a real number.
Here Z is the solution of Jacobi inversion problem. Hence the divisor F =
(21)(2)~! is completely determined.

We can simplify the left-hand side of (3.1). Taking into account that {(z) =

d
e Ino(z), where o(-) is the Welerstrass sigma-function, we have:
z

®(z) = p(2) exp { 2% / InG(7)¢(r — z)dr — /dlno(T —z)
L 21
z1+2w z142w’
-m / dlno(t —2) —m/ / dan(T—z)}
. 1 o(z—3)
= 3(2) exp {2_m L/lnG(T)g(T —2)dr —In 2=
o(z — 21 — 2w) ,0(z — 21 —2w')
o(z — 21) - o(z —21) }
. 1 o(z—3)
= @(z) exp{% L/lnG(T)C(T —z)dr —In = —
e—2§(w)(z—zl—2w)a(z _ Zl) , e—2§(w')(z—zl—2w')a(z _ zl)
—mln o(z —21) —mln o(z —21) }
o(z — 21)

=@ 2 e { 2% /ln G(r)C(r — 2)dr — 2mC(@)(z — 21)
L

—2m'{(w')(z — zl)} = c,m(z)ic;((zz__%) e 2lmé(w) —m'¢(w))z

X exp{# /lnG(T)C(T — z)dT}.

L

Therefore the general solution of the problem (1.2) can be represented in the
form

o(z — z1)

o) =) T

I ! ].
e~ 2me(@)=m'C(wWlz oy {— /ln G(r)¢(T — Z)dT}.
274
L

(3.4)
where ¢1(2) is an arbitrary elliptic function, multiply to the given divisor
J YD 1ELF~1, Here divisors 7 and D are those fixed in (1.2), the divisor
F is defined from the solution of the Jacobi inversion problem, and the divisor
€ of the order s is determined at the construction of the function x in Section
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2. The solution of the associated problem (1.3) has the form

- ! 1 ].
U(z) =11 (z)%e%m““’)_m @)z exp { ~ 5 /ln G(1)¢(T — Z)dT},
L

(3.5)
where 11 (z) is an arbitrary elliptic function multiply to the divisor JEDF.
Let [ be a number of linear independent solutions of the homogeneous problem
(1.2) (this number is equal to the dimension of the space of all elliptic func-
tions multiply to the divisor J~'D~1€71F~1 ). Let I’ be a number of linear
independent solutions of the homogeneous problem (1.3) (it is equal to the
dimension of the space of all elliptic functions multiply to the divisor JEDF).
The following result is a straightforward consequence of the Riemann-Roch
theorem and the Clifford theorem for the case h =1 (see [2]):

Theorem 3.1. The numbers | and l' satisfy the relation
I-l'=x+m+n.

In particular, if x+m+n>0thenl=»x+m+n,l'=0,if x+m+n<0
thenl =0, I' = —3c —m — n. In «the critical cases »x +m +n = 0 the exact
estimate 0 <1 < 1 holds.

If 5+ m +m' = 0 then two cases are possible, namely: I = ' = 0 or
I =1 =1. The last situation takes place if and only if Z = 2; is the solution
of the equation (3.3). Then the formulas (3.4), (3.5) can be simplified:

D(2) = ¢ (z)e_2[m<(“’)_m’C(“”)]z exp {% /ln G(T)¢(T — Z)dT}, (3.6)

i)
L

T(2) = 1y (2)2lme@)=—m'c(W)]z exp{ _ QLM / In G(r)¢(r — z)dT}. (3.7)

L

A general solution of the inhomogeneous problem (1.1) is the sum of a par-
ticular solution of (1.1) and the general solution of the homogeneous problem
(1.2). Solvability conditions of the inhomogeneous problem (1.1) has the same
form as in [5], where the following theorem was proved.

Theorem 3.2. The necessary and sufficient solvability conditions of the prob-
lem (1.1) are the equalities

/ g(F) T+ (P)dr =0, (3.8)

L

which are valid for all linear independent solutions U(z) of the problem (1.3).
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Hence if I' = 0 then the problem (1.1) is unconditionally solvable. If I’ =1
then there exists one solvability condition (3.8).

Further we will use different analytic expressions for a particular solution
of (1.1). Their choice depends on the value of I'. For the construction of a
particular solution we must firstly factorize the coefficient G. If [ > 1 then
we can use representation (3.4) for such factorization. If I’ > 1 then we can
use representation (3.5). If [ = I’ = 0 then both formulas can be used with
p1(z) =1 (respectively, ¥1(z) = 1).

Let, I = s+ m+m' > 1 and &g be a particular solution of the homoge-
neous problem (1.2) contained in (3.4). Since zeroes of the solution (3.4) are
arbitrary distributed then zeroes of ®( can be fixed in such a way that the
points of the divisor (@) lay outside of the contour L. It is possible if | > 1.

If I = 1 then it is possible that a € L. In this case we can use another
meromorphic analog of Cauchy kernel with characteristic divisor (a)(b)~! (see
[3]):

o(tr—z+a—-"b)o(z—b)o(tr—a) dr

w(z,) = o(a—b) o(r —b)o(z —a)o(r —2)’ (39)

where a, b are two different points in M\ L, o(-) is the Weierstrass sigma-
function. Factorizing the coefficient G' and using the described particular
solution @ we reduce the problem (3.1) to the following "jump" problem:

oH(E) e () _ g(t)
or() or() orwy '€ (3.10)

where the new unknown function can have a pole at the point a. The problem
(3.10) is unconditionally solvable and its solution can be found in the form of
the Cauchy type integral with kernel (3.9). Hence, the particular solution of
problem (1.1) is delivered by the formula

3,(z) = ‘1’2"—2’,) / q;"ofg)w(z,T)dT, (3.11)
L

where w is given in (3.9).

Let I' > 1, and ¥y be a nontrivial solution of the associated problem (1.3)
given in (3.5). Using ¥, we factorize the coefficient G and reduce the boundary
condition (1.1) to the following «jump» condition

S (O)TF (1) - 2 (T3 (1) = g(OTF (D), te L. (3.12)

Under condition (3.8) the solution of (3.12) can be represented in the form
of the Cauchy type integral with the kernel {(7 — z)dr. Then a particular
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W+ w

—W —w

Figure 2. The contour of the region L.

solution of the inhomogeneous problem (1.1) can be delivered by the formula

1 1
=% |t / o (r)C(r — )|

where the constant C' is determined from the condition that the expression in
braces is multiply to the divisor (®¢)J 1D~

Let now | = I' = 0. Then the coefficient G' should be factorized by using
the right-hand side of (3.4) with ¢;(2) = 1. Denoting the solution (3.4)
corresponding to ¢1(z) = 1 we find a particular solution of (1.1) in the form

2(0) = 59 [ B0, 2y
L

where wy (7, z) is the meromorphic analog of the Cauchy kernel with charac-
teristic divisor JEDF.

Ezample 3.1. Let consider the following problem:
T (t) = Gt)d(t) +g(t), te L (3.13)

where
. G, ifte Ly,
G(t)_ { Gy ift € Lo ,

and G1, G2 # 0 are given constants, and the contour L = Ly | J L5 is presented
in the Fig.2. Let us begin our analysis with the corresponding homogeneous
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problem
®t(t) =G(t)d (t), te€ L. (3.14)

Applying the Argument Principle we can conclude that the solution of (3.14)
(if any) has no zeroes on M. Hence by the monodromy theorem there exists on
M\ L a single-valued branch of the function In ®(p). Therefore the condition
(3.14) can be rewritten in the equivalent form

In®*(t) =In® (t) + InG(t), te L.
Differentiating the last equality we arrive at the condition
din®t(t) =dln® (), t € L.

It follows from the analytic continuation theorem that d1ln ®(p) is an abelian
differential of the first kind, namely

dln ®(p) = Cd-z.
Hence the general solution of (3.14) can be found among the following ones
®(p) = Aexp {Cz},
where A is an arbitrary constant.

Since h =1, 3 = 0, n = 0, m = 0, then general solution of the homoge-
neous boundary value problem is delivered by the formula

InG nG
B(z) = Cexp{ ‘;m,l / C(r — 2)dr — ;m? / C(r — z)dr}. (3.15)
Ly Lo

Using relation (3.2), we get the doubly periodicity condition of the right-hand
side of (3.15):

wlnGy +w'InGs = 0.

Let w = wy + 4wy and w' = w] + iwh then the latter condition is equivalent to
the following one:

(Wi +iw2)(In |G1| +iArgG1) + (Wi + iwh)(In |Ga| + iA1gG>) = 0.

Taking real and imaginary parts of this equality we arrive at the following
system of two real valued equations:

wiArg Giwh + Arg Gy = wy In |G1| —wln |G2|,
wiArg Gy + wjArgGhy = —(w2In |G1| + wiIn |G2|).
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Solving this system with respect to Arg Gy and Arg G2, we get

ArgGr = % (mod2m), ArgGe = % (mod 2m), (3.16)
where
!

A= :ji Z? ‘ = Wow| — wWiwh,
A = w11n|G1|+wiln|G2| wh

L7 —(w2ln |G1| + whln |G2|) w

=1In |G: [(wiw] + wow}) +In |G2|(wll2 +w?),

A, — | @2 w11n|G1|+w’lln|G2|

>7 w1 —(waIn|Gi| + whIn|Ga)

= —(In |Gy |(@3 + ws?) + In |Ga |(wawh + wiw})).

Under conditions (3.16) the general solution of the homogeneous problem
(3.14) has the form

_ InGio(z—w+w) InGs 0(z+w+w’)}
@(z)—Cexp{ 27t o(z —w —w') 2mi o(z —w +w')
! —
:Clexp{((w)lnGl iC(w)lnGQz}
m

and the general solution of the associated problem is equal to

¥(z) = Cyexp {_ I — ) inGy Z} .

™

In our case I —I' = 0. Therefore two variants are possible, namely [ =1’ =0
and [ =1'=1. If | =1I' = 1, then the inhomogeneous problem (3.13) has a
solution if and only if the following condition

/ o T (r)dr =0 (3.17)

L

is satisfied. Here ¥(z) is the solution of the homogeneous associated problem.
If (3.17) is valid then a particular solution of the problem (3.13) is given by

the formula
w() = 2 [ S -2
L
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where ®¢(2) is a particular solution of the homogeneous problem (3.14), given
by (3.16).

If I = I' = 0 then a meromorphic analogue of the Cauchy kernel can be taken
in the form (3.9) with characteristic divisor (a)(b)~!, where a , b € M\ L,
a # b. Then a particular solution of the inhomogeneous problem (3.13) can
be presented in the form
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Rymano kra$tinio uZdavinio dukart periodinéms funkcijoms isreiks-
tinis sprendinys sudétinio konturo atveju

T.I. Gatalskaja

Straipsnyje iSsprestas Rymano kraStinis uZdavinys srityje su sudétiniu konturu. Rastas
biperiodinis uzdavinio sprendinys, iSreik§tas integralu su KoSy branduoliu, kuris §iuo atveju
yra Vajer§traso dzeta funkcija. Pabaigoje pateiktas iliustruojantis pavyzdys.



