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ABSTRACT

Modelling many problems of mathematical physics, economy, statistics, actuary mathemat-
ics we obtain operational equations of the first kind. As a rule, these equations concern
to ill-posed problems. There are some iterative methods for solution of such problems.
In the present work we consider the concrete iterative method and estimate its order of
convergence without any additional conditions.
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1. INTRODUCTION
Consider the operator equation of the first kind
Az=w, z€H, ue AH, (1.1)

where H is a Hilbert space, the operator A : H — H is linear, self-conjugate,
positive and completely continuous, u € AH is a given element and z € H
is the unknown element. It is assumed that the zero point does not belong
to the spectrum of A and the equation (1.1) is solvable for all v € H, i.e.
AH =H.
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The following two Theorems are known (see [1] and references therein):

Theorem 1.1. Let z, be an exact solution of (1.1) for v =wu, € H, i.e.
Azp = uyp.
Then the iterative process
20=0, 2zpy1 =2 +0(up,—Az,), n>0 (1.2)

converges to the solution of (1.1) in the norm of the Hilbert space H under

2
the condition 0 < 0 < ——.
(%Y

Theorem 1.2. Suppose that instead of the exactly given right-hand side u =
up € H there is some us such that ||up — us|| < 8. Then the iterative process

28 =0, Zfa+1 =20 4 0(us — A2%), n>0 (1.3)

converges to the exact solution z, of the equation (1.1) in the norm of the
Hilbert space H and the following inequality holds

128 — z,l| < ||z — 2| + £(n)3,

where
n—1

e(n) =03 1B — 04|,
k=0

E is the identity operator and z, is given by (1.2).

Using Theorem 1.1 and choosing n = n(§) such that e(n(§))d - 0asd — 0
we obtain from (1.3) that 2 converges to z,.

Thus, 20 — z, in the norm of the space H as n(J) — oo, but the order
of convergence can be arbitrary small. In order to estimate the order of
convergence one needs to assume that the exact solution (which is not known)

is source-wise representable. The following theorem is proved in [2]:

Theorem 1.3. Suppose that the exact solution z, of equation (1.1) is source-
wise representable, i.e.

2p=A%, o>0.

Then the following inequality holds

ll2p = 2pll < o7 (nbe) =7 ||s|| + 1, (1.4)

2
where 0 < 6 < Tl Here 23 is calculated from (1.3).
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2. FAILURE ON THE SOURCE-WISE REPRESENTABILITY
CONDITION OF THE EXACT SOLUTION

We will prove that in order to estimate the order of convergence of iterative
process (1.3) the strong additional condition on source-wise representability
of the exact solution is not required. Let us use the energy norm, then the

following Theorem holds for the iterative process (1.3) under the condition

2
0<l< ——.
3[IAl

Theorem 2.1. The iterative process (1.3) is convergent in the energy norm
if the number of iterations n is chosen from the condition

vné — 0.

n—00,—0

In addition, under the condition

4
0<0< — (2.1)
3[14]]
the following error estimates are valid for iterative process (1.3)
5 1 4 Nz
lzp = 2311 < (2n6e)~Hllzglla + (3n0) "8, n>1, 0
2.2
13 N3
Iz = 231 < (2n6e)H lzylla + (5:0) "8, n>2.
Proof. Let us transform (1.2) to the form
Zn = 2n—1+0(up — Az;1) = (E— (E—0A)")zp, n>1.
Similarly, from (1.3) we get
n—1
2 =0 (E-0A)fus;, n>1,
k=0
5 _ 5
2p—2p = (2p — 2n) + (2n — 29),
Zp— 2Zp = (E — HA)nzp.
M
Since it is assumed that the operator A is self-conjugate, one has A = [ AdEj,
m

where
m = inf (Az,z) >0, M = sup (Az,z) >0,

lzll=1 llz||=1
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and E) is a projective operator. Using the formula

M
IF( A% = (Af(A)z, f(A)z) = /AfZ(/\)d(Ew,w),

we obtain that

M
ll2p — znll% = (A(E - HA)anv (E— OA)"zp) = //\(1 — 60" d(Brzp, 2p)-

m
We define the function f(\) by the formula

FO) E a1 — a2

In order to find the upper bound of ||z, — z,||% one needs to maximize the
function f(\) in the closed interval [m,M], i.e. f(A\) — max _. Using
A€ |m,M]

the necessary condition for the existence of an extremum f'(A) = 0 we obtain
a stationary point

1
6(2n+1)"
It is known that if f”(A) < 0 then A = A* is a point of local maximum. It can
be verified that f”(A\*) < 0.

Thus, the function f(\) has a local maximum at A = A\*. The upper bound
of f(\*) is

A=

1

FO) = 5 (

2n6

2n )2n+1 1 [(1 1)2n]_(1+%)< 1

2n +1 - 2n 2nfe’

It can be shown that Aerﬁ:;cw] fA) < Wlee if0 <0 < ﬁ Indeed,

FUIALD = 1Al(1 - 0||A||)2n and the function f(\) has a maximum at

1
6(2n + 1)

*

under the condition A < 1.
If OX > 1 then the larger is 6, the greater is f(||A[|). Therefore it is sufficient

4
to calculate f(||A||]) at @ = ——. Thus,
3[|All

A
s 4 =t

0:—
314
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Let us prove the inequality:

f(an],_,

slAll

1
2nbe 9<ﬁ'

This inequality is equivalent to the inequality

8ne<3-9", n>1

Therefore, for 6 € (0 ] one has

4
314l

1
A .
Aer?n??{M]f( ) < 2nbe

Thus (12 — zall} < (2n66) |14, s0 that 125 — 2alla < (2n8)=/2]|z s
The upper bound for ||z, — 23||% is obtained from

|
—

n

(E — HA)k(up — ug),

1]

Zn— 2, = 0
=0

i
L

. 2
o = 2813 = [ A[0 D01 —ON*] d(Bx(up — us),up — us) =

~
Il
<

At <1 —(1- 0)\)"} zd(E,\(u,J — Ug), Up — Us)-

Sz T

Let us introduce the notation g,(\) = A"1(1 — (1 — 62\)")2. Now we obtain
4

the upper bound for g,(A) under the condition 0 < 6 < SAI Forn =1

we have g1(A) = ©2X < 26. For n = 2 we have g2(A) = 62A(2 — 6X)%. We

must maximize the function g»(\) in the closed interval [m, M], i.e. g2(A) —

max . Hence \** = — is a stationary point. Since gy (A\**) = —463 < 0,
A€ [m,M] 36
then A** is the point of a local maximum and go(A**) = 326. It can be shown
by induction that g1(A) < 30, gn(A) < 1206, n >2. Thus,

1 1/2
ey~ #8lla < (5om6) "6 it n>2

4 ~\1/2
llzp — 28|14 < (gne) § if n>1.
Moreover, it follows from the inequality

ll2p = zplla < ll2p = 2nlla + llzn = 27114
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that

4 1

lzp = 23114 < (2n8e) 2|zl + (576) 78, n>1,
Pl 1 13 %

lzp = 25114 < (2ne) Hlzplla+ (55m6) 8, n>2.

It can be seen from the above inequalities that the first term tends to zero as
n — oo, and it is sufficient to require v/nd — 0 as n — 00,8 — 0 in order to
get
]
Zp—Z — 0.
|| P nllAn—)oo,é—m

Theorem 2.1 is proved. B

3. DETERMINATION OF THE OPTIMAL NUMBER OF ITER-
ATIONS

Let us find such n = n(d), depending on the given error § of the right-hand
side of (1.1), for which the estimates (2.2) are minimal. Differentiating the
right-hand side of (2.2) and equating it to zero we obtain

1 1 s 1/13 N2 1
—5(2071) ip 2||zp||A+§(2—00) on~2 =0.
Thus,
13\~3, 4 _1._
Moptim = (75) 07" e 50 1zl (3.1)
Substituting (3.1) into (2.2) we obtain
13 3
. 1
ll2p — 20l < (1—()) (20]|2pll)* - (3.2)

It is seen from (3.2) that the optimal error estimate does not depend on the
iteration parameter . However, as can be seen from (3.1), the optimal number
of iterations n,ptim depends on 6. Therefore, in order to reduce the number

of iterations, i.e. to reduce calculation cost, one needs to choose @ as large as

4
possible from the condition 0 < § < M so that noptsm would be an integer,

o = o120 1)

here [t] denotes the integer part of ¢t. Thus, we have proved the following
theorem:

for example,
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Theorem 3.1. The optimal error estimate for iterative process (1.3) under
the conditions of Theorem 2.1 has the form

1
optim 13 4 3
lap = 2127 < (13)" 28l le)

and this bound is reached for

e _[‘lﬂl”z ||]
optim = 13e 65714

4. THE ESTIMATION OF CONVERGENCE ORDER IN THE
INITIAL HILBERT SPACE NORM

Let us show that the results obtained above also hold in the of initial Hilbert
space H norm. Indeed, since

lzp = 28014 = (A(zp — 28) .29 — 28) < M(zp — 28,2 — 28)
= M|z — 2} |l
[lzp — ZZHA = (A(zp - ZZ)azp - Zg) < m(zp - quzp - Zfz)

=mllz, — 2|l

where M = sup (Az,z) >0, m = inf (Az,z) > 0, then
llz||=1 llz]l=1

Vil — il < N~ 0, < VAl Bl )

Two-sided inequality (4.1) allows one to assert that the sequence ||z, — 25 ||
converges to zero if and only if the sequence ||z, — 22||4 converges to zero.
Since the convergence of ||z, — 2J|| 4 is proved in Theorem 2.1, the following
theorem holds:

Theorem 4.1. The iterative process (1.3) converges in the norm of the given
Hilbert space H, if the number of iterations n is chosen from the condition

v/nd = 0 as n — 00,8 — 0. Moreover, under the condition 0 < § < ﬁ the

following error estimates hold for the iterative process (1.3)

4 1
Iz = #ller < (2nmbe)~ |zl + (5-6) "0, m > 1,

13n \3 42
-1 2
Iz = e < 2nmée) 2|z, + (55,-6) "6, n>2,

where m = ”iﬂlfl(Aa:,a:) >0.
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Unlike to Theorem 1.3, in Theorem 4.1 a strong additional condition on
source-wise representability of the exact solution of equation (1.1) is not re-
quired, but we narrow 1.5 times the domain of definition of the iteration
parameter . However, the obtained estimates (4.2) show that for fixed § and
6 iterative process (1.3) converges to the exact solution z, of equation (1.1)
with order y/n, i.e. we have improved the result of Theorem 1.3.

Remark 4.1. The operator A is assumed to be self-conjugate and positive. If
the operator A is not self-conjugate or is not positive, then equivalent equation

A*Az =A%, z€H, ue AH, (4.3)

should be used instead of equation (1.1), where the operator A* is conjugate
to A. All the results obtained above are valid in this case.

Remark 4.2. All the results obtained above take place if zero does not belong
to the spectrum of the operator A. If zero point belongs to the spectrum of
the operator A, then equation (1.1) (or equation (4.3)), can have infinitely
many solutions. The approach described above and all the results obtained in
the paper are valid also in this case. The method described above guarantees
convergence to the normal solution, i.e. to the solution with minimal norm
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Vieno reguliarizavimo metodo konvergavimo greiéio jvertis
S. Guseinov, I. Volodko

Daugelio matematinés fizikos, ekonomikos, statistikos, draudimo matematikos uzdaviniy
modeliavime gaunamos pirmojo tipo operatorinés lygtys. Kaip taisyklé tokios lygtys su-
siveda ] nekorekti§kus uZdavinius. Literaturoje tokiy uZdaviny sprendinio radimui nau-
dojami iteraciniai metodai. Siame darbe nagrinéjamas konkretus iteracinis metodas ir
nustatomas §io metodo konvergavimo greifio jvertis. Teoremos jrodomos nesinaudojant
papildomomis salygomis, kurios buvo naudojamos ankstesniuose darbuose.



