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ABSTRACT

Functionals with values in Non-Archimedean field of Laurent series applied to the definition
of generalized solution (in the form of shock wave) of the Hopf equation and equations of
elasticity theory. Calculation method for the profile of shock wave is proposed. It is shown
that there is a possibility to find out some of the solutions of this system using the Newton
iteration method. Examples and numerical tests are considered.
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1. INTRODUCTION

Here we develop ideas which were proposed in the Part I [2]. Namely in [2],
we gave the definition of the special solutions of some conservation laws in
the sense of R{e)-distributions and considered the method for the numerical
calculation of the smooth shocks of the Hopf equation.

Here we are going to consider the equations of elasticity theory. We present
some examples and numerical tests.

The following concept is used in the Part I.

DEFINITION 1.1. The function v € I (or w € J) is a solution of the Hopf
equation up to e P, p € Ny in the sense of R({e)—distributions if for any
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te[0,T]
+o0 +o0
[ tnlt.0) 4ot et @) = 3Gt €RE), (L)
o k=p

+00 o0
/ {we(t,z,e) + w(t, z,e)w, (t,z,€) } Y(x)dx = Z nke® € R{e) (1.2)

k=p

for every ¢ € S(R). In case when p is equal to +oo the function v(t, z,e) (or
w(t, z,e)) exactly satisfies the Hopf equation in the sense of R{e)—distributions.

We consider two sets of smooth functions, depending on a small parameter
€ (0,1]. We take all functions v(t,x,e) which have the type

v(t,z,e) =g + Alp (:1: ; Ct> ,

+o0
here Iy, Al, ¢ are real numbers, Al # 0 and ¢ € S(R), / p(y)dy = 1. We

—00
denote this set of functions by I and call it as a set of infinitely narrow solitons.
We also take all functions w(t, z,e) which have the type

w(t,z,e) = hg + AhH (m ;at) ,

z +oo
ho, Ah,a are real numbers, Ah # 0 and H(z) = / 0(y)dy, / O(y)dy =1

and 0 € S(R). We denote this set of functions by J and call it as a set of
shock waves.

2. CALCULATIONS OF THE MICROSCOPIC PROFILES OF
THE SHOCK WAVE SOLUTIONS OF THE HOPF EQUATION
IN THE SENSE OF R(¢)-DISTRIBUTIONS

In this case we seek a solution of the Hopf equation in the set J :

w(t,z,e) = hg + ARK (m;at) ,

ho, Ah,a are real numbers, Ah # 0 and

x +o0
K@=/ﬁ@@,/ﬁ@@=Lee&m.
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Let us put w(t, z,€) into the integral expression (1.2) and use the following
formulas

+oo

[ {K (m ;at) } b(a)d = f(_a)skmszgat)’

—0o0

o) (oo Eonie

—0Q

here we denote

+oo +oo

mi(6) = / y*0(y)dy, r1(6) = / +6(z) ( / 0(y)dy> dz, k> 0.

—0oQ —0o0

Thus, we get

+o0 +oo (k)
/ {wy + ww, } bdx = Z {(AR)*r;, — Ah(a — ho)my} s“p kkgat)_

(2.1)
k=0

From the last expression we have conditions for the function 6(x)

_a—ho

() - —xp,

mi(8) =0, k> 0. (2.2)

From the first equation (k = 0) we have

oo :_79(9:) (_/ 9(y)dy) d=g

Therefore, we can rewrite (2.2) as

+oo

+oo T
% / z*0(2)dr = /:ckH(a:) (/ 0(y)dy> dz, k> 0. (2.3)

—0Q0

Using the same method one can prove that there exists a function 8(z) € S(R)
which satisfies the following conditions

+o0 +o0 z
%/xkO(x)dx: /wke(w) (/ 9(y)dy> dr k=0,1,2...n. (2.4)

Thus, we can formulate the following result.
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Theorem 2.1. For any integer p there is a shock wave type solution of the
Hopf equation (in the sense of the definition (1.1)) up to e™P with respect to
the norm | - |, :

w(t,z,e) = ho + ARK (w _6 at) ,

x —+oo
ho, Ah,a are real numbers, Ah # 0 and K(z) = / 0(y)dy, / O(y)dy = 1,

0 € S(R). Moreover,
a— ho _ 1
Ah C o (2.5)

Let us note that the condition (2.5) is the Rankine — Hugoniot condition
for the velocity of a shock wave.
As in previous section we seek function 6(x) in the following form:

p(z) = agho(x) + arhi(z) + ... + anhn(z),

where hi(z) are Hermite functions. Calculations in case p = 7 give the fol-
T —at
) (where

lowing “profile” K(z) for the shock wave w(t,z,e) = K (
ho =0,Ah =1).

€T

co  co(41%2 —2) (167 — 4872 +12) | _ 2y
K(z) = + + dr, (2.6
=/ {ﬁ VP Vo A

—0o0

where ¢ = 0.79617, ¢ = —0.53004, ¢4 = 0.17923, ¢ = 1/2 is a velocity of the
shock wave (see Fig. 1). Numbers c¢g, co, ¢4 were found approximately.

Note that the function K (z) is not unique. There is a different function
K (x) which satisfies the mentioned above conditions. It has the following

type

i Co 0127' 02(47'2 bl 2) _.2
Kqi(x :/ 4+ + e T/2dT
) {\“/7_r Votllym - V222yT

e, (2.7)
/ c3(87% —127) N ca(167* — 4872 4+ 12) o2y
T,
NCERIN V2T
where ¢o = 0.18357, ¢1 = —0.73567, co = 0.74733, ¢3 = 0.15327 ¢4 =

—0.29539, ¢ = 1/2 is a velocity of the shock wave (see Fig. 2). Coefficients
o, C1, C2, €3, ¢4 were found approximately by the Newton iteration method.
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Figure 1. Graph of the function K(z). Figure 2. Graph of the function K;(z).

14 14
12 12

1 1
08 08
06 06
04 04 \
02 02 \

0 0 \
-02 02
-0.4 -04

-4 2 0 2 4 4 2 0 2 4
Figure 3. First shock profile 1 — K(z). Figure 4. Second shock profile 1 — K (z).

Taking in account the Rankine — Hugoniot condition (2.5) we get shock
profiles (Fig.3,4).

Here we describe how it is possible to find coefficients c¢q, ¢y, - - ., ¢, by the
Newton iteration method for the following system of nonlinear equations

n

P(@) = AZ-2) (S(k)&,&)éx =0, &= (co,c1,---Cn)-
k=0

Vector €}, = (eg, €1, .-,€y) is such that e;, = 1 and e; = 0 for all j # k. S(k)
are matrices with elements

—+oo T
Sij(k) = /a:kh,-(a:)/hj(y)dyda:, i,5,k=0,1,2...n.

— o0
Matrix A haelements

—+0oo
Aij = /w"hj(m)da:, i,j=0,1,2...n.

—0o0
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We can write the formula for the Newton iteration method [1]
Fm1 = Tm — [P'(@n)] ™ [P(@m)],

where [P'(¥)] is a linear map depending on the vector Z

[P'(#)] [A] = AR —2 {fj(sac)f, h)éi + f(ST(k):ﬁ, ﬁ)e*k} :

k=0 k=0

Calculations of shock profiles K (z) for the Hopf equation in case p = 8, 9,
10, 11, give us the following pictures (Fig. 5, 6, 7, 8.) Here, we show only
two different types of the shock type solutions of the Hopf equation. We can
find more solutions if we take a different initial data for the Newton iteration
method.
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Figure 5. Shock profiles when p = 8. Figure 6. Shock profiles when p = 9.
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Figure 7. Shock profiles when p = 10. Figure 8. Shock profiles when p = 11.

Remark 2.1. It is not known if a function

0(z) = > anhn(z), @=(ao,a1,...,an,...) €l
n=1
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exists such that

+oo

% / z*0(x)dx = 7035’“0(95) ( /z 9(y)dy> dz, k> 0.

—0Q

We think that such hypothesis is true.
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3. CALCULATIONS OF THE MICROSCOPIC PROFILES OF
THE SHOCK WAVE SOLUTIONS OF EQUATIONS OF ELAS-
TICITY THEORY IN THE SENSE OF R(¢)-DISTRIBUTIONS

Let us consider the following system:

ug + (u?); = 0, (the conservation law for momentum),
o¢ +uoy = k?u, (the Hooke law),

(3.1)

here u is the velocity of a medium and o is the stress. We suppose that density

of a medium is equal to 1 and k? is some constant.
We will seek a solution of this system in the following form

u(t,z,e) = up + AulU (:c ;vt) ,

where ug, Au, v are real numbers, Au # 0
T +oo
U@ = [Ty, [ Twiy=1

and U € S(R). Similarly we represent

— vt
o(t,x,e) = 09 + AcX (a: EU ),

where og, Ao, v are real numbers, Ag # 0

S(z) = /wi(y)dy, 7m§(y)dy=1

and ¥ € S(R). Note that v is a velocity of the shock waves.
On the other hand, we suppose

U(z) = aoho(z) + a1k (z) + . .. + anhn(z), @ = (ao,a1,...,an),
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S(z) = coho(z) + c1h1 () + . .. + Cahn(T), €= (co,c1,--,Cn), (3.5)

where hy(z) are Hermite functions.

DEFINITION 3.1. Functions u € J and ¢ € J are solutions of the system (3.1)
up to e P, p € Ny in the sense of R(e)—distributions if for any ¢ € [0,T]

+o0o +00
/ {u(t, z,€) + 2u(t, z, e)uy (t, z,€) — 04 (t, x,€) } Y(z)dz = Z.ﬁksk € R{e),
oo k=p

(3.6)

+oo +oo
[ {oitt.2.0) +ult, 2,002 (t.2.2) = Fuslt2,.2)} (o)da = Y- me* € Ree)
—“00 k=p

(3.7)
are valid for every ¢ € S(R). When p is equal to +oo functions u(t, z,¢) and
o(t,z,e)) exactly satisfy the system (3.1) in the sense of R{e)—distributions.
Substituting v and o into (3.6), (3.7) we get the following relations for the
moments

{2uoAu — vAUYME(T) + 2(Au)?>mi (UU) — Aomi(E) =0, k=0,1,...n,

(3.8)
{uoAc — vAGImE(Z) + Aulomy(EU) — B2 Aumi(U) =0, k =0,1,...n.
(3.9)
We denote the moments as usual
+oo
me(U) = / 2*U(z)dz,
+oo T
mp(UU) = /xkﬁ(:c) (/ ﬁ(y)dy) dz, k>0,
+oo T
mp(SU) = / "3 (z) (/ ﬁ(y)dy) dz, k> 0.
It is easy to find v from (3.8) when k=0. Indeed,
{2upAu — vAu} + (Au)? — Ao = 0.
Therefore,
Ao
v=2up+ Au— —. (3.10)

Au
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Substituting v into the (3.8) we have
{Ac — (Au)* i (U) + 2(Au)’>mp(UU) — Aomp(E) =0, k>0. (3.11)

AU and Ag are some real numbers, therefore, all three vectors with coordi-
nates mg(U), mi(UU) and mg(X), k = 0,1,2,...n, respectively should be
collinear. However, mo(U) = mo(E) = 1. Hence, my(U) = my(T), ,k =
0,1,2,...n. - N

Thus, @ = ¢ and it follows from (3.11) that my(U) = 2m(UU), k =
0,1,2,...n. We have already shown how to solve this system by the New-
ton iteration method (see conditions (2.4) and solution in this case).

Substituting v into (3.9)and taking into account previous equalities we have

— upAo — Aqu} me(Z) + Auldomy (EE) — k2 Aumy (E) = 0,

(3.12)
where k£ = 0,1,2,...n. The last expression gives us a relation for constants
Ao, Au, ug, k2 :

{5

Ag)? 1 .
{ (A9) — ugAo — AuAJ} + —AulAo — kK?Au =0
Au 2

or

(Ao)? — <u0 + %Au) Aulo — k2 (Au)? = 0.

If Au, ug, k? are known then from the last equation one can find Ao

1 1 1 1
Aogyp = B (uo + EAU) + §|Au|\/(uo + §Au)2 + 4k2.

In particular, if Au = —1, ug = 1 then

1 1
AO'LQ = —Ziz 1+16k2

Shock profiles of the considered system (3.1) are given in Fig. 9, 10, 11,
12. We considered the case when p = 13 and Au = —1, yg = 1, k2 = 0.1.
We can take any real og, but here we used o¢ = 0.5 and then calculated Aoy
(the velocity of shocks v = 1.1531 in Fig. 9, 11) and Aos (the velocity of
shocks v = 0.34689 in Fig.10, 12). Two different types of shock profiles were
considered. The first is given in the Fig. 9, 10. The second is given in the
Fig. 11, 12.
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Theorem 3.1. For any integer p there exists a solution of the system of equa-
tions (3.1) in the sense of the definition 3.1. Moreover,

Ao
v =2ug + Au Au
and
2 1 2 2
(Ao)” — (uo + EAU) Aulo — k*(Au) = 0.
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Figure 9. Shock profiles of velocity and Figure 10. Shock profiles of velocity and

stress for v = 1.1531. stress for v = 0.34689.
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Figure 11. Shock profiles of velocity and Figure 12. Shock profiles of velocity and
stress for v = 1.1531. stress for v = 0.34689.

Let us consider the following system
pt + (pu); = 0 (the conservation law for mass),

(pu)¢ + (pu?); = 0, (the conservation law for momentum), (3.13)
oy +uo, = k?u, (the Hooke law).

Here, u is the velocity of a medium and o is the stress. We suppose that k2
is a constant.
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DEFINITION 3.2. Functions u € J, p € J and ¢ € J are solutions of the

system (3.13) up to e, p € Ny in the sense of R{e)-distributions if for any
t€[0,7T]

+o0 oo
[ 05,0+ pout puhb(@)ds = 3 et € REe),
oo k=p

+o0 +oo
/ {peu + puy + pou® + 2puuy — op } (z)ds = Z (et e R{e),
—o0

k=p

+o0 +oo
/ {ov +uo, — Kug } (z)de = Z nke® € R{e) (3.14)
—oo k=p

are valid for every ¢ € S(R).
In case when p is equal to +o0o functions u(t, z,¢), p(t,z,€) and o(t, z,€)
exactly satisfy the system (3.13) in the sense of R{e)—distributions.

We will seek a solution of this system in the form (3.2), (3.3), (3.4), (3.5),

— vt
p(t,2,€) = po + ApR (”” = ) , (3.15)

x —+oo
po, Ap,v are real numbers, Ap # 0 and R(z) = / R(y)dy, / R(y)dy = 1
and R € S(R). We suppose
R(z) = boho(z) + bihy(2) + ... + bphn(z), b= (bo,b1,...,by).  (3.16)

Substituting (3.2) and (3.15) into (3.14) we get the following relations for
the moments

{—vAp+ Apugymy(R) + ApAumy(RU) + poAumi(U) + ApAumy(UR) = 0,

(3.17)
where k = 0,1,...n. Note that mo(RU) = 1 —mo(UR). Let us suppose that
k =0, then we get

—vAp+ Apug + ApAu — pgAu =0

or

A
v=1ug + Au+ pg b (3.18)

Ap’
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The last expression gives us the following equation

—Au(pg + Ap)mi(R) + ApAumy(RU) + poAumy(U) + ApAum(UR) =0
(3.19)

where £ =0,1,...n. _ _ _ _
All four vectors with coordinates my(R), mg(RU), my(U), my(UR) should

be collinear. Let us consider m(R) and my(U). Because of mo(R)

mo(U) = 1 then mg(R) = my(U) for k from 0 to n and therefore @ = b.
From the last equality we have

mi(RU) = mp(UR) = mp(UU),
where £k = 0,1,...n. Thus
—Au(po + Ap)my(U) + 2ApAumy(UU) + poAumy(U) = 0,
where k = 0,1,...n. It means
m(U) = 2m(UU), k=0,1,...n.

Substituting (3.2), (3.3) and (3.15) into (3.14) we get the following relations
for the moments

uoAp(ug — v)mi(R) + poAu(2ug — v)mi (U)
+Aulp(2ug — v){mi(UR) +my(RU)}
+2po(Au)*myi (UU) + p(Au)?*my (RU?)
+2Ap(Au)2my(URU) — Aomy, () = 0,

(3.20)

where k = 0,1,...n. Taking k = 0 we get

po(Au)? (z—op + 1) +Ac =0. (3.21)

Moreover my(R) = mi(E), k=0,1,...n and then b = & Finally,
d=b=2¢ my(R) =3my(UU?), k=0,1,...n.

{uoAc — vAG}mE(Z) + AuAomy(EU) — k2 Aumy (U) = 0, (3.22)

where k£ = 0,1,...n. Supposing k¥ = 0 and using expression for the velocity
(3.18) we get
1

o 1\ e
AcAuy (Ap + 2) + k2 Au=0. (3.23)
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From the (3.22) we find the following equality for the velocity

1 Au
v=1ug + Au+ Juo— sz—U. (3.24)

It is the well known result in the elasticity theory. Thus, if pg, Au and k2 are
known then the rest constants can be obtained from the system

po(Au)? (po + Ap) + AcAp =0, (3.25)
Ao (po + $Ap) +k*Ap = 0. )
Hence,
2k%Ap
Ag=——7—"——
7T 200+ Ap
and

4
A, . Capo(Au) £ VG a2 (Aupg]
L2 = po(Bu)? — 2k '
Theorem 3.2. For any integer p there exists a solution of the system of equa-
tions (3.13) in the sense of the definition 3.2. Moreover,

po(Au)? (po + Ap) + AcAp =0,
Ac (po + 3Ap) + k2Ap = 0,

= Au + au
v =ug + Au + po Ay

Shock profiles of the considered system (3.13) are given in Fig. 13, 14, 15,
16. We considered the case when p = 13 and Au = —1, ug =1, k2 =0.1. We
took pg = 1.1, 09 = 0.5 and then we calculated Ap and Ac. We consider two
different types of shock profiles. The first type is presented in the Fig. 13, 14,
the second one in the Fig. 15, 16.

4. CONCLUSIONS AND REMARKS

Our calculation method looks like the Fourier method for solving linear dif-
ferential equations but it is applied to solve the nonlinear equations. Let us
compare the method of mode superposition for a string and our method for
the shock. Our method allows to obtain all known formulas for the shocks
characteristics and, in addition, it finds a microscopic behaviour of shocks
in the thin layer using an assumption that the profile of the shock can be
approximated by the orthogonal system of functions. We can use Laguerre
functions, harmonic functions or any other orthogonal system in calculations.

The proposed method can be applied to the problems of hydrodynamics,
quantum mechanics and non-linear optics.
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Figure 15. Shock profiles, v = 1.1417. Figure 16. Shock profiles, v = 0.35833.
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Funkcionalai su reik§mémis ne- Archmediniuose Laurent’o seky lau-
kuose ir jy taikymai elastiSkumo teorijos lygtims. II

M. Radyna

Funkcionalai su reik§mémis ne-archimediniuose Laurent’o seky laukuose pritaikyti apibrézti
apibendrintajj Hop’o lygties sprendinj solitono pavidalu. Pasiulytas skaitinis algoritmas
begalo siauro solitono profilio radimui. Taikant §§ metoda, profilio radimas suvedamas
i netiesinés algebriniy lygéiy sistemos erdvéje R*t1 n > 1, sprendima. Parodyta, kad
kai kuriuos sprendinius galima surasti naudojant Niutono iteracinj metoda. Pateikiami
pavyzdziai ir skaitiniai testai.



