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ABSTRACT

The problem of the estimation of the probability R(z,t) (here ¢ is time, z is initial reserve)
of the finite time non-ruin problem for a risk business such as an insurance company is
considered, with respect to:

o presenting models that have been used in the literature in the form of integral / integro-
differential equations,

e reviewing some analytical and computational methods used for their solution,

e presenting numerical results obtained with one method (a global Lagrange type approxi-
mation in the z— space).

Key words: Partial Volterra integro—differential equations, first order, numerical solution,
global Lagrange type approximations, actuarial risk management, finite time collective non-
ruin

1. INTRODUCTION

The problem of estimating the probability of non-ruin given an initial reserve
is very important in modelling a risk business such as an insurance company.
In the case of finite time non-ruin, we are concerned with the estimation of
the probability

R(z,t) = P[Z(s) >0, 0 < s <t]Z(0) = 2],

where, using the notation of Knessl and Peters [16], Z(s) denotes the risk
reserve at time s and z is the initial risk reserve.
The simple model of the risk business of an insurance company considered,
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assumes that:
Risk reserve = initial reserve + total premiums — total claims.

Claim sizes at time ¢ denoted by X; are assumed to have distribution func-
tion B(z) = P[X; < z] with corresponding density function b(z) and are
assumed to arrive according to a Poisson process N; with parameter A. This
means that

—At n
pn(t)ZP[Nt:n]:%, n=01,....

Then S; = vaztl X4,;, the accumulated claims process is a compound Poisson
process. It is also assumed that the premium is received at a continuous rate
B(r) which depends on the current reserve Z(t) = r. In the absence of claims,
it is assumed that the reserve satisfies the deterministic equation

The finite time models of collective non-ruin are usually described by partial
Volterra integro-differential equations (PVIDEs). There are models in the
form of integral equations too. This problem has been solved by a number
of analytical and numerical approaches for special cases of 5(Z(t)) and B(x).
These approaches often involve use of Laplace transforms and analytical or
numerical inversion (cf. Seal [26; 27], Peters and Mangel [24], and Knessl
and Peters [15; 16]). Some of the results of Seal [26] and Knessl and Peters
[15] were verified by Harper [9; 10].

The approaches (Seal [26] and Knessl and Peters [15; 16]) depend on the
ability to solve analytically the equation for the Laplace transform of the
unknown function R(z,t). For more general choices of B(z) and 8(Z(t)) the
analytical solution of the equation satisfied by the Laplace transform of R(z,t)
might not be always possible. Even for simple choices of B(z) and 8(Z(t)),
the form of the resulting formulae is often complicated.

Thus, Makroglou [18; 20] followed an approach that combines the numerical
solution of the corresponding VIDE satisfied by the Laplace transform of
the unknown function R(z,t) and numerical Laplace transform inversion. In
another paper Makroglou [19] explored the idea of solving directly the PVIDE
satisfied by R(z,t) by the use of multiquadric approximations applied to this
problem in the fashion of Bonzani [3].

Solving the PVIDEs numerically is very important since it allows easy ex-
tensions to the treatment of the problem under more complicated assumptions
for B(z) and $(Z(t)) when analytical solutions are difficult to obtain.
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In this paper we review some analytical and computational methods used
for solving such models and we present some numerical results obtained by
implementing a new method also based on the work of Bonzani [3] for partial
differential equations. This method uses global polynomial approximations
of the unknown function R(z,t) in the z—space combined with a ordinary
differential equation solver.

The organization of the paper is as follows: In Section 2 the form of the
PVIDE of the problem of finite time non-ruin is stated, together with some
model details and references to integral equation models. In Section 3, a
brief review of existing analytical and computational methods is given. In
Section 4, the description of the new method (LAG-ODE) for solving the
PVIDE is presented and in Section 5 some numerical results are given. Finally
conclusions and ideas for further research may be found in Section 6.

2. INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATION
MODELS

In this Section the form of the PVIDE satisfied by R(z,t) is given (Section
2.1), together with some model details (Section 2.2). References and some
details on integral equation models are given in Section 2.3.

2.1. The PVIDE model

Using the assumptions stated in the Introduction and using probabilistic ar-
guments, a PVIDE model is derived for the probability R(z,t), see for exam-
ple Arfwedson [2], Peters and Mangel [24], Knessl and Peters [15; 16] and
Grandell [8] for more details. It has the following form

OR(z,t)
ot

= —AR(z,t) + B(2) 6R6(Z’ ) + A /Oz R(z —y,t)dB(y), (2.1)

with conditions

lim R(z,t) =1, R(2,0)=1, 2>0. (2.2)

Z—00

We also have that R(z,t) =0, z < 0.

2.2. Some model details

Most of the methods applied for solving the IDEs (2.1) — (2.2) treat special
cases of the problem concerning the choice of the model for the premiums
B(Z(t)), and the distribution function B(z). The choices for the premium
function are:

B(Z(t)) = Bo = const, (2.3)
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and

B(Z(t)) = Bo +vZ(1), (2.4)

where By denotes the rate (constant) at which the premiums come in, and ~y
is the interest rate that applies to risk reserve until a claim is made.

The choices of the distribution function B(z) and its density function b(z),
include the Gamma distribution with v = 1 (exponential) and v = 2.

2.3. Some integral equation models

Integral equations have also been used. Some recent papers include: Usabel
[28], Lin and Willmot [17], Jasiulewicz [12], Yang and Zhang [29], Brekelmans
and Waegenaere [4], Dickon and Waters [6].

3. DESCRIPTION OF SOME EXISTING METHODS

In this section an overview of some analytical and computational methods for
solving the PVIDE (2.1) — (2.2) is given (Sections 3.1 and 3.2 respectively).

3.1. Analytical methods of solution of the PVIDE model

Various techniques exist which include:

e Use of Laplace transforms (cf. Seal [26; 27], Knessl and Peters [15; 16],
De Vylder and Goovaerts [5], Pervozvansky [23].

e Expansion of R(z,t) as a gamma series (cf. Albrecher, Teugels, and Tichy
[1]).

e Use of inequalities in the form of upper and lower bounds for R(z,t), and
use of recurrence relations (cf. Ignatov, Kaishev, Krachunov [11]).

More references may be found in the recent survey by Paulsen [22] for ruin
theory with compounding assets.

In this section a brief description of one method which has been used in the
literature for the solution of (2.1) — (2.2) is given for introductory purposes
(see also Makroglou [20]): Knessl’s and Peter’s method (Knessl and Peters
[15]) in Section 3.1.1. Some of the results of this paper have been verified
in detail in Harper [9; 10]. The method has also been used for comparison
purposes in the presentation of numerical results in Makroglou [20].

3.1.1. Approach of Knessl and Peters
The approach of Knessl and Peters [15] can be summarized as follows: they
consider the Laplace transform @(z, s) of the function R(z,t) over time:

Q(z,s) = /000 e *'R(z,t)dt.
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Then multiplying both sides of equation (2.1) by e *¢ and integrating from
0 to oo with respect to ¢t one obtains the following linear integro-differential
equation

9Q(2, s)
0z

5Qz,8) — 1= B(z) CAQ(z,8) + A / Qz-v,9dBl)  (3.1)

with the boundary condition

Qo0 8) = ~. (32)

They solve this equation analytically by conversion to a second order ordinary
differential equation for the special case that B(z) is the exponential distri-
bution (B'(z) = b(z) = ae~**, p = L, pu the mean). Analytical inversion of
Q(z, s) is then applied to obtain R(z,t). Both cases (2.3) and (2.4) for the
premiums are considered. Exact and asymptotic solutions are derived for case
(2.3) and exact ones for the case (2.4). Asymptotic solutions for the case (2.4)
were given in Knessl and Peters [16]. Some of the formulae are complicated
and involve series and integrals. Numerical results which are obtained by
numerical evaluation of the final formulae for R(z,t) using MATHEMATICA
can be found in Knessl and Peters [16].

The analytical (exact) solutions provided in Knessl and Peters [15] are used
for testing purposes and computation of the true errors. These are stated for
convenience in Section 5 (Numerical results).

3.2. Computational methods for the PVIDE model

Computational methods for solving the PVIDE model (2.1) — (2.2) fall into
two main categories:

(i) Solve (analytically or numerically) the equation satisfied by the Laplace
transform of R(z,t) with respect to z or ¢ and then invert the Laplace trans-
form to find R(z,t) using an analytical or a numerical inversion method,
or a combination of the two.

(ii) Solve the PVIDE satisfied by R(z,t) directly to find estimates of R(z,t) at
various z,t values.

Methods of type (i) include:

e Seal [26] who used Gauss type Laplace inversion methods combined with
numerical integration rules to evaluate R(z,t). An expression for R(z,t) was
produced by applying analytical inversion methods to a formula representing
the analytical solution of the (partial) differential equation satisfied by the
Laplace transform of R(z,t) with respect to z.

e Knessl and Peters [15; 16] who found a VIDE (3.1) — (3.2) satisfied by
the Laplace transform Q(z, s) of R(z,t) with respect to ¢, solved this equation
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analytically to find an expression for Q(z,s) and then inverted Q(z,s) also
analytically to find an expression for R(z,t). The numerical results were
obtained by numerically (Mathematica) evaluating the expression for R(z,t).

e Usabel [28] who used a Gaver-Stehfest Laplace inversion technique applied
to an integral equation satisfied by the ruin probability.

e Makroglou [18; 20] who used the VIDE (3.1) for the Laplace transform
of R(z,t) with respect to ¢ according to the Knessl and Peters [15] approach
and solved this equation by a numerical method which combines polynomial
collocation methods for solving the VIDE and numerical Laplace transform
inversion by the ACM routine 619 for obtaining estimates of R(z,t) at z,t
values.

Methods of type (ii) include:

e Makroglou [19] who extended a method applied to partial differential
equations by Bonzani [3] for solving directly the PVIDE (2.1) — (2.2) using
multiquadric approximations in the z—space combined with an ODE solver.

Other approaches for estimating the probability R(z,t) of non-ruin exist in
the literature, as for example through the use of recursive formulae or eval-
uation of upper and lower bounds (cf. Ignatov, Kaishev and Krachunov [11]
and the references therein).

For detailed description of these computational methods we refer to the
original papers.

In the next Section we present a numerical method for solving the PVIDE
model (2.1) — (2.2) by a global Lagrange type polynomial approximation
method combined with an ODE solver, (LAG-ODE method) which is based
on a numerical approach applied to partial differential equations by Bonzani

[3]-
4. LAG-ODE METHOD

We start from equation (2.1) — (2.2) rewritten as:

M0 — ARG + 560 ) <3 [T~ )R, 0y, (@41
R(oo,t) = 1,t>0, R(2,00=1,z>0. (4.2)

We are going to use Lagrange type global approximations for the numerical
solution of (4.1) — (4.2) following the approach of Bonzani [3] who applied
sinc and Lagrange type approximations to second order semilinear partial
differential equations in one space dimension.

For fixed t, the following approximation (cf. Bonzani [3], Kansa [13; 14]) to
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the unknown function R(z,t) of equation (4.1) is used:

n+1
R(z,t) = > _a;(t)L;(t), t>0,0<2<2, (4.3)
j=1
fax (z — zp)
Lj(z): H ﬁ, O0=21<... <2y, < 2Zpy1 = 2. (44)
K=tk I Pk

The boundary condition g(¢t) = R(Z,t) was found using the true solution.
This boundary condition was used to express any1(t) in (4.3) in terms of
a1(t),...,an(t), giving (since Lpt1(2nt1) = 1)

ann) = 9()= Y a;OLE). (43)

In practice, a Z value has to be chosen to represent the oo, so that the given
boundary condition lim,_, ., R(z,t) = 1 can be used instead.
Using (4.5) in (4.3) we obtain

Rt = 3 a0Li() + L (o) - 3 a; (0L )

or
R(z,t) = i a; (t)P;(2) + ®(z,1), (4.6)
where
PJ(Z) = L](z)_Ln-i-l(z)L](%): j=].,...,’fb
<I>(z,t) = g(t)Ln+1 (Z) (47)

We may note that with L;(z) given by (4.4), P;j(z) in (4.7) simplifies to
Pj(z) = Lj(2). From (4.6) we then obtain

6Réj,t) _ ; dacjl-t(t) P(2) + Gééi,t) (4.8)
8R(;j,t) _ Zaj(t) dlzz(z) + 3@6(2, t)‘ (4.9)



150 A. Makroglou

Using now (4.6), (4.8), (4.9) in equation (4.1) and collocating at z = 2, k =
1,...,n we find that the coefficients a;(t) in (4.6) satisfy a first order system
of ordinary differential equations of the form

da(t)
dt

=S 'Fa+ S 'b(t), (4.10)
where S, F' are n X n matrices with elements

Skaf)j(zk)a k7j=1a27"'7n7

Fiy = —AP,(z1) + ﬁ(zk)%(j’“) AT (28)
and b(t) is given by
bet) = = 2220 3wz, + 8 28D 4 1)

where J;(21),I(2k,t) are approximations to the integrals

/“M%—ma@m% /%M%—w¢@ﬂ®
0 0

respectively by a quadrature rule, and P;(z), ®(2,t) are given by (4.7).

To solve the ODE system (4.10) we also need starting values a(0). These are
found using the second of the conditions (4.2) for R, that is R(z,0) = 1,2 >0
and (4.6). We thus obtain the linear system of equationsin a;(0),j = 1,...,n:

> a;(0)P;(zk) =1 8(2,0), k=1,2,...,n. (4.11)
j=1

After we solve the ODE system (4.10) for the values of ¢t we need, the function
R(z,t) is evaluated from (4.6). We may note that values R(zy,t) at the mesh
points 2,k =1,...,n are equal to ag(t).

For other methods applied to hyperbolic partial differential equations of
higher order which include error estimates (but no numerical results) we refer
for example to Yanik and Fairweather [30], Pani, Thomée and Wahlbin [21],
Fairweather [7].

5. NUMERICAL RESULTS

Numerical results are presented for the LAG-ODE method presented in Sec-
tion 4. Particular coefficients and data used:
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b(x) = ae™?*

and the case 8(z) = By + vz (case 2.4), with the true solution given (Knessl
and Peters [15], verified also by Harper [10]) as: (variable § case, for A = v)

_ 1 Y —az
Q(ZJS) - s S(S+’Y+aﬂ0)e Y
— v - —(7+afo)t
R(z,t) = 1-— e ¥ (1—e V7 .
(%) v+ aBo ( )

The general case (X # ) is also treated in Knessl and Peters [15] who ob-
tained a form for R(z,t) in terms of hypergeometric functions. Asymptotic
estimates for R(z,t) for the cases A > afp, A < afp and A ~ afy are given
in Knessl and Peters [16].

Some numerical results for R(z,t) using the LAG-ODE method of Section 4
are presented in Table 2. Comparisons are made with the COL-LAP method
of Makroglou [20] (Table 1).

Computational details:

a) For the numerical inversion of Laplace transforms, the ACM routine 619
(Piessens and Huysmanns [25]) was used.

b) The COL-LAP method (Makroglou [20]) was used with collocation para-
meters ¢; = 0.0,c2 = 1.0 which makes the collocation method for solving
for Q(z,s) the Laplace transform of R(z,t) with respect to ¢, identical to
the trapezoidal method.

c) The LAG-ODE method (equations (4.10) — (4.11)) was used with n = 10
in the range z € [0, 3] and collocation points 2,k = 1,...,n+1 the Cheby-
shev points which in the range [a, b] are given by :

b— b

2 = iL‘k( a)+(a+ ), k=1,2, , T,
2 2
2k —1

Tp = COS m, k=1,2,...,n.

2n

The ODE numerical solver used for the solution of the system of ordinary
differential equations in a;(t), was the routine ODE23s of Matlab5. The
integrals were approximated by a composite trapezoidal rule with Nz = 80
nodes. Results obtained using the Matlab5 routine QUAD based on an
adaptive implementation of Simpson’s rule, gave similar results. For small
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values of zj, some computations with a smaller value of N7 resulted in
improved results. So for example, for t = 1 and z = 2 the computed value
for R(z,t) for the LAG-ODE method was equal to 0.9571205 with true
absolute error equal to 0.14D — 4.

d) The following tolerances were used: Toll=1.D-10 for the solution of the
collocation systems of the method COL-LAP treated as nonlinear, so that
to have a general program which works for both linear and nonlinear equa-
tions. Tol2=1.D-4 with the ACM 619 routine for the numerical inversion
of Laplace transforms. Tol3=1.D-5 with the ODE23s routine of Matlab5.

e) The values of the parameters a, 3, 80,7, A are as denoted in the tables and
they correspond to the case A < afy of Knessl and Peters [15; 16].

Table 1.

Variable B(z) case (2.4), COL-LAP method, results for R(2,t) A=v=1,0=2,a=1
t Exact Computed, N =40 Abs. error Computed, N =80 Abs. error
1.0  0.9571342 0.9571244 0.98D — 5 0.9571341 0.16D — 6

3.0 0.9548938 0.9548852 0.86D — 5 0.9548940 0.17D — 6

5.0  0.9548883 0.9548796 0.86D — 5 0.9548884 0.16D — 6

10.0  0.9548882 0.9548796 0.86D — 5 0.9548884 0.16D — 6

Table 2.

Variable g case(2.4), LAG-ODE method, results for R(2,t),
A=1,y=1,8=2a=1,n=10, Ny = 80

t Exact Computed Abs. error

1.0 0.9571342  0.9571360 0.18D —5
3.0 0.9548938  0.9549112  0.17D —4
5.0  0.9548883  0.9549059  0.18D —4
10.0  0.9548882  0.9549059  0.18D —4

6. CONCLUSIONS

The estimation of the probability of finite time non-ruin R(z,t) for the vari-
able B(Z(t)) (case (2.4)), was obtained by solving the governing PVIDE by a
fully numerical approach, (LAG-ODE) which solves numerically the PVIDE
directly by a global Lagrange type approximation method and numerical so-
lution of the resulting system of ordinary differential equations. Comparisons
are made with the COL-LAP method of Makroglou [20] (Table 1).

Comparing the results of Table 2 (LAG-ODE method) with those of Table
1 (COL-LAP method) we may note that the former appear to be less accurate
than the latter. The LAG-ODE results could improve further if used with a
larger value of n (n + 1 is the number of collocation points).
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Computations with the Knessl and Peters [15] approach implemented by in-
verting numerically the exact form of the Laplace transform Q(z,s) (section
3.1.1), originally in Knessl and Peters [15]) and using the same method for
the Laplace inversion i.e. the ACM routine 619 with tolerance T0l2 = 1.D —4
gave maximum absolute error equal to 0.31D—-5for 2 =2andt =1,2,...,10.

The fully numerical treatment of the problem described here and also the
fully numerical direct approach of Makroglou [19] which uses global multi-
quadric approximations, allow the easy extension for other types of distrib-
ution function B(z) and premiums function 8(Z(t)) when finding the exact
solutions for R(z,t) or the corresponding Laplace transforms of R(z,t) is not
easy or possible, and thus they qualify for further investigation and extensions.
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Integralinés lygtys ir aktuarijy rizikos vadyba: kai kurie modeliai ir
skaiiavimai

A. Makroglou

Sprendziamas tikimybés R(z,t) (¢ — laikas, z — pradiniai rezervai) jvertinimo uZdavinys, kur
R(z,t) — tikimybé, kad verslo (tarkime, draudimo) bendrové nesubankrutuos per baigtinj
laikg t. Tuo tikslu naudojami literaturoje apraSyti integraliniai ir integrodiferencialiniai
modeliai, apzvelgiami kai kurie analiziniai ir skaitiniai lyg¢iy sprendimo metodai, pateikiami
skaifiavimy, gauty vieno metodo globalinés Lagranzo tipo aproksimacijos z-erdvéje pagalba,
rezultatai.



