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ABSTRACT

In this paper we investigate spectral and semi-Fredholm properties of maximum and mini-
mum Fuchsian differential operators on Lebesgue spaces on a semi-axis. These results are
applied for determination of various essential spectra and spectrum of ordinary differen-
tial operators with polynomial coefficients, which order does not exceed the order of the
corresponding derivative.
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1. INTRODUCTION

As a rule for certain differential equations the functional spaces in which the
operators, corresponding to considered equations, are not defined uniquely by
conditions of a problem. Therefore the theorems devoted to spectral, Fred-
holm and semi-Fredholm properties of operators on Lebesgue spaces are of
interest.

For the first time spectra of differential operators of the second order with
polynomial coefficients, which order does not exceed the order of correspond-
ing derivative, was studied in the paper of Rota [18]. Balslev and Gamelin [2]
have investigated in detail the Fredholm properties of maximum differential
operators generated by Fuchsian differential expression such as
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where a(t) = O(t*) on LP(1,00),1 < p < oo.

For the closed linear operator 7" on a complex Banach space X the essential
spectra of operator T' can be defined as a complement of the set with respect
to the complex plane C, defined by various Fredholm properties of a family
of operators T' — AI:

oer(T) :=C\ Ax(T), k=1,2,3,4,5,
05(T) :=C\®"(T), o0,(T):=C\d (1),

(T : ) :nul(T — M) < oo},

S (T) :={A € A(T) : def(T — \I) < o0},

Ay(T) :=@T(T)U S (T) = s—®(T),

As(T) = @H(T)N @~ (T) = &(T),

Ay(T) :=={A € A3(T) :ind(T — A\I) =0} = @¢(T),

A5(T) := {X € Ay(T) : a deleted neighborhood of A in the resolvent set} .

Each set oot (T), k = 1,5, and 05 (T) is called an essential spectrum. Tt is
clear that oo (T) C 0¢(T) for k <1 and 0.(T) C 05 (T) C 0e3(T), moreover
inclusions can be eigen. In the modern mathematical literature the essential
spectra are called by names of Goldberg 0.1 (T), Kato ge(T), Wolf o (T),
Gustafson-Weidmann o, (T'), Fredholm o.3(T"), Weyl o.4(T) and Browder
oe5(T'). Various characteristic properties of the stability of essential spec-
tra under relatively compact, relatively small perturbations, or polynomial
mappings and also same equivalent methods of their descriptions are given in
papers [3; 12; 13; 17; 20].

2. EULER DIFFERENTIAL OPERATION

Let us consider Fuchsian differential operation which can be considered as a
perturbed Euler differential operation:

w = Z(ak +be(t))t"DF, a <t < o0, 0<a< oo, (21)

k=0

where by (t) are complex—valued functions such that by (t) € C*[a, ), a, are
complex numbers, and the following conditions are satisfied

an #0, 1/(an+by), by € L®(a,00), 0<k<n,
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here D := d/dt. A differential expression £ := Y p_, axt*D* with corre-
sponding degree coefficients is called the Euler operation [2]. Let us denote
T(w,p,[a,0)),0 < a < 0o, a mazimal operator, which is defined on L?(a, o)
in the following way:

D[T(w,p,[a,00))] := {f : f™V € ACioela, 0); f,wf € LP(a,00)},

where ACj,.[a,00) is a set of complex—valued functions f, absolutely contin-
uous in each compact sub-interval [a, 00), and

T(w,p,[a,00))f :=wf for fe D[T(w,p,la,o0))].

Denote To(w,p, [a,0)),0 < a < o0, a minimal operator, defined on LP(a, 00)
for 1 < p < oo as a closure of a restriction of maximal operator T'(w, p, [a, o))
on a set of functions from D[T (w,p, [a,00))], having the compact support in
(a,), and for 1 < p < oo it is defined through Banach conjugate operator
T'(w*,p',[a,0)), where w* is a formally adjoint differential operation:

n

w*g =Y (=1)*D¥((ax + bx(t))t*g), a < t < oo, (2.2)
k=0

and
1/p+1/p=1,if 1<p<oo, p'=o0,ifp=1 p =1,ifp=oo.

Spectral, Fredholm and semi-Fredholm properties of minimal and maximal
ordinary differential operators with constant, almost constant coefficients, and
Euler differential operators on Lebesgue spaces are investigated in [5; 6; 8].

Denote by «(T') the Kato minimum module for closed linear operator T
([13], section IV.5.1), i.e.:

[Tull

V(T = inf{ dist(u, N (T))

. we D(T), ug{N(T)},

where N(T') is a zero-space, being a closed subspace. In the other words, v(T')
is the greatest number 7 such that

ITull = v dist(u, N(T)), ue D(T).

Note, that if the closed operator T': X — Y, where X,Y are Banach spaces,
then the range of values R(T') is closed if and only if v(T") > 0 ([13], Theorem
IV.5.2 and [12], Theorem IV.1.6).
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3. OPERATOR’S SPECTRA

The central place in further research of subsets of perturbed operator spectra
is given by the theorem on the stability of semi-Fredholm operators (see, e.g.,
[13], Theorem IV.5.22 and [12], Theorem V.3.6).

Lemma 3.1. Let X and Y are Banach spaces, T : X =Y is a closed linear
operator, B: X — Y D(T) Cc D(B). If T is a semi—Fredholm operator, i.e.
R(T)=R(T), nul(T) < o0 or def(T) < o0, and

Bzl <allz||+b[| Tz ||, =€ D(T),

where a and b are non-negative numbers such that a + by(T) < ¥(T) (i.e., B
is T-bounded operator), then the operator T + B is closed and semi—Fredholm
and

nul(T + B) < nul(T), def(T + B) <def(T), ind(T + B) = ind(T).

The following theorem is the base for the study of spectral properties of
differential operators. The proof of this theorem is based on Lemma 3.1
and principle of decomposition for essential spectra of ordinary differential
operators [5].

For its formulation let us consider a formal differential operation which is
given in a general form:

poo= T4 b(t)DF = D (ar(t) + by(t))D*, a <t < o0, (3.1)
k=0 k=0
where 7 := Y_, ax(t)D* and ay(t),bk(t) are such complex—valued func-

tions, that ay, by € C*(a,00), bg,1/(an + by) € L®(a,0), k = 0,n. Max-
imal and minimal differential operators T'(u, p, [a,0)), To(p,p, [a,0)), and
T(,p,[a,)), To(T,p, [a,00)) are generated by formal differential operations
w and 7, respectively, and they are defined similarly to operators for operation
w, defined by formula (2.1).

Theorem 3.1. Let coefficients by (t), 0 < k < n in (3.1) satisfy integral con-
ditions of a smallness on infinity

s+1
sup | b (t) |P dt - 0 wherem — 00, 0<k<n-1 (3.2)

m<s<oo
S

Then for essential spectra of minimal operator To(u,p, [a,0)) and mazimal
operator T'(u, p, [a, 00)), generated by differential operation p on Banach spa-
ces LP(a,@), —00 < a < o0, 1 < p < o0, and for closed differential
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operator S(u,p, [a, 00)), being extension of minimal and restriction of mazimal
operators, i.e. satisfying inclusion

TO(uapa [aa OO)) C S(Napa [Ll, OO)) C T(,U/Jpa [aa OO)),

the following equalities are valid:

Uek[S(u;pa [a,oo))] = Uek[S(T;pJ [G,OO))], k= 1:2;2i;3a
Ock [TO(/"’7P7 [a7 OO))] = Ock [TO (Ta b, [a’> OO))], k= 47 57
0T (1,1, 0,00))] = o[T(r,p,[a,00))], b =4,5.

Let us note that using additional assumptions on "smallness in average on
infinity" for derivative b”(t), 1 < k < n, 1 < i < k, such as (3.2) with
index p = 1, and using the preconjugate operators, we can prove correctness
of the formulas for essential spectra of ordinary differential operators from
Theorem 3.1 also in the space L*®(a, ), 0 < a < oo.

Under special "smallness on infinity" conditions for coefficients by (t) it is
possible to reduce differential operators, generated by perturbed differential
Euler operation w, to ordinary differential operators with almost constant
coefficients and then to apply the statement of Th. 3.1 on the invariance
of essential spectra. Coincidence of essential spectra of similar differential
operators considered below follows from Theorem 1 of paper [5] and from
theorem about product of closed semi—Fredholm operators (see [12], Theorem
Iv.2.7).

Theorem 3.2. Let X, Y and Z be Banach spaces and a closed linear operator
T : X =Y belongs to a class @, i.e. R(T) = R(T) and nul(T) < co. Let us
assume, that B : Z — X is a linear operator. Then the following statements
hold:

1. If operator B is closed then T B is closed operator.

2. If B is a normally solvable, i.e. R(T) = R(T), then TB is also normally
solvable, i.e. R(TB) = R(TB).

3. If the domain of operator T is dense in X and operators T and B are
Fredholm, then the operator T B is Fredholm and

ind(TB) = ind(T) + ind(B).

4. If the domains of operators T and B are dense in X and Z, respectively,
and the operator B is closed and belongs to class ®—, i.e. def(B) < oo,
then the domain of product of operators T B is dense Z.
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In order to study domains of differential operators similar to Fuchsian max-
imal and minimal differential operators, considered as perturbed Euler differ-
ential operators, we will use the following auxiliary statements (see. e.g., [15],
statement 38.4, pages 214-215, and Statement 9.3, page 51, respectively).

Let function f be integrable on a segment [a,b] and let function ¢ be ab-
solutely continuous and monotone on a segment [«, 3], such that a < ¢(t) < b,
for « <t < B. Then function f(p(t))y’(t) is integrable and the following
equality holds:

»(B) 5
/ f@)dz = / Fo®)g! (.

w(a)

Let function f be integrable on a segment [a, b] and let function ¢ be defined
and absolutely continuous on a segment [, 8] with values belonging to the
interval [a, b]. Then the following two conditions are equivalent:

(i) the function ¢ is monotone,

(ii) if the function f satisfies Lipschitz condition, then f(p(t)) is absolutely
continuous on [a, 3].

4. ESSENTIAL SPECTRA OF FUSHSIAN DIFFERENTIAL
OPERATORS

In the following basic theorem using special assumptions on smallness in av-
erage on infinity for coefficients by we prove the equalities for essential spectra
of Fuchsian minimal, maximal and intermediate differential operators, gene-
rated by operation w, and for corresponding differential operators, generated
by Euler operation &, on Lebesgue spaces LP(a,00), 0 < a < 00, 1 < p < oo.

Theorem 4.1. Let coefficients by, of the formal ordinary differential operation
w, defined by formula (2.1), satisfy conditions by, € LY (a,00),0 < a < oo,
where 1 < p < 00, and let

estl

1
i — p = =
slggo ; | by () |P dt 0, k=0,n. (4.1)

Then for mazimal T(w,p,|a,c0)), minimal To(w,p,[a,o0)) and closed
S(w,p,[a,)), To € S C T, Fuchsian differential operators, generated by
formal operation

n
w=e+ Y b(t)t* D
k=0
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on the Lebesgue spaces LP(a,), 0 < a < o0, 1 < p < oo, and for corre-
sponding differential operators, defined by the Euler operation

= Zaktka,
k=0
the following equalities hold for the essential spectra:
Jek[S(UJJP’ [a,oo))] = O'ek[S(a,p, [Cl,OO))], k = 11272i537
Oek [TO(UJ,p, [a,oo))] = Oe¢k [TO(Eapa [a,oo))], k= 4a53 (42)
oek[T(w,p,[a,00))] = oe[T(e,p,[a,0))], &k =4,5.
Proof. Let us take the advantage of mapping © : LP(a,00) — LP(a*,00),

where 0 < a < 00, a* := Ina, which is defined for all f € L?(a,0), 1 <p < o0
by the following formula

(©f)(s) :==e/Pf(e) = g(5), a*<s< oo (4.3)
The inverse mapping ©~! : LP(a*,00) — LP(a, 00) is given by the formula
(O 1g)(t) ==t Pg(Int) = f(t), a<t< oo (4.4)

for all functions g € LP(a*,00), 1 < p < oc.

It follows from auxiliary statements that spaces LP(a,00) and LP(a*,o0)
are equivalent with respect to the mapping ©. Since function e® on [a*, 00)
and function Int on [a, c0) are monotonically growing and indefinitely differ-
entiable, then we obtain from formulas (4.3), (4.4) that

©(AC"[a,00) N LP(a,00)) = AC™[a*,00) N LP(a*, ). (4.5)

Here AC™(I) is a space of complex—valued functions f defined on set I C R,
for which the derivative f("~1) = D™ !f exists and it is absolutely contin-
uous in each compact sub—interval from I. If the function f is from space
AC™[a, ), then ¢ = Of € AC™[a*,00) and hence, by equality (4.4), we
obtain:

T om0 g e — 1)t 09 g(in

dt
d 1
—eam (L=
dt p s=Int

&2f d/d 1 1 .
&f _—ap—ed|(d_1 (L) am—2
ar =" ds [(d p> g(s)]s_m (p* )t

AGs)e] L, =G ) )],
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Continuing this process by an induction for 1 < k < n we have:
dk f d 1 d 1
I _ -k (& (2 -1 2 _ (= -9
ak ! [(ds (p'*k )) (ds (p-+k ))
d 1
X (% B E) g(s)] s:lnt‘

Therefore for functions f € D[T(w,p, [a,0))] the following equalities hold:

n k—1
d 1
—+1/p — —(Z 45
EHw) =t l +Sall (-0 +g))] 9)|_, @0
k=1 7=0
n k-1 d
_4+—1/p s s el
@O =7 |an + to(e?) + 3 ax + 0u(e) [T (5
k=1 7=0
~(G+4))| o) _ - (4.7)
p s=Int
Let us consider ordinary differential operations a and 3, defined as
n k—1 d 1
a:ao—l—ZakH[%—(I—)-i-J)], (48)
k=1 7=0
n k—1 d 1
B:=a+bo(e )+;bk(€ )jl;[o [% - (; +J>]

Let T(a,p,[a*,00)) and T(B,p,[a*,00)) be maximal differential operators,
corresponding to operations «, 3, defined by formulas (4.8), with domains,
contained in space LP(a*,00). It follows from Egs. (4.6), (4.7) and from for-
mula (4.3) that

O(ef) =ag=a(0f), Owf)=pBg=pB(OF). (4.9)

Therefore in virtue of equality (4.5) and formulas (4.9) for appropriate maxi-
mal differential operators we obtain

T(€7p7 [a7 (X))) = ®_1T(a7p7 [a*7 m))® ?
T(w,p;[a,00)) = ©7'T(,p, [a*,0))O,

which are equivalent to equalities

T(e,p,[a,00)) = A = 0} (T(a,p, [a*,00)) = A1)O,  (4.10)
T(wupa [aa OO)) A= (“)_I(T(B,p, [CL*, OO)) - )‘I)@ .
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These equalities hold for any A € C. B

The mapping © is a linear isometry. From equalities (4.10), in virtue of
Theorem 2 and Theorem 1 [5], we obtain the coincidence of essential spec-
tra of Euler maximal differential operators and Fuchsian maximal differential
operators with special differential operators with constant coefficients and per-
turbed differential operators with almost constant coefficients. Thus, taking
into account the equality

z+1 em+11
/|bk(es)|”ds - /¥|bk(t)|”dt,05k§n,

in virtue of conditions (4.1) on functions by, included into coefficients of Fuch-
sian differential operator from Th. 3.1 the theorem follows for maximal differ-
ential operators. In the same way equalities for essential spectra of minimal
differential operators are proved. From Theorem 1 [5], where results of coin-
cidence of essential spectra of differential operators with smooth coefficients
are formulated, spectral correlation for the appropriate intermediate operators
follow.

For the proof of the analog of Thm. 4.1 for Fuchsian minimal and maximal
differential operators on Lebesgue space L™ (a, ), 0 < a < 0o, the equality
for adjoint of the product of the densely defined operators and for the product
of their adjoint operators is necessary. In general the inequality (ST) # T'S’
holds for unbounded densely defined operators on Banach spaces (see the
corresponding counter-example in [11], p. 304-305). Schechter [19] proved
the equality for adjoint operators (ST')' = T'S’ provided that the operator T’
is semi-Fredholm operator from ®~. His result is formulated in the following
lemma.

Lemma 4.1. Let X,Y and Z be Banach spaces. We assume that a closed
defined linear operator T : X —'Y is semi-Fredholm from ®—, that is R(T) =
R(T) and

def(T) = dim[Y/R(T)] < 0.

Then if S:' Y — Z is densely defined linear operator, then D(ST) is dense in
X and the equality (ST)' =T'S’ holds for adjoint product of operators.

In Theorem 1 of paper [16] it is proved that belonging of the operator T to
®~ is a necessary condition.

Theorem 4.2. Let coefficients by, in (2.1) and their derivatives bsj), i=1k
satisfy the integral condition (4.1) for p = 1. Then for essential spectra of
Fuchsian minimal To(w, 00, [a, 0)), mazimal T (w, 00, [a,o0)) and closed in-
termediate S(w, 00, [a,00)) differential operators, generated by perturbed ope-
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ration w on Lebesgue space L™ (a,0), 0 < a < oo, the equalities (4.2) hold,
where p = 0.

Proof. Let us consider the duality correlation for minimal and maximal op-
erators, generated by differential operation w, defined by formula (2.1) on
Banach space L™ (a, 00), and Banach adjoint operators to maximal and mini-
mal operators generated by formally adjoint differential operation w*, defined
by formula (2.2) on Banach space L!(a,0). Thus we take the equalities such
as (see [5; 12])

To(w, 00, [a, 0)) = T"(w*, 1, [a, 0)) (4.11)
T(w, 0, [a,0)) = T§(w*, 1,[a,00)) .

Analogous duality equalities are obtained for minimal and maximal differential
operators, generated by Euler operation £ and formally adjoint operation

e*g:= Y _(=1)FD*(artg)
k=0

in the corresponding spaces L>(a, c0) and L'(a, o).

From the duality formulas (4.11) we obtain, that differential operators
T(w*,1,[a,00)) and To(w*, 1, [a,00)) can be considered as preconjugate corre-
sponding to differential operators Ty(w, 00, [a, 00)) and T'(w, 00, [a,0)). Let
us note that for the adjoint to the bounded inverse ®~! of bounded operator
© the equality (©07!)" = (©’)~! holds. Similarly to (4.10), we obtain the
equalities formulated for the formally adjoint differential operations £*, w*
and p=1

T(E*7 17 [aa OO)) — A = ®_I(T(aa 17 [a*a OO)) - )‘I)@a
T(W*: ]-7 [a'a OO)) Al = ®7l(T(ﬁ: ]-7 [G,*, OO)) - ’\1)67 (412)

where o and 8 are differential operations with constant coefficients, defined by
formulas (4.8). Applying for them the formulas of duality (4.11) for operations
w, €, using Lemma 4.1 and Th. 3.2, we obtain, with help of Th. 4.1 (see also [7;
9]), the required equalities for essential spectra of Fuchsian minimal differential
operator To(w, 00, [a,00)). In the same way, using analog of equalities (4.12)
for minimal operators the statement of the theorem for maximal operators
T (w, 00, [a,00)) and in virtue of Theorem 1 [5] for the intermediate operator
S(w, 00, [a,00)) can be proved. B

5. EULER DIFFERENTIAL OPERATORS

Let us formulate the result about essential spectra of Euler differential oper-
ators [6].
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Lemma 5.1. The essential spectra and spectra of the Euler minimal differen-
tial operators Ty(g,p, [a,00)), mazimal operator T (g, p,[a, o0)) and intermedi-
ate operator S(e,p,[a,)), generated on LP(a,00),0 < a < 0o, 1 < p < oo,
by the operation e =3, _, apt®*D* | are p-dependent and calculated as

oek[S(g, p, [a,0))] = ai[S(e,p, [a,00))] = {Q()\) : ReA =0}, k=1,2,3,
oek[To(e, p, [a,00))] = o[To(e, p, [a,00))] = {Q(A) : ReA > 0}, k =4,5, (5.1)
oek[T' (g, p,[a,0))] = o[T(e, p, [a,00))] = {Q(N) : ReA <0}, k= 4,5,

where Q is a polygon, appropriate to differential operation o (4.8), defined by
the equality:

Qt) = ao +éak : [t _ (% +j)] . (5.2)

One can use the proved Th. 4.1 and Th.4.2 for finding the exact formu-
las of various types of Fuchsian differential operators on Lebesgue spaces
L?(a,00), 1 < p < oo.

Theorem 5.1. Under conditions on coefficients by, of differential operation w
from Th. 4.1 for 1 < p < oo and Th. 4.2 for p = oo, for essential spectra and
spectra of Fuchsian minimal, mazimal and intermediate differential operators,
defined on LP(a,00), 0 < a < oo, for all 1 < p < o0, formulas as (5.1) are
valid, where operation w should be written instead of €.

The proof of the statement follows from the equality for essential spectra of
the corresponding Fuchsian differential operators, obtained in Th. 4.1 and
Th. 4.2 and from Lemma 5.1.

As application of Th. 5.1 let us describe all essential spectra of Riemman
differential operators, that for the first time was considered in [18] and then
in [2; 12]. We consider minimal Ty(r, p, [a, 00)), maximal T'(r, p, [a, 00)) and in-
termediate T'(r, p, [a, 00)) differential operators, generated on Lebesgue spaces
L?(a,00), 1 < p < oo, by Riemann differential operation r such as

ct? +dt+e

(rf)() :=t(t+ 1) FO(t) + (at + b) f'(t) + D)

f@), (5.3)

where a, b, ¢, d, e are arbitrary complex numbers.

Theorem 5.2. For essential spectra oo, k=1,5 and 0;5 of Riemann differ-
ential operators, generated on Lebesgue spaces LP(a,00), 1 < p < oo, by the
formal operation r (5.3), the formulas such as (5.1) hold, where r should be
replaced by € and

Q)= (t—1/p)(t—(1/p) —1) +a(t —1/p) +c.
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Proof. This statement follows from Th. 5.1. The differential operation (5.3)
can be represented as

rF)(t) = (1 + b)) P () + t(a+b1(1) F'(t) + (c+ (1) (1),

with coefficients, defined by formulas

Let us note, that mapping (Of)(s) = e*/Pf(e®), defined in the proof of
Th. 4.1, also establishes isometric isomorphism of LP(0,a),0 < a < oo and
LP(—00,a*), where a* = Ina. Therefore Fuchsian maximal differential op-
erator T'(w,p, (0,a]), defined by formula (2.1) on space LP(0,a), is similar
through © to maximal differential operator T'(8, p, (—oo,a*]), defined by the
formula (4.8) on space LP(—o0,a*). The similar statement is valid for the
corresponding minimal operators.

Since
Dvf(t) = (=Df)(-t) =v(=Df)(¢),

that is v~1Dv = — D, the operator D = d/dt on space LP(—00,a*) is similar
isometric mapping vf(t) := f(—t) to operator (—D) in space LP(—a*, o).
Therefore maximal differential operator T'(D, p, (—oo,a*]) is similar to max-
imal differential operator T(—D,p,[—a*,o0)). The same is valid for the
corresponding minimal differential operators. B

Theorem 5.3. Let To(w, p, (0,a]) and T(w, p, (0,a]) be Fuchsian minimal and
mazimal differential operators, generated on Lebesgue spaces LP(0,a), 0 < a <
00, 1 <p < o0, by operation w (2.1), and let coefficients by, satisfy conditions
of Th. 4.1 for 1 < p < 0o and of Th. 4.2 for p = co. Then essential spectra
of minimal, mazimal and closed intermediate S(w,p,(0,a]), To € S C T,
differential operators are p-dependent and defined by:

o'ek[S(wapa (070’])] = ai[S(w,p, (070’])] = {Q()‘) : ReX = 0}7 k= 1,2,3,
oer[To(w,p, (0,a])] = o[To(w,p, (0,a])] = {Q(A) : ReA < 0}, k =4,5, (5.4)
oek[T(w,p,(0,a])] = o[T(w,p, (0,a])] = {Q(N) : ReA >0}, k =4,5,

where Q is a polygon, defined by (5.2).
The proof follows from the analog of the Th. 5.1 and the Th. 3.2 and

Th.4.1. The difference between formulas (5.4) and (5.1) is due to the fact,
that although for the Fredholm essential spectra they coincide, since

0e3[To(D, p, (—o0,a*])] = oe3[T(D,p, (—o0,a*])] ={A € C: ReA=0,}
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the spectra of minimal and maximal differential operators are equal to

o[To(D,p,(—o00,a*])] = {A € C: ReA < 0},
o[T(D,p,(—00,a*])] = {A € C: ReX > 0},

respectively.

6. CONCLUSIONS

Let us note in conclusion that in the monograph [17] and papers [1; 10; 14]
the structural and spectral properties of Euler self-adjoint differential operator
and some their perturbations on Hilbert space were studied. In the work [4]
the Fredholm properties of Fuchsian differential operators such as

(Ay)@) = (+'D' + Y ai(0)'D') y(a)

0<i<l

on the finite interval with singularity in the point x = 0 in special classes of
Sobolev spaces were investigated.
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Keletas rezultaty apie esminj spektra Banacho erdvése
V.A. Erovenko

Siame straipsnyje tiriamos spektrinés ir pusiau Fredholminés maksimaliy ir minimaliy Fuch-
siano diferencialiniy operatoriy savybés Lebego erdviy pusiau aSyse. Sios savybés gali
buti taikomos jvairiems paprastyjy diferencialiniy operatoriy su polinominiais koeficientais,
kuriy eilé nevirSija atitinkamos i§vestinés eilés, esminio spektro ir spektro tyrime.



