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ABSTRACT

The transport equation for three-dimensional flow of a viscous gas is considered. An im-
plicit finite difference scheme is constructed for approximating the transport equation. The
error estimation is proved. The main part of the analysis is done for the first differential
approximation of the proposed finite difference scheme, but the results are also valid in the
fully discrete case.
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1. INTRODUCTION

Many laws of the nature can be expressed by partial differential equations,
which can be a part of complex systems of the equations describing many
actual problems. The equation of continuity is one of the examples. There
are many explicit methods for solving quasilinear and first-order systems (see
[1; 2; 4; 7]). However Courant’s theorem (domains of dependence [2]) imposes
a limitation on mesh steps and such restrictions don’t always correspond to
properties of the problem. For implicit difference schemes, which do not
have a limitation on mesh steps, there are many difficulties in development
of algorithms of finding a discrete solution in the case of multidimensional
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problems.

In the given work by using the factorization in space method we develop
an implicit finite—difference method for solving three dimensional first order
hyperbolic problems.

For simplicity of presentation we will limit our analysis to the simple trans-
port equation:

o o O(au)
RO R (L)

where u = u(¢,x) is defined in the domain
Q=[0,T]1xQ, Q=10,X;]x[0,X2] x[0,X3].

The equation contains known functions ar = ar(¢,x) (k = 1,2,3), which
satisfy the following boundary conditions

a1(t, x) = ax(t,x) = az(t,x) =0, (t,x) € [OaT] x 01,
where 0 is a boundary of 2. The following initial condition is formulated:
ulg=o = ug(x), x € Q. (1.2)

The examined method has been proposed in works [5; 6] for two-dimensional
non-stationary flow of a viscous gas. We will generalize this result in three-
dimensional case. Using this scheme some problems of convection and flow of
a viscous gas (in three dimensional case) were computed with good accuracy.

2. NOTATIONS

Let us introduce in the domain @ = [0,T] x © a mesh Q;h = @; X Wn:

wr={jr: j=0,.... M}, tM =T,
@h:{(ilhl,izhz,igfm): ’I:jZO,...,Nj, thj:Xj j:1,2,3}.

Below we use the following notations for subsets of wp:

3

Yh = U (% Uv=k), wh = @n \ Th-
k=1
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The value of a mesh function g at a node (j,i1,%2,43) is denoted by gfl,z-2’i3.
The omission of indices of the function means that g = g/ ,, ;.. It will also
be useful to define the following notations for the values of functions at nodes
neighbouring to a node (j,41,%2,143)

J+1

— A J — (£11)
gihiz,is =9 gilil,iz,z’3 =g

— g(&1) — g(*la),

J J
v 95y int1,is v G a0 ig k1

The mean value of a mesh function at two neighbouring nodes will be written
in the following form

1 +1 1 -1
gsk,(i1,i2,i3) = 5 (g,(l’i;,2~3 +gi1,i2,i3) ’ ggk,(i1,’i2,’i3) = 5 (gi1,i27i3 +g»§1,i:’23) *

The following notations are used for difference operators

5 — (+1x) _
9—9 _ g g
gt = T ) 6:lzkg =9z, = hk )
— o(=1x) (+1x) _ g(=1x)
_9-9 7 wg=ag. =9 79 7
02,9 = 9z, = he 0.9=9:. = TR ,

Let us introduce the discrete norm ||g|| (a mesh analogue of the Ly norm)

llg]| = Z hihahs g7, 5, i (2.1)

Wh

The semi-norm |g|; is defined by

3

gl = Z Z hihahs g2, . (2.2)

k=1 U_Jh\’yk

Finally we define the norm ||g||; (a mesh analogue of W, norm)

llglle = \/lgll* + 1913 (2.3)

The following variant of the Gronwall lemma (see [3]) will be used to prove
the theorem of numerical approximation error estimation.

Lemma 2.1. Let values Yy, Y1, ..., YN satisfy the following inequality
Yo <Y, 1+Cr(Ya_1+Y)+ 7y, n=1,...,N.
Besides it is known, that

b, >0, forn=1,...,N, 7<79, 0C <1/2, TN=T.
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Then these values obey the estimation

N

VY, <efT, | Yy +2 .

n:Irlljax’N w<e o+ Tzlbn
n=—

3. DIFFERENCE SCHEME

Let the mesh function v be an approximation of the exact solution of (1.1) —
(1.2). We consider the following difference scheme:

3
H E + 1A} (ax) + vr* A2(a)) 9 = v + 7b(v,a) . (3.1)

As the initial condition we use the projection of function ug (see, (1.2)) onto
the mesh wy,:

oY . =wug(irhy,ishs,ishs). (3.2)

21,%2,13

Here v is a positive constant, which will be defined later. Operators A}
approximate the part of the difference divergence operator containing partial
derivative with respect to xy:

1
2 ((akv) ot akv;k) ;X €0n\ (e Uvk),

1
5 (akv)y, s Xi € Yk
1

5 (akv)ik , Xi € Vk-

Ay (ar)v =

Operators A7 are added as the stabilizers of the scheme

— (k) » Xi €0n\ (e Uv—k),
Ai(a)v = —2h;1(1)k1);,;k, Xi € VY—k,
2h;1<1>§c_1’“)vm, Xi € V-

The mesh functions ®;,P5 and ®3 are given by

q)l - | |z1z2z2z3z37 ¢2 - |a|a:1z1z2z3z3> (1)3 |a|z1z1z2z2z37

where |a|? = Z a?. The function |a|? is continued beyond the boundary of

the mesh in the odd way.
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The function b(v,a) is defined by

(_Z <va1:1 -1-1)(12;2 +va3: ) , Xi € Wh,
1 (+1x) _ L (425)
~5 (vaker =t v <amzk ey
b(v,a) + a3y = S (a2 ), xie v
1 (—1x) 2)
_§<Uaki'k +hk[ (akwk:’zk 7@ kwk:kck)
_ 1
\ +va)in) = 5 a2 ]), xi e

Theorem 3.1. The difference scheme (3.1) — (3.2) has a unique solution.
Proof. The solution of the problem (3.1) — (3.2) is reduced to the computa-
tion of the mesh function ¢ at the time step j + 1 using the already known
functions v from the previous time step j. In order to determine the unknown
function ¢ we obtain from (3.1) the system of linear algebraic equations

A1A2A3’I/} = b,

where Ay (k = 1,2, 3) is the square matrix of the size (N141)(No+1)(N3+1) x
(N14+1)(N2+1)(N3+1). The matrix Ay, is block-diagonal and the size of each
block is (N +1) x (Ng+1). Ay is a tridiagonal matrix, which is a sum of three
matrices: the first matrix is diagonal, the second matrix is skew-symmetric
and the third one is symmetric and nonnegative. As a consequence of this
structure, each block is nonsingular, that the whole matrix Ay, is nonsingular.
Thus the difference scheme always has a unique solution, which can be found
by the sweep method. B

4. ANALYSIS OF THE SCHEME

We will denote by ¢ a local truncation error of the finite difference scheme
(3.1)-(3.2). Then ||¢||1 is of order O(r + h2).

Let us introduce a global error function w, which is a difference between
the solution of (3.1) — (3.2) and the projection of the exact solution u onto
the mesh Q. n:

w=v—1u.

The strict convergence analysis of the finite difference scheme (3.1) — (3.2)
requires many technical manipulations, therefore for simplicity we will make
our analysis for a corresponding differential problem. All estimations are also
valid in the discrete case.
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We use below the following notations and differential operators:

Uy = %, Uy, = 66—;2, (k=1,2,3),
(u,v) = /uvdw, [|lul| = /quw,
Q Q
= | [ kzudx lalls = /[l + o,
Q =1
By (ag)w = % (6(;;:)) + ‘““aa_i) )
Bi(a)w = _aiu (|a|2%(—;‘2) , k=1...3,

Let us substitute w into the scheme (3.1) — (3.2), then we obtain the fol-
lowing differential problem:
wy + (B} + By + B3)w — b(a, w) (4.1)
+7(Bj(a1)B;(as) + Bi(a1) B3 (a3) By (a2) Bj (a3) ) w
+vr(Bi(a) + B(a) + B (a))w + 7B} (a1) B; (a2) B3 (az)w
+v7?[Bi(a1)B}(a) + By (a1)B3(a) + B (a) B3 (a1) + B;(a1)B3(a)
+ B} (a)Bj(as) + B3(a) B3 (as)]w + v7° [Bi (a1) By (a2) B3 (a)
+ Bi(a1)B3(a) B;(as) + Bf (a) B (a2) B; (a3)|w + v*7° [ B (a) B3 (a)
+ B} (a)B3(a) + B3 (a) B3 (a)|w + v*7* [ B} (a1) B3 (a) B} (a)
+ B{(a)B;(a2) B3 (a) + Bf (a) B3 (a) B (as)|w
+v°7°Bi(a)B;(a) B} (a)w = ¢,
Wg=0 = 0. (4.2)

Multiplying the equation (4.1) by w and integrating it over (2, we obtain
the following equalities




Investigation of a finite difference scheme for the transport equation 253

1 1
(w, (B + By + B})w) = (w, §(a1w)w1 + =(aaw) g,

2
1 ay as as
+ 5(0/3’11));53 + Ewwl + Ewa + ?wm) =0.

Using the e-inequality and the other well-known inequalities we estimate
each term of the obtained equality (here C are constants, which depend only
on the size of the domain ) and the norm of the exact solution of (1.1)—(1.2)):

w w w

|(w, bla,w))| = |(w, 0., T 502, 5”3%) < Oljw|?,
[w][? +lell?
< JAL S L S 5L
()] < PP AT,

7 |(w, (Bf (a1) B3 (a2) + Bj (a1) B} (as) + B3 (az)Bj(as))w)|
= 2], (@1(020)2)ar +@1(@20)as0, + 1(@2107,)a, + (@102,
+ (a1(a3w)eg)zr + 1(a3W) 52, + 1(a3Was) e, + (a103Weg)2,
+ (a2(a3W)es)en + a2(A3W) 252, + 02(A3Way) e, + (A203Wa;) e, )|

< 7(1+7C) (| |alws, [I* + 1] lalws, [ + [] |alws,[[*) + Cllw] ],

vt (w, (B} (a) + B3(a) + B3 (a)) w)
= —v7(w, (|a|2ww1)w1 + (|a|2wwz)wz + (|a|2wws)ws)

=7 (|| [alws, [|* + || [awa, || + || [alwa, |[*) ,

7 |(w, B (a1) B3 (a2) B3 (a3)w)|
+v7?|(w, [B{(a1)B3(a) + B{(a1)Bj(a) + B} (a) B (a1)
+ B;(a1)B3(a) + Bi(a)B;(as) + B3(a)B; (as)|w)|

3
-
<7(1+70) (I alwa,|” + || alwe, [[* + [ lalwas |*) + 5 (1 + %)

X (Il al*wayzal|* + 11 [a]*wagas * + || [a*wz,2,]1%) + 7Clwl]?,

v7®|(w,[B] (a1) By (a2) B3 (a)
+ By (a1)B3(a) Bs (as) + B (a) B, (a2) Bs (a3)]w) |
< v (L4 70 (| 1al* w0, %) + [l weoms|[*) + 1] 12l we,25]*)
+ (|l [afwa, [I*) + | [a]wz, %) + [] |alws,[[*) ,
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v’1*(w, [B}(a) B3 (a) + B (a) B} (a) + B3 (a)B; (a)] w)
> 7% (1 = 7C) (|| [l oyas |* + || |a*Wasas |1 + |1 a]*way0s]%)

= C7 (|l [alws, |I* + [| [afwa, [|* + || |a]way |[*) = Crllw]*,

v*7|(w, [Bl(a1)B3(a) B3 (a) + Bf (a) B} (a2) B3 (a) + Bi(a) B} (a) B} (as)]w) |
< 1/2’1'5
=2
+ [ alws,z,l[*) + C7* (| lalws, [ + || lalws, |[* + || lalwa, 7).

| 2P wayas0s|* + 277 (1 + 7C) (|[ la]* wa, 2, |1 + || 2 wasas ||

Vo7 (w, B} (a) B3 (a) B3 (a)w) > v*7°(1 = 7C) || |al*wa, o |”
= O (|| |al*waya, |I* + [ a*wass [1* + [] [ ws, o)

= C7°(|| lalws, [[* + 1] lalws,|[* + | |a|ws,[*) -

Substituting all these inequalities into Eq. (4.1) we obtain

(IJwll*)e
5 T =3-71C) |a|wz, [|?) + 1] |awz,[1?) + || |afwas]?) (4.3)
7 2 2 2 2 2
+ 5 (7 = v =1 = 7CO)(|[ ] wa1a, ") + || [ wasas |I°)
2 2 37'5 3 2 2 ||‘>0||2
H Al weyz,| %) + 17 5 (1 = 7O)[ |2l Way oz, ||” < Cllw]|” + .

Next let us differentiate the equation (4.1) with respect to z1, multiply it
by w,, and integrate over ). Then we estimate each part of the equality and
obtain the following results:

llwz, 1 + [l |*
2 ’

(wa, 1)
2 b

| (way, (Bi + By + B3)ayw)| < Cllwllf,  [(ws,,b(a,w)a,)| < Cllwll?,

(wwlawt$1) = |(U)w1,(pwl)| S

7| (wa, (Bi(a1) B3 (a2) + Bl (a1) Bj (as) + B} (a2) Bj (), w) |

1

+ 07 (ws, (B @) + B3 (a) + B}(a)),,,w) > 7(v = 1 = 7O (|| |alwaya |1

1

+ |l [alwz,z,|[* + [ [l way e |?) = Cllll
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7°| (we, ,[Bi (a1) B3 (a2) B5 (a3)]ay w) | + +v7%| (way , [Bi (a1) B3 (a)
+ By (a1)B3(a) + B} (a) By (a1) + By(a1) B3 (a) + Bi (a) Bs (as)
+ B3(a)Bj(as)],, w)| < 7(1 + 7C) (Il [alwa, o, |[* + 1] |2]wz,a, |

3
+ ?(1 + V2)(|| |a|2wz1zw2”2 +1| |a|2wz1z2zs||2

+ [ al* w0105 1) + 7C| w7,

+ || alwa, o5%)

v7®|(wa,,[Bi(a1)B;(a2) B3 (a) + Bi (a1) B (a) B3 (as)
+ B (a)B;(a2) B3 (az)], w)| <vr®(1+7C)(|| [alway 212,
+1| |a|2ww1z2zs“2 + 1| |a|2ww1w1ws“2) + +C7'2( | |a|ww1w1||2

+ [ [afwe, o, [ + [[ 1l wasas |*) + Crllwl]3,

v*7° (wey,[ B} (a) B3 (a) + B} (a) B3 (a) + B3 (a) B (a)], w) > v’1°(1 - 7C)
X (” |a|2wmz1z2”2 + 1| |a|2w21z2z3”2 +1| |a|2wz1z1z3||2)

= C7 (|l [alwz,z, [I* + [ 2w, |* + [ [alws, 25 ]7) = Crllwllt,

*7*|(wz,, [Bi (a1) B3 (a) B (a) + Bi(a)B;(az) B3 (a)
2 2 1 v2r° 3 2 3 2
+ Bi(a)B; (a)B3 (a3)]z1w)| < T“ |a]*Wa 2y 2025 ||* + CT ( I |alwg, &, ||

+ 1l [alwa,z, I* + [ [alwe, o, |[*) +v7° (1 + 7C) (1] [al*we, 010, ||

+ @l ws oz, + 1] 2" wa, 200, ") + Crllw]]F

V7% (ws,,(B} (a) B3 (a) B3 (a))z, w) > v*7°(1 — 70)|| |a]*Way 2y oo ||
- T4C( | |a|2w21z1zz”2 +1| |a|2w$1$2$3||2 +1| |a|2wz1zw3“2)

= C1° (Il alway o, [P + || [a]weyao|* + [ |alwe, o5 |*) = Cllw][? -
Using all these estimations we get the following inequality:

(llwz, [1*):

5 + 7 =3=7C) ([l alwesa|I” + [l [alwesas [I” + || [alwas |*)

N

T

+ ?(VZ —4dv—1- TC)( || |a|2w$1$1z2||2 + ” |a|2w$1Z2$3||2
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2 2 3T’ 3 2 Al
Hll 2l waia100]1%) + +17 5 (1= 7O @] warw100a, ||” < Cllwllf + =5

Analogously we can get the estimations of derivatives with respect to 2,
z3 and sum them. Finally we obtain the stability estimate:

(wl):

5 +7(v =3 = 70) (|l alws,z, |1 + |l lajwa, oo |* + || alws,a|* (4.4)

+ | |alwzsz, [ + || [alwe, 2, ] * + || |alwz,zs |1 + || [a|wegas] |
2 2 7 2
+ 1] [a|weyas |[* + || |a|we, e, |[*) + 5 W —dv—1-70C)

X (3” |a|2wz1zzz3||2 +1| |a|2ww1w1wz||2 + 1| |a|2wz1z1z3||2

+ 1 |a|2wwzwzw1“2 + || |a|2ww2wzw3“2 + || |a|2wwswsw1||2

5
T
+ || |a|2w$3$3$2||2) + VBE(l - TC)( || |a|3w$1w1$2$3||2
leld

+ 1 |a|3ww1wzwzws”2 +1| ‘a|3ww1wzw3w3“2) < CH“’H% + 9 -

Applying a similar approach to the finite—difference equations we obtain
analogous estimates in the discrete norms (2.1)—(2.3):

|l]? — [Jw]]?

5 +7(v =3 = 7C) (|| lalwa, |I” + || lalwa, ||* + || lalws, [|*)  (4.5)

2

T D .
+ 5 07 =4y = 1= 7O) ([ [al*we,zs]* + || |2 Wasas| I

5
.
+ | al woras|I”) + 427 5 (1 = 7C)[ |2l way 22|

[leol?

< Clwlf + 2=,

+7(v =3 = 7C) (|| [alway 0 [P+ || [a|wa, o[+ [[ |a]we, s ||* (4.6)
+ [ lalwzsas |I* + [l alwe, 2,1 + |l 1alwaass || + || [2]wagas |

2
.
lawe,a|*) + 5 (v° = 4w = 1= 7C) (3| [a* w050,

+1| |a|2wz1z1zz||2 +1| |a|2ww1z1z3||2 + 1| |a|2wz2z2z1||2

+ |a|2wzzzzz3“2 + 1| |a|2wwsz3z1||2 + 1| |a|2ww3wsw2“2)
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5
r
+V37(1 - TC)( [ |a|3wz1z1wzw3||2 +1] |a|3wr1zzzzz3||2

|7

+|| |a|3w$1w2w3w3||2) < C”’LUH% + T .

We choose parameters v and Ty,4, such that the following estimates hold:
v-3—-7C>0, V»—4v—-1-7C>0, 1-7C>0.

For example, these inequalities are valid if v > 5and 0 <7 < 1/C.
After that we sum (4.5) and (4.6), use the notation

Y, = |[@]]7, Yo1 = llwl
and obtain the main stability inequality
Y, < Yno1 4+ C7Ye 1 +7lp||3.
From (4.2) we have the initial condition

Yo = 0.

Using the Lemma 2.1 we prove the following theorem:

Theorem 4.1. Let the following conditions are satisfied for the differential
problem (1.1)—(1.2)

e there exists a unique classical solution;

o u, ap € C*%(Q), where CP(Q) is a class of functions having derivatives
of order p with respect to x and order q with respect to t.

Then the following estimate of the global error

maxM||u" — "1 < C(r +h?)

n=1,...,
is valid for sufficiently small T < Thaz, h < hyge, where Taz, Nmes and

C depend only on the size of the domain Q) and on the ezxact solution of the
differential problem.
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Ekonomigky baigtiniy skirtumy schemy pernesimo lygéiai tyrimas
D. Slugin, A.Popov

Straipsnyje nagrinéjama trimaciy klampiy dujy tekéjimo pernesimo lygtis. Pateikta neis-
reikstiné baigtiniy skirtumy schema aproksimuojanti §ia perne§imo lygtj. Irodytas paklaidos
jvertis. Pagrindiné tyrimo analizé atlikta pateiktos baigtiniy skirtumy schemos pirmos
eilés diferencialiniam artiniui. Analogi8ki rezultatai pasilieka teisingi ir pilnai diskreiuoju
atveju.



