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ABSTRACT

In this article we have used wide applicable classes of spatio-temporal nonseparable and
separable covariance models. One of the objectives of this paper is to furnish a possibility
how to avoid the usage of complicated covariance functions. Assuming regression model
for mean function the analytical expressions for the optimal linear prediction (universal
kriging) and mean squared prediction error (MSPE) was obtained. Parameterized spatio-
temporal covariance functions were fitted for the real data. Prediction values and MSPE
were presented. For visualization of results on graphics are used free available software
Gstat.
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1. INTRODUCTION

A large number of environmental phenomena may be regarded as realizations
of space-temporal random process (Eynon and Switezex, 1983: Le and Petkan,
1988). Geostatistics offers a variety of methods to model spatial data: how-
ever, applying such space approaches to spatio-temporal random processes,
may lead to the loss of valuable information in the time dimension.

One obvious solution to this problem is to consider the spatio-temporal
phenomenon as a realization of a random process defined in RIt! (i.e. d is
the space dimension plus one time dimension). This approach demands the
extension of the existing spatial techniques into the space-temporal domain.
Despite the straightforward appearance of this extension, there is a number
of theoretical and practical problems that should be addressed prior to any
successful application of geostatistical methods to spatio-temporal data.
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Let
{Z(s;t): s € D € R4t € [0,00]}

denote a spatio-temporal random process. Optimal prediction (in space and
time) of the unobserved parts of the process, based on the observed part of
process is often the ultimate goal, but to achieve this goal, a model is needed
to described how various parts of the process co-vary in space and time. In
what follows, we assume that the spatio-temporal process Z(s;t) satisfies the
regularity condition, var(Z(s;t)) < oo, for all s € D,t > 0. Then we can
define the mean function as

u(s;t) = E(Z(s;t))
and covariance function as
K(s,r;t,q) = cov(Z(s;t), Z(r;q)); s,r €D, t>0, ¢>0.

Let Z;; denote an observation of Z(s,t) at spatial location {s; :i =1,...,m}
and time moments ¢t = 1,...,T. Suppose that we have data consisting of
N = 23121 my observations of Z(s,t). Here m; denote number of spatial
locations observed at time point ¢ and denote it

. !
7 = (zn,...,zmll,...,le,...,zmTT) -

Furthermore, the optimal (i.e., minimum MSPE, see, e.g., Cressie, 1993)
linear predictor of Z(sg;to) is

Z*(s03t0) = (505 t0) + C(s05t0)' T7H(Z — 1) ,

where ¥ = cov(Z),C(s0;t0) = cov(Z(so;t0), Z(s;t)), and pu = E(Z), the
MSPE is C(s0;t0)'S1C(s0;t0). In the rest of this article, we assume that the
covariance function is stationary in space and time, namely

K(s,r;t,q) = C(S - ’f‘;t - q)a

for a certain function C. This assumption is often made so that the covariance

function can be estimated from data. For any (r1;¢1),-- -, (Fm;qm), any real
ai,---,am, and any positive integer m, C' must satisfy
m m
ZZaiajC(r,-—rj;q,-—qj) ZO (]..].)
i=1 j=1

To ensure (1.1), one often specifies the covariance function C to belong to
a parametric family whose members are known to be positive definite. That
is, one assumes that

cov(Z(s;t), Z(s + hg;t + hy)) = C°(hs; he|0) (1.2)
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where C° satisfies (1.1) for all § € © € RP.

While there are no difficulties in extending the various kriging estimators
and the kriging equations to the spatio-temporal setting, there has been a
lack of known valid spatio-temporal covariances and variograms.

In order to estimate the correlation of spatio-temporal process, the main
questions are as follows:

1. Is it useful define a spatio-temporal metric, such as

d(u,up) = (a(~771 —22)2 +b(y1 — y2)? + +c(ts — t2)? )1/2 )

with wi=(z1,y1,t1), us=(z2,y2,t2), where (z1,11), (z2,92) € D C %,
and t1,to € T C R, where D and T are the spatial and temporal domains,
respectively. In general the units for space and time will be disparate, e.g.,
meters and hours.

2. How to choose a spatio-temporal covariance or variogram model and how
to choose parameters to ensure that the best fit to data is achieved?

In literature most spatio-temporal covariance or variogram models have
been derived by utilizing the following theoretical results, since covariances or
variograms in R™ can be obtained, in general, from other valid functions. We
can obtain two parametric families C° for (1.2): separable and nonseparable
covariance functions.

In the paper [4], we have described the separable covariance functions fam-
ily, where we have produced some examples for this case. There we have
presented the results in case for separate product model. Let Cs be a covari-
ance function on R™ and C} be a covariance function on 7', then the product
model is

Cst(h‘s; h/t) = Cs(hs)ct(ht) - (13)

The other family consist of nonseparable functions, when we can’t separate
the covariance functions for space and for time. In general case, nonseparable
stationary covariance functions that model spatio-temporal interactions are
in great demand. Using simple stochastic partial differential equations over
space and time, Jones and Zhang [3] have developed a four-parameter family
of spectral densities that implicitly yield such stationary covariance functions,
although not in closed form.

Cressie and Huang [2] are presenting a new methodology for developing
whole classes of nonseparable spatio-temporal stationary covariance functions
in closed form. But this class of functions also include to our expression
autocorrelation function, spectral density and sufficiently complicated form
of integral.

One of the objectives of this paper is to furnish a possibility how to avoid
the usage of complicated covariance functions. In the case of temporal inde-
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pendent spatio-temporal covariance function is given in the form
Csi(hs; hg) = C*(hs). (1.4)

Such a case is possible when it is necessary to make prediction for a known
season. Then one can use one of four covariance functions C} (hs|6), where
i=1,...,4.

After averaging of spatio-temporal covariance model for all seasons we have
seasonal average model:

C° (hs; hul6) = Z% (hs|6) = C(hs) - (1.5)

In this case, when a prediction for concrete season is necessary, it possible
to use a spatio-temporal covariance function, that is estimated from concrete
season data.

2. MAIN RESULTS

After the covariance function estimation, the interpolation between the mea-
surement points was carried out. For this purpose, different geostatistical
methods were used. Kriging is a geostatistical estimation technique, where
linear minimum variance unbiased estimation is adopted, this is equivalent to
the selection of a functional form, and the estimation of the relevant para-
meters for the main trend (first order moment) and for the covariance or the
semivariogram (second order moments). Kriging is known to be a Best Linear
Unbiased Predictor (BLUP), because it minimizes the variance error between
the model and the predictor. The kriging equations for spatio-temporal krig-
ing are the same as for purely spatial problems, the difference is in the usage
of a spatio-temporal covariance instead of a purely spatial covariance. In the
case of regression model of mean function

/"’(S7t) = E(Z( )) Xst 3

the optimal prediction is called universal kriging (see e.g., N.Cressie,1993).

Let us assume, that m; = m, ¢t = 1,...,T. Then covariance matrix of Z
has the form C; @ C;s, where Cy is T x T temporal covariance function, and
C, is m x m spatial covariance function.

Lemma 2.1. Optimal linear prediction equation for product covariance func-
tion, defined in, is

Zuk(so,to) = wi’;,toﬁ+ §T[Z - X,45) (2.1)
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where
B= (X7 (C, QX)X (C Q2 (2.2)

6= (G Q) C.M)(Cu Q) Cso) (2.3)

where @ is the Kronecker product and Cso and Cyo are vectors of spatial and
temporal covariances between predicted point with observed points, xz;’to is a
vector of nonrandom regressors.

Proof. Expressions (2.2) and (2.3) were obtained by using (1.3) in universal
kriging equation. Then the mean squared prediction error (MSPE) for the
predictor, given in (2.1), is of the form

MSPEyk = 6(0) — 2b" (Cio(he) Q) Cuo(hs)) + b7 (C;7 Q) C )b, (24)

where
BT = a0, (X0 (O ® ) X ) I XTL (G @ O+

+(Cih ® CHYCT @ CyM(I — X, (X E(C7H @ CTH) Xy 0)) 7

'Xg:t(ct_l ®C;h
8(0) = C5(0)C¢(0) and T — matrix of ones. B

3. EXAMPLE

In this section we apply the spatio-temporal stationary covariance functions
to the problem of prediction at the unobserved locations. The spatio-temporal
data, used in this article, was collected in the Baltic sea, where the number
of observations are taken regularly every three months during the period of
1994-1998 at six stations in the coastal zone. Salinity is the observed feature.

In order to apply the above statistical methods for data analysis we have
used a free available software Gstat. Gstat is a program for the modelling, pre-
diction and simulation of geostatistical data in one, two or three dimensions.
All methods mentioned above assume that the residual covariance is known.
A common convention is to enter the covariance by ways of the variogram.
Gstat calculates direct sample variograms, and can fit models to them. In
this approach Gstat has been used for modelling covariance functions.

Spatio-temporal covariance model, described in (1.3), was considered in [4].
In this paper we are presenting expressions of exponential spatio-temporal
covariance functions for temporal independence case (1.4):

C*(|hs]) = 01 exp(=02 - |hs]) .
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Figure 1. Semivariograms for all seasons

The same exponential model was used for all different seasons. After av-
eraging the spatio-temporal covariance models for all seasons we obtain a
seasonal average model (see 1.5).

For practical realization we used semivariograms graphics instead of covari-
ances ones. These semivariograms have the following form:

7 ([hs]) = C*(0) = C*(|hs]) = 01(1 — exp(=0a - [hs])) -

Figure 1 presents exponential functions of semivariograms for all four sea-
sons. Figure 2 presents exponential semivariogram functions for the seasonal
average case and a general semivariogram function in temporal independency
case for whole data. As we can see from Fig.1 in winter the spatial dependency
is decreasing more rapidly than in other seasons.

Using prediction equation (2.2) and the MSPE equation (2.4) we have cal-
culated our prediction at an unobserved location and presented these results
in Table 1. In all cases the exponential covariance model was used in the
analysis.

From the presented results it follows that for this real data the temporal
independency covariance model is optimal.
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Figure 2. Seasonal average and temporal independency semivariograms

Table 1.

Covariance models Cs¢(hs; ht) whith parameters §; and 02, prediction and MSPE.
Covariance for 61 [ Prediction MSPE
spring -13.572  0.210409 6.78512 0.10453
summer -13.572  0.200872 6.74233 0.10813
autumn -13.572  0.016463 6.48502 0.10994
winter -13.572  0.035765 6.15312 0.10322
seasonal average -13.572  0.115877 6.72793 0.12889

temporal independency -13.572  0.097369 6.73264 0.10226
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Universalaus krigingo taikymas erdvés-laiko duomenims
E. Lesauskiené, K. Ducinskas

Straipsnyje lemos pavidalu pateiktos analitinés iSraiskos UK (universalaus krigingo) ir
MSPE (vidutinés kvadratinés prognozés klaidos), kai erdvés-laiko kovariaciné funkcija yra
atskiriama, naudojant sandaugos modelj. Taip pat gautos kovariaciniy modeliy i§raiskos,
eliminavus laiko jtaka stebéjimams bei kovariaciniai modeliai atskiriems sezonams, kurie
svorinio vidurkio pagalba gali buti apjungti j sezoninj vidurkio modelj.

Pateikty formuliy pagalba, realiems duomenis (Klaipédos jury tyrimo centro duomenys
apie druskingumo kiekj devyniose Baltijos juros stotyse), jvertinti erdvés ir laiko kovariaciniy
modeliy parametrai ir atlikta optimali prognozé Zinomame tagke (pries tai jj eliminavus i§
duomeny).

Semivariogramy modeliy grafikai gauti programinio paketo Gstat pagalba. Lyginant
gautus rezultatus, galima teigti, kad §iuos duomenis geriausiai apraSo nepriklausomy laike
stebéjimy kovariacinis modelis.



