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ABSTRACT

Application of the dynamic adaptation method for the numerical solution of multidimen-
sional axisymmetric Stefan problems with explicit tracking of interfaces is presented. The
dynamic adaptation method is based on the idea of transition of the physical coordinate
system to the non-stationary coordinate system. The results of computational experiments
for modelling the action of high energy fluxes on metals are given.
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1. INTRODUCTION

Now-days laser technology is the widespread tool for the treatment of metals,
dielectrics and semiconductors. Melting and evaporation are the basis of such
technological operations as welding, drilling, surface modification and etc. In
pulsed-laser material processing the phase transitions occur at very high rates.
In this case a non—equilibrium phase—change kinetics becomes important [14].

One of the key techniques in study of laser influence on materials is mathe-
matical modelling [4]. Mathematical description of such processes leads to the
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moving free-boundary problems for the heat diffusion [11]. Two approaches
are widely used for numerical solution of the Stefan type problems: explicit
tracking of moving interfaces [1; 2] and using smoothing procedures [7; 9; 13;
15]. Dominant position of smoothing procedures in multidimensional prob-
lems is considerably connected with absence of effective methods for explicit
tracking of moving interfaces. The smoothing algorithms don’t allow for such
physical effects as kinetics of phase transitions. In the problem of the pulsed
action of high-energy fluxes on materials, where the nonequilibrium of fast
phase transformations play a dominant role, it is necessary to locate explic-
itly the phase interfaces and take into account the related processes.

In present work the adaptive algorithm for solution of classical version
of three-dimensional axisymmetric Stefan problem with explicit tracking of
phase interfaces is considered. Two-interface Stefan problem in arbitrary two-
dimensional regions was solved by the dynamic adaptation method [3; 6].
This method is based on transformation of the initial coordinate system to
the nonstationary curvilinear coordinate system. In this nonstationary bound-
ary fitted coordinate system the interfaces coincide with the coordinate lines.
In this case it is necessary to determine not only the value of the unknown
functions (temperature fields) but also the coordinates of the grid points. The
movement of the grid points is described by the partial differential equations
added to the definition of problem.

2. MATHEMATICAL MODEL

The mathematical formulation of the classical version of three-dimensional
axisymmetric Stefan problem, which describes melting and crystallization
processes, is reduced to the quasi-linear heat transfer equation

OH oW, oW, OWs
= = 2.1
ot T or T oy Taz 9 omTslh (2.1)
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in the region Q,. with the axial symmetry (Fig.1a). An a priori unknown
interface I'y(t) separates the solid Q4(¢) and liquid ©;(¢) phases: Qgy, =
Q, () U (t). On I'y(t) the differential Stefan condition and the temperature
continuity equation are fulfilled

W =Wk =Lppvy, Ts=T =T (2.2)

On the boundary 0y, of the region {2;,. the boundary conditions are
specified in the form

(W7 n) = fa (23)
8%,
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where n is the external normal to 8§, f is the function specified on 9, .
Here H is the enthalpy, W = (Wy, Wy, W3) is the heat flow, T},, L., are the
temperature and the latent heat of melting (crystallization), v%; is the velocity
of the motion of interface, subscripts s,! refer to the solid and liquid phases,
superscripts n, 7 indicate normal and tangent components.

z |
1.0
) Iy
rsl Ty Mg i
v T, L 00 Ty
o T T 1.0
4 P P P
2) G by O 0 ©

Figure 1. Domains of the problem definition.

The account of the evaporation leads to the appearance of the second mov-
able interface I';, () on the boundary 09, .. The process of advanced surface
evaporation on this boundary is described by the mass, momentum and energy
conservation laws

Pvjy = po(u — V), (2.4)

P+ pi(vl)? = P, + py(u —ot)?, (2.5)
oT

—Aa—n = G" — Lypvy, (2.6)

and two additional relations describing the kinetics of phase transformations
that are determined from the Knudsen layer approximation [5]

T, :Tv(TlaM)a Pv :pv(PH;M)a (2'7)

where G = (G™,G7) is the energy source intensity, u is the gas-dynamic veloc-

ity, vj, is the velocity of the evaporation front, L, is the heat of vaporization,
M is the Mach number, and pg denotes the saturated vapor density. Here

l = (YRT,)\/ 2.8

, ue = (YRT,) /" (2.8)

c

M =
u

The vapor temperature and density in (2.7) functionally depend on the
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Mach number M, adiabat v and auxiliary parameter m

2yM2(m? + 0.5)2

T, =1, 2.
! ! (1 4+ yM2)2m2¢2”° (2.9)
1 (1 4+ yM?)m?
= . 2.10
po=pH exp(—m?) + 71/2m(1 + erf(m)) YM2(m? + 0.5)2 (2.10)
For the known M the value of m is determined from the equation
F(M)(m? 4+ 0.5)> =m?*(m? + 1.5+ a) = 0, (2.11)
where
3yM? — 1 2 1/2
F(M)=1+m, a=2t —0.57r/mt—1,
. 2m 1+ erf(m)

ml/2 * exp(—m2) + 71/2m(1 + erf(m))’

2 m 2
erf(m) = ﬁ/o e ¥ dy.

The value of pg is determined from the state equation

_ Py _ L, /1 1
PH = BT}’ PH—Pgexp(R (Tb Tl)) (2.12)

Here Py is the saturated vapor pressure, Py is the atmospheric pressure, Ty
is the boiling temperature, R is the gas constant.

Due to axial symmetry of the problem in the cylindrical coordinate system
(r, ¢, z) the equation (2.1) can be rewritten in the following form

OH 10(rW,)  oW.
ot "r or | o2 _g]m’ (r:2) € e (213)

T T

We=-AS-, W= -2

in two-dimensional domain Q,, with curvilinear boundary (Fig.1b). On the
boundary 09,,, r # 0 the boundary conditions (2.3) — (2.7) are defined, and
at r = 0 the condition W, = 0 is fulfilled.

3. STEFAN PROBLEM IN NONSTATIONARY CURVILINEAR
COORDINATE SYSTEM

We introduce the nonstationary transformation

E=¢(r,2,t), n=n(rzt),
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mapping physical domain with arbitrary shape (2,, onto the rectangle (¢,
in the space of curvilinear coordinates (§,7). Boundary 0f)¢, and interfaces
'y and I'y, in ¢, coincide with the corresponding coordinate lines and are
constant in time (Fig.1c).

The problem (2.3) — (2.6), (2.13) can be written in an arbitrary curvilinear
unsteady coordinate system (&,7,t) as

dWH) 1( 8 Oz o Oz 0 or
[7?”?@%@Mﬁﬂ+%@wan+%0m%>

0 or 0 or
‘55@W@9 s(HQT H@Eﬁ

L0
= | H 3 —HQ., + , 3.1
+ o (0.5 - o5 vl (3.1)
ar 92 Q. _
R R
where
W= _2P (%‘lT_%@_T) __ <_ﬁa_T+ﬁ5_T)
" Y \9n 0  O¢ dn : Y \ OndE B dn
Oor 0z Or 0z
_ —1 -1 _ Y
v=p|17, | |_a§an an o€

The boundary condition on the I'y, i.e., for (£, = ny) € Ty, can be written
in the form:

or oz 0z or -1 n
(e +wegg) ~ (Wogg +Wegg) |7 = tmis 63)

and for (£,n) € Ty, we obtain:

Qf = —p(u+ <), B+(Qp{:;) =R (us 2B
0z

0 1
(—Wra—£ + Wza—g)ﬂfi =G" + L,Q},, n = const, (3.4)
(WTg_:] a 2(2_’177‘)l04é :Gn_'_LUan;n €=COHSt,

where a, (3, v are the components of metric tensor

(0N L (82Y g _drar 0z0:_(or\? (02
“=\oe oc) * P ocon Tocon 7T \op on) -
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4. FINITE DIFFERENCE SCHEME

For the finite difference approximation of system (3.1) — (3.4) in the domain
Qen x [0,10] we introduce the rectangular grid w with the steps h¢, hy, 77.
The functions 77 ,, 2],, Q); 'Qi’i’k are determined in the grid nodes,

; ; J J J
while the functions Ti+1/27k+1/2, 1!)'i+1/27k+1/2,' Hz.Jrl/ZkJrl/-2 are evalugted at
; J J J J
the cell centers. The variables Wr7i+1/27k, Wz,i+1/2,k’ Wr,z’,k+1/2’ I/VZ’Z.JEJFI/2
are evaluated at the centers of the cell edges.

Using the finite volume method [8], the initial differential problem is ap-
proximated by the implicit difference scheme:

Jj+1
+ (—HQrzo +HQZTO)° + (HQrza —HQZTO)O + g
K n/e 3 £/

i+1/2,k4+1/2

Here we use notations [8]:

1 ;
(¢H)§I1/2,k+1/2 - (¢H)?+1/2,k+1/2
(YH), =
T : ’

T

— fi+1/2,k - fi71/2,k f — fi,k+1/2 - fi,k71/2
hg ) 79’ hn )

I,
Ap Ap
Wr = _? (Z%TE — ZgT;:]) ; Wz = _E <_T%TE +TET%> y
¢i+1/2,k+1/2 = ﬁ{(nﬂ,k - 'rz',k+1)(zi+l,k+l - zi,k)
—=(rit1,kt1 = Tik) (Zig1,k — Zikt1) }

The required interpolations are performed by the following formulas:

H;py12 = 0.5(Hiy1/2, 54172 + Hi1/2,541/2)s

Hit1o0 = 0.5(Hiy1/2, 54172 + Hiv1/2,5-1/2)s

Qikt1/2 = 0.5(Qikr1 + Qik), Qiv1/2,6 = 0.5(Qix1k + Qik)s

Piv1/2,k41/2 = 0-25(rik + Pipr1 + Pip1 k + Vi k1),

Ziv1/2,h41/2 = 0.25(2i g + Zijks1 + Zig1,k + Zig1,h41)-

It is easy to prove that for sufficiently smooth solutions the approximation
error is of order O(77 + [h|?), |h|* = hi + hi.
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5. ALGORITHM FOR SOLUTION OF THE DISCRETE PROB-
LEM

In order to implement the difference scheme the algorithm, based on two
enclosed iteration cycles, is used at each level. In the first cycle, the velocities
Qi,x of the grid nodes and their positions are determined by the values of the
temperatures from the previous iteration. In the second cycle the temperature
distribution in the domains §;, Q, are calculated.

The obtained systems of the linear algebraic equations is solved by the
modified strongly implicit method [10].

Next we present the algorithm for an evaluation of parameters on the in-
terface T'y, (t):
1. From equation (2.11) the parameter m is evaluated by the Newton method.

2. From energy conservation law (2.6) the temperature values T; are evalu-
ated. From equations (2.9) and (2.8) the values T}, u. are determined,
respectively.

3. The values of the pressure Py and saturated vapor density pg are evaluated
from (2.12).

4. From (2.8) and mass conservation law (2.4) the gas-dynamic velocity u and
the velocity v, of the interface I';, are obtained.

5. The vapor pressure is determined from the state equation P, = p, RT, and
the pressure P is obtained from momentum conservation law (2.5).

The values of normal component of mass flow on the interface ', (¢) at the
cell edge midpoints are determined by the formula

Qn = _plvﬁ;a
and on the interface 'y (¢) from the Stefan condition
Q1o = L [(Whhajoids = Wihijout] s i =0, I =1, k = ka.

For the evaluation of the mass flow components Q;  in the interface nodes
the mass conservation law

SaBcp = SaBep, Sprau = SpegH
was used in the following form (see Fig. 2)

(dik —diz1/2,) X Q1o = (die — d'i—1/2,8) X Qik

(dit1/2,6 — dik) X Qiy1y26 = (diy1/26 — dik) X Qik,
i:]-;"'a-[_]-a k:ksla
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LY |a

Figure 2. Definition of Q; ; on the interface I';

where
Qi = (Qrir,Qzik) s dik = (Tiks Zik)
' I
d'it1/26 = dit1/ok — ;Qi:l:l/zk-

For evaluation of Qo r, Qr,r at the boundary points of the interface the
mass conservation law is written in the form

di/op —dox) X Quyae = (d'1/2% — dok) X Qo

do,k+1 — do,k) - Qo =0,

drg —dr_ijok) X Qroiyoe = (drg — d'121/2.8) X Qrik,
drgr1 —drg) - Qrr =0.

(
(
(
(

Here a x b and a - b are the vector and scalar products, respectively.

For a more regular distribution of nodes on the interface the tangential
component of mass flow Q7 =~ was evaluated. Finally, we get the following
expression for the evaluation of mass flow on the solid—liquid interface:

Qik, = Qik, n+Qk, T,

where n is the unit normal, 7 is the unit tangent vector.

For the redistribution of grid nodes inside subdomains Q4(t) and Q(t) we
use the equations (3.2) in the following form:

or D¢ [ 0r\20% Or0z0°z D, [ 0r\28%r
% a <(a§) a§2+agaga§2) 7 (an) oz O
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These equations can be obtained from the principle of equidistribution of the
grid points along coordinate lines & = const and n = const:

Ole _ Qe Oy _ _Qy
ot p’ Ot p’

% %l
QE:_pDﬁﬁa Qn:—PDnt;

where Q¢ and @, are contravariant components of the vector Q, D¢ and D,,
are diffusion coefficients,

ls=/0€x/5d£, ln=/0nﬁdn

are the lengths of coordinate lines 7 = const and & = const, respectively. Here
Cartesian components @, (), and contravariant components ¢, @, of Q are
connected by relations

1 Or 1 Or 1 0z 1 0z
== Qet =2 Qn Qo= = Qe+ —— o
x/aaﬁQE nQ" 9 x/5<‘9§Q6 N

The third term on the right-hand side of equations (5.1) was introduced in
order to guaranty the smoothness of the coordinate lines.

The obtained system was approximated by the fully implicit difference
scheme. For its implementation the following Picard type iteration process
was used:

Qr Q-

s+1 Dg s\2 s+1 s+1s s DT, s\2 s+1 s+1s s
T= E((Q) Tee + T¢ Zgzss) + ?((Tn) Tnn + Tn zﬂznn)
D ss+1 Ss+1 Ss+1
VST (arge =2 Bren + Vram) ,

=

s+1 Dg s42 s+1 s s+1 s D $\2 s+1 s s+1 s
((ZE) Zgg + T Zg TEE) + ?((zn) Znn + Ty 2 rﬂﬂ)
D ss+1 Ss+1 Ss+1
V=T (ozge —2 Bzen + Vzgm) -
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6. NUMERICAL EXPERIMENT

The presented algorithm was applied to simulate the action of high energy
fluxes on the spherical aluminum target with radius of 0.5 cm. Two different
source intensities G = 10°W/cm” and G = 5 - 105W /cm® were considered.
The radius of focusing spot was 0.1 cm. Analysis of the heating process leads
to the identification of two distinct stages of heating. The first stage includes
heating of the target without phase transformations. At this stage the domain
is equal to the solid subdomain. The second stage includes heating with solid—
liquid and liquid—vapor transformations.
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Figure 5. The distribution of temperature fields, G = 10° W/cm? and G = 5-105 W/cm?

During heating without phase transformations the grid with 21x21 fixed
nodes was used. It was constructed by the elliptic grid generator [12].
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The second stage begins when the equilibrium melting temperature T}, =
933.3° K is reached on the irradiated surface. In order to introduce the liquid
phase the overheat by 0.1° K was permitted. From the overheating energy
and the latent heat L., the initial thickness of the liquid phase was determined
and the new subdomain €, Q,.. = Q, U ; was introduced. The new subgrid
21x6 was constructed for this subdomain. From that moment the grid was
dynamically reconstructed at each time level, see Fig. 3 — 4.

Continuation of the heating, conducted by the process of advanced surface
evaporation, leads to the formation of a deep channel in the direct zone of
the influence. Isotherms in Fig. 5 show the distribution of the temperature
fields for different energy intensities. The thickness of the liquid phase for
G =5-10° W/cm® is less than one for G = 10° W/cm®. Maximum values
of temperature on the energy-release surface were 3190° K and 2470° K,
respectively.
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Stefano uZdavinio su a$ine simetrija skaitinio sprendinio dinaminio
adaptavimo metodas

V.I Mazhukin, M.M. Chuiko, A.M. Lapanik

Straipsnyje nagrinéjamas Stefano daugiamecio uzdavinio su aSine simetrija ir iSreik§tiniu
saly€io pédsaku skaitinio sprendinio dinaminio adaptavimo metodas. Sis dinaminio adap-
tavimo metodas pagrjstas fiziniy koordina&iy transformacija j nestacionarig kreivine koordi-
nafiy sistema. éioje koordinaciy sistemoje salytis sutampa su koordinacinémis linijomis, ir
reikalinga surasti ne tik nezinomas funkcijas, bet ir tinklo taSky koordinates. Tinklo tasky
judéjimas apra§omas papildomomis diferencialinémis lygtimis. Pateikti skaitinio modeliav-
imo pavyzdziai metalo saveikai su aukstos energijos srautais.



