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ABSTRACT
A piecewise polynomial collocation method for solving linear weakly singular integro-diffe-
rential equations of Volterra type is constructed. The attainable order of convergence of

collocation approximations on arbitrary and quasi-uniform grids is studied theoretically and
numerically.
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1. INTRODUCTION

We present an analysis of collocation approximations for Volterra integro-
differential equations (VIDESs)

t t
y'(t) = p(t)y(t) + a(t) +/K1 (t, s)y(s)ds +/K2 (t,5)y'(s)ds, (1.1)
0 0
with 0 <t <T, 0 <T < o0, and with a given initial condition
y(0) = yo, yo € R = (—00,00). (1.2)
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We assume that

p,q € C"™"[0,T], K1,K2 € W™*(Ar),me N={1,2,...}, ve R, v < 1.
(1.3)
Here C™"[0,T], m € N, v < 1, is defined as the collection of continuous
functions z : [0,7] — R which are m times continuously differentiable in
(0,T] and such that the estimate

1 if k<1l-v,
e® (@) < el 1+]|logt| if k=1-v, (1.4)
tl—v—Fk if k>1—-v

holds with a constant ¢ = ¢(z) for all ¢t € (0,7] and k = 1,...,m. Note that
C™[0,T1], the set of m times continuously differentiable functions z : [0,T] —
R, is contained in C™"[0,T] with arbitrary v < 1. Some other examples
are x1(t) = t3/2, xz5(t) = t3/* and z3(t) = tlogt with z3(0) = 0. Clearly,
x; € C™12[0,T], zo € C™/4[0,T] and z3 € C™°[0,T], m € N.

The set

W™ (A7), meN, v<l, Ar={(ts)eR:0<t<T,0<s<t}

consists of m times continuously differentiable functions K : Ap — R satis-
fying

a\'fo o\ 1 if v+i<0,
‘(§)<5Z+5J-KUJ)SC 1+|log(t—s)| if v+i=0, (1.5)
’ (t—s)™" if v+i>0,

with a constant ¢ = ¢(K) for all (t,s) € Ar and all non-negative integers i
and j such that i +j < m. Notice that, if 0 < v < 1, then K (¢, s) may possess
a weak singularity as s — t (see (1.5) with ¢ = j = 0). If v < 0, then K (t,s)
itself is bounded on A, but its derivatives may be singular as s — ¢.

Observe that, in contrast to "standard" VIDEs, the integrand Ks(t, s)y’(s)
in (1.1) depends on the derivative y' instead of the solution y itself. Moreover,
the derivatives of p(t) and ¢(¢) in (1.1) may have singularities at ¢ = 0 and
the kernel functions Kj (¢, s) and K»(t,s) may be weakly singular at ¢t = s. In
particular, K; and K, may have the form

Ku(t,s) = k(t,s)(t—s5)7% 0<a<l,
where k is a m times continuously differentiable function on

Ar ={(t,s):0<s<t<T}.
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Clearly, K, € W™*(Ar). Especially, if K1 = 0 and Ky = K,, 0 < a < 1,
then equation (1.1) is of type which is often referred to as the Basset equation,
which is playing important role in the mathematical modelling of the diffusion

of discrete particle in a turbulent fluid (see, for example, [3]).
Introducing a new unknown function

z = yla (1.6)

and using (1.2), equation (1.1) may be rewritten as a linear Volterra integral
equation of the second kind with respect to z,

t s t
2(t) = f(t) +/0K1(t,s)/0z(T)des+ 0[p(t) + K»(t,5)] 2(s)ds, t € [0,T], (1.7)

which may also be expressed in the form

t
2(t) = f(t) + / K(t,5)2(s)ds, te[0,T], (18)
0
with
t
£8) = a(8) + yop(®) + vo / Ky (t,8)ds, te[0,T), (1.9)
K(t,s) =p(t) + /t Ki(t,7)dr + Ka(t,s), (t,8) € Ar. (1.10)

We will employ (1.7) in the construction of numerical solutions for problem
(1.1) — (1.2) (see Section 2). For the smoothness analysis of the solution of
(1.1) — (1.2) is more convenient to use (1.8). Actually, the regularity of the
solution of problem (1.1) — (1.2) is described in the following lemma.

Lemma 1.1. Let yo € R and assume (1.3). Then equation (1.8) has a unique
solution z € C™V[0,T], implying that problem (1.1) — (1.2) has a unique
solution y € C™+1=10,T.

Proof. The statement of this lemma can be established by using arguments
similar to those used in [1] for the proof of Theorem 2.5. W

Thus, under the conditions of Lemma 1.1, the solution y of (1.1) — (1.2)
belongs to C1[0,T]. On the other hand, an analysis shows that y may not
belong to C2[0,T] even if p and ¢ belong to C°°[0,T]. This complicates the
construction of effective numerical methods with high accuracy for (1.1) —
(1.2). In this paper a discussion of the attainable order of convergence of a
piecewise polynomial collocation method on arbitrary and quasi-uniform grids
is given, with numerical illustrations. Our analysis is based on two equivalent
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integral equation reformulations (1.7) — (1.8) of the Cauchy problem (1.1) —
(1.2) and on the smoothness properties of the solution of (1.1) — (1.2) (given
by Lemma 1.1). The main results of the paper extend the corresponding
results of [1; 2; 4; 6] and are formulated in Theorems 2.1 — 2.2. Notice also
that our method (2.4) — (2.7) below, where we have discretized the integral
equation (1.7), is equivalent to the collocation method applied directly to the
initial-value problem (1.1) — (1.2). In the latter form the collocation method
in more particular case has been examined in [4; 5; 7].

2. COLLOCATION METHOD
For given N € N, let
Iy ={to,t1,-.-,tn: 0=t <t1 < ... <ty =T}
be a partition (a grid) of the interval [0,T] (for ease of notation we suppress
the index N in t; = #V) indicating the dependence of the grid points on

N). A sequence of partitions for [0,T] is called guasi-uniform if there exists
a constant @ > 1 independent of N such that

jmax (8 —tj-1)/ min (t; —tj-1) <0, NE€EN. (2.1)

It follows from (2.1) that
tj—ti1 <cN7', j=1,...,N, (2.2)

where ¢ is a positive constant which does not depend on N. Therefore, for
the quasi-uniform grid IIy = IIn,e we have

hn = Ill'laXN(tj —tj—1) >0 as N —o0. (2.3)
J=15ees

If © = 1, then Iy ,; is uniform, with hy = TN~'. Denote
o1 = [to,tl], oj = (tj_l,tj], ji=2,...,N.

For given integers m > 0 and —1 < d < m —1, let ST(,?) (TIx) be the spline
space of piecewise polynomial functions on the grid ITy:

,(,f)(HN)z{ w: u|aj =u; €My, j=1,...,N;

u(t;) =ul? (1),  0<k<d j=1,...,N—1}.
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Here mp,, denotes the set of all polynomials of degree not exceeding m, u|__ is
J
the restriction of u to the subinterval o; and

k . k
ulf (t5) = s Jm ufy (8).

Note that the elements of
SCU(My) = {u: u|g‘ €EMm,j=1,...,N}
J

may have jump discontinuities at the interior points t1,...,tny_1 of Iln.

For given m, N € N we find an approximation v to the solution z of equation
(1.7) in the space S(m__li (I1x). Function v = v(N>m) € S,(n__li (T1y) is determined
from the following conditions:

vi(tjr) = f(ttjk) + Otj)}{l(tjkas)(/oz(T)dT) ds

(2.4)
+ | [p(tjr) + Ka(tjk,s)]v(s)ds, k=1,...,m; j=1,...,N.
0

Here v; = U|Jl is the restriction of v to g5, j =1,..., N, and the points
J
tjk:tj_l +T]k(tj—tj_1), k=1,...,m; j=1,...,N (25)

are completely characterized by the points tg,¢1,...,tn of the grid Iy and
parameters 71, - .., N, which do not depend on j and N and satisfy

0<m<...<nm <1. (2.6)

Having determined the approximation v for z, we can also determine the
approximation u for y, the solution of the initial-value problem (1.1) — (1.2),
setting (see (1.6))

t
u(t) = yo + /0 o(s)ds,  te[0,T]. 2.7)

Remark 2.1. The choice of collocation points (2.5) with 3 =0, 5, = 1 in
(2.6) actually implies that the resulting collocation approximation v belongs

to the smoother polynomial spline space Sﬁgll(HN). Note also that v €
Sf,:i(HN) implies that u € S5 (TIy), and v € 5’52)71(1'[1\[) implies that u €
W (Ily).
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Remark 2.2. Conditions (2.4) form a system of equations whose exact form
is determined by the choice of a basis in an__li (IIy) (orin 57(2)—1 (MIy) ifp =0,
Nm = 1). For instance, in each subinterval [t;_1,t;] (j = 1,...,N) we may
use the representation

vi(tjo +7(t —t5-1) = > e Ly (), € [0, 1],
k=1

where L,(gmfl)(T) denotes the kth Lagrange fundamental polynomial of degree
m — 1 associated with the parameters 0 < 11 < ... < 1, < 1, that is
Lgcm_l)(r) = [Tk (m —mi)/(mk — mi), 7 € [0,1]. The collocation conditions
(2.4) then lead to a linear system of equations for the coefficients

N :
Cjkzcgk)z’l}j(tjk), k=1,....m; 5=1,...,N.
Our main results are contained in the following theorems. The proofs of these

results are given in Section 3.

Theorem 2.1. Let conditions (1.3) be fulfilled and assume that the underlying
grid sequence (Ily) satisfies (2.3). Then, for all sufficiently large N € N, say
N > Ny, and for every choice of parameters 0 <m < ... < 1y < 1 with ny >
0 or n, < 1, the equations (2.7) and (2.4) determine unique approzimations
u € S,(,?)(HN) and v € S,(;_li(HN) (with v|a, = (u| )I, j=1...,N) to
the solution y of problem (1.1) — (1.2) and its derivative y', respectively. If
m=0,n,=1, thenu € Sr(é)(HN) andv=1u'€ 5,(3)_1(1_11\{)- For all N > N,
the collocation error e*) with k =0 and k = 1 satisfies

Tj

lle®loo < cpn. (2.8)
Here
' for m<1l—y,
un =< WA+ |loghn|) for m=1-v, (2.9)
hi " for m>1-v,

(hn is given by (2.3)), ¢ is a constant not depending on N and

|, k=0,1. (2.10)
J te 7

k _ (k) k _
o0 =, max (sup [us” (1) =4 (0)]), vy =
Theorem 2.2. Let yo € R, p, ¢ € C™[0,T], Ki € W™¥(Ar),
Ky, e W'Y A7), meN, v € R v < 1, and assume that the underly-
ing grid sequence (I1y) is quasi-uniform (i.e. satisfies (2.1)). Then, for all
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sufficiently large N € N, in the notation of Theorem 2.1, the collocation error
e®) for k=0 and k = 1 satisfies the following estimates:

N—m™ for m<2—-v—k,
le®]loo <c{ N"™1+logN) for m=2-v-Fk, (211)
N—(2-v=k) for m>2—-v—k.

Here ¢ is a constant not depending on N and ||e'® ||« is given by (2.10).

3. PROOFS

First we present some auxiliary results which we need for the proof of The-
orems 2.1 and 2.2.

To a continuous function z : [0,7] — R we assign a piecewise interpola-
tion function Pyz = PI(Vm)a: € Sr(n__I%(HN) which interpolates = at the nodes
(2.5): (Pnx)(tjr) = z(tjr), k=1,...,m; j=1,...,N. Thus, (Pyz)(t) is
independently defined in every subinterval [t;_1,t;], j = 1,..., N, and may
be discontinuous at the interior grid points ¢;, = 1,..., N — 1. Note that, in
case . = 0, N, = 1, Py is a continuous function on [0, T]. We also introduce
an interpolation operator Py = P](Vm) which assigns to every continuous func-
tion z : [0,T] — R its piecewise interpolation function Pyz. In the sequel,
for Banach spaces E and F, we denote by L(E, F') the Banach space of linear
bounded operators A : E — F with the norm

IAll = sup{[|Az|| : z € E, ||| < 1}.
By Cla, b] we denote the Banach space of continuous functions z : [a,b] — R

with the norm ||z|| = max{|z(t)| : a <t < b}. By ¢,c1,¢2,... we will denote
positive constants, which may be different in different inequalities.

Lemma 3.1. Let S : L*(0,T) — C[0,T] be a linear compact operator and
assume that the underlying grid sequence (ILN) satisfies (2.3). Then

||S - PNS“[/(LOO(O’T)’LOO(OyT)) —+0 as N — oo.

Proof. 'We observe that

J:Ilil,anN ||PN||C(C[tj_1,tj],C[tj_1,tj]) <c,

IPnl (o), (0,1y) < € (3.1)

with a constant ¢ which is independent of N. It follows from (2.3) and (3.1)
that ||z — Pnzl|pe@,r) = 0 as N — oo for every x € C[0,7]. Together
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with the compactness of S : L*(0,T) — C[0,T] we obtain the assertion of
Lemma 3.1. B

Lemma 3.2. Let x € C™¥[0,T], m € N, v < 1. Then

— P - < i(t 2
e~ Pallumomy e max max (o) (32)
where
t; 1, m<1—uv,
7j(t)=/ 5=ty 1 14 |logsl, m=1—v, Sds, t;,_1 <t <t (3.3)
¢ sl—v—m, m>1—-v
j=1,...,N, and c is a constant which does not depend on j and N.

Proof. Taking v € 55;_1} (IIx), on the base of (3.1), we obtain that

- P, ) = — — (P —
e = Prallimor) = max  max |at) - o(t) - (P = v)()
< t) —o(t
S €I, T, 10 vl

(3.4)

with a constant ¢ which is independent of j and N. We fix v(t), t;_1 <t < ¢,
as a Taylor polynomial for z at ¢t =¢; :

m—1
_ ¥ (t5) PRY <t <ts (i=1 N

v(t) =) o=t i <t<ty (j=1,...,N). (3.5)
k=0 ’

Then, due to z € C™"[0,T], the statement of lemma follows from (3.4) and
(3.5). m

For given A € R we introduce the weight function w (t) by

1 if A<0,
wr(t) =4 (1+]|logt)~" if A=0, ¢>0. (3.6)
A if A>0,

Using (3.6), we redefine the space C™”[0,T], m € N, v < 1, as the set

of functions z € C[0,T] which are m times continuously differentiable in

(0,77 and such that 35, sup (wg—(1—v)(t)|z*) (¢)|) < c. In other words,
0<t<T

a function z € C[0,T] belongs to C™*[0,T] if it is m times continuously
differentiable in (0, T and its derivatives can be estimated by (1.4). Equipped
with the norm

m

lellma = max o)+ sup (wg_ @@ @)),

0<i<T
<t< i 0<t<T
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C™*[0,T] is a Banach space.

Lemma 3.3.[1]. If 1,20 € C™"(0,T], m € N, v < 1, then =zjzs €
C™Y(0,T] and |[z122||mey < cllzi||mypll2||m,v, where ¢ is a constant which
does not depend on x1 and x5.

Lemma 3.4. [1] Let Le Wm "(AT) m € N, v < 1. Then the operator M,

defined by (Mz)( fo s)ds, t € [0,T], is compact as an operator
from C™¥[0,T) to cm™ro, T]

Lemma 3.5. [1]. For L € W™*(Ar), m € N, v < 1, let Ly be defined by
L1 t, S f L t,T dT, (t, 8) € Ar. Then L, € Wm’u_l(AT).

Further, we consider an integral operator S :
t
- / K(t,s)a(s)ds, t€[0,T], (3.7)
0

with K given by (1.10).

Lemma 3.6. Let p € C™¥[0,T], K1,K2 € W™"(Ar), m € N, v € R,
v < 1. Then S is compact as an operator from L*°(0,T) to C[0,T]. Moreover,
S is compact as an operator from C™"[0,T] to C™"[0,T].

Proof. We observe by (1.10) and (3.7) that S can be presented in the form
S = PJ+ 51+ 52, where the operators P, J, S and S; are defined by settings

(Pz)(t) = p(t)z(t), (Jw)(t)=/0tw(8)ds, (S22)(t /Kz t,s)z(s)ds,

(S1z)(t) = /0 Lt s)a(s)ds, Ly(t,s) = / " Ky(t,7)dr,

Due to Lemma 3.5, L; € W™”~}(Ar). Therefore L; is bounded and con-
tinuous on Ar and S; is compact as an operator from L*°(0,7T) to C[0,T].
Since Ko € W™¥(Ar) is at most weakly singular, Ss : L*(0,T) — C[0,T]
is compact. Clearly, P € £(C[0,T],C[0,T]) and J € £(L*(0,T),C[0,T)) is
compact. This implies PJ : L*°(0,T) — C[0,T] is linear and compact. In
summary, PJ 4+ S1 +S2 =S € L(L*(0,T),C[0,T]) is compact.

Further, L, Ky € W™Y(Ar). Due to Lemma 3.4, S; + S is compact as
an operator from C™*[0,T] to C™*[0,T]. Since 1 € W™¥(Ar), we also
deduce that J : C™*[0,T] — C™"[0,T] is compact. It follows from Lemma
3.3 that P € £(C™"[0,T],C™"[0,T]). Therefore PJ is compact as an op-
erator from C™"[0,T] to C™¥[0,T]. In summary, PJ + S1 + S = S €
L(C™*[0,T],C™"[0,T]) is compact. B
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Proof of Theorem 2.1 Let the conditions of Theorem 2.1 be fulfilled. As
we know from Section 1, problem (1.1) — (1.2) is equivalent to the integral
equation (1.8) where z = y' and the forcing function f and the kernel K are
given by (1.9) and (1.10), respectively. We rewrite (1.8) in the form z = f+Sz,
with S defined by (3.7). We find that f € C™¥[0,T] C L*(0,T). It follows
from Lemma 3.6 that S is linear and compact as an operator from L*°(0,T)
to L*°(0,T). Therefore, z = f + Sz has a unique solution z € L*(0,T).
Moreover, on the base of Lemma 1.1 we obtain that z € C™"[0,T].

Further, conditions (2.4) are equivalent to the operator equation represen-
tation v = Py f 4+ Py Sv, with Py defined at the beginning of Section 3. From
Lemma 3.1 and from the boundedness of (I — S)~! in L>(0,T), with I, the
identity transformation, we see that I — Py .S is invertible in L*°(0,T) for all
sufficiently large N, say N > Ny. Moreover, the norms of (I — PyS)~! are
uniformly bounded in NV :

I(I = PxS) Ml ez o,1),0(0,m)) < ¢ N > No. (3.8)

Thus, for N > Ny the equation v = Py f + Py Sv provides a unique solution
vE ST(,:_I%(HN) (v e S,(,S)_l if m =0, gy =1). For v and z, the solutions of

equations v = Py f + PySv and z = f + Sz respectively, we have
v—2z= (I —PxS) Y (Pxyz—2), N > N. (3.9)

Now (3.8) yields |[v — z||L=(o,1) < c||PNz — 2|lL=@,1), N > No, with a
constant ¢ which is independent of N. Applying Lemma 3.2 we obtain that
lo = 2llzeor) S er  max  max |y ()
t; 1, m<1-—uv,
<o max  max [ (=00 1 logls—b), m=1-v, fds
J=L N 1131305 J ¢t (S _ .':.)1—11—’m7 m>1—v

< copin,

where 7; and pn are defined by (3.3) and (2.9), respectively. In fact, this is
the estimate (2.8) with k=1, z=y'andv| = (u| ), j=1,...,n.
oj o
Further, due to (2.7),

w0 =50 = uy(ty) ~ vt + [ [~y @lds 10

where u; = u|a_ and t € [t;_1,t;], j = 1,...,N. Moreover, it follows from
(2.7) and (1.2) that u;(0) — y(0) = 0. Applying (2.8) with £ =1 to (3.10) we
obtain the estimate (2.8) with k=0 foru —y. B

Proof of Theorem 2.2 Let the conditions of Theorem 2.2 be fulfilled. It
follows from (2.2) and Theorem 2.1 that we have to prove (2.11) only for
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k =0,m > 1 — v. Using the equality (I — PyS)™ ' =1+ (I — PyS) 1Py,
we rewrite the error (3.9) in the form

v—2=Pnz—2+ (I —PyxS)"'PyS(Pyz—2), N > Ny. (3.11)

Due to continuity and boundedness of K (t,s) on Ar, S is bounded, as an
operator from L!(0,T) to C[0,T] (see (1.10) and (3.7)). Using this, on the
base of (1.2), (1.6), (2.7), (3.1), (3.8) and (3.11) we obtain that

t

fu(t) - y(0) = ‘ [ - =()1as

T
< c/ [(Pn2)(s) — z(s)|ds, (3.12)
0 0

where 0 < t < T and c is a constant not depending on N. It follows from
z € C™"[0,T] and Lemma 3.2 for m > 1 — v that

T t1 N t;
/ |(Px2)(s) — 2(s)| ds < /|<PNz)<s)—z(s)|ds+2 / |(Py2)(s) = 2(s)| ds
0 0 j:2tj—1

N
<o (i mg o).,

j=2
where hy is defined by (2.3). This, together with (2.1), (2.2) and
tj_l Z (j - l)min{tj —tj_l : j= 2,...,N},

yields that

/0 |(Pn2)(s) — 2(s)|ds < e (N3~ 4 N~C=) Z(j — 1)) (3.13)

with a constant ce not depending on N. Further, we have

N N2=v=m  if m<2—v,
(G—1D'""""m™<e3{ 1+logN if m=2-u, (3.14)
j=2 1 if m>2-—y,

with a constant ¢z not depending on N. Combining the results (3.12)-(3.14),
it is easy to see that (2.11) holds for k=0, m>1—v. B
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4. NUMERICAL EXPERIMENTS

In this section we test the convergence behavior numerically. We consider
problem (1.1) — (1.2), where

T=17 Z/O=0; p(t):_17
Ki(t,s) = —(t—s)7", Ky(t,s) = —(t —s)7"*!,

1
q(t) = 2 — V)t + 27V 4 37 /(1 —2)"a® " dz
0

1
V)t 2"/ Yy eV de,  ve {-1/3,1/2}.
0

In this case the exact solution of problem (1.1) — (1.2) is y(t) = >~ and it
is easy to check that the assumptions of Theorem 2.2 about p,q, K; and K,
hold with arbitrary m € N.

This problem is solved numerically using method (2.4) — (2.7). Some of
results obtained are presented in Tables 1, 2 for m = 2 and for the collocation
parameters 1, = 1/4, no = 3/4 (see (2.6)). In fact, in Tables 1, 2 for different

grids I 1, Hg\l,?f), H%L, the error (compare (2.10))

e = {max|u® (rj5) —yO(rp)| s k=1,...,95=1,...,N},

and the ratio gg\l,) = %)/z /a for | = 0 and | = 1 are given. In order to
calculate the error (2.10) we have taken ¢t = 7j, where 7, = t;_1 + k(t; —
tj—1)/10, k = 1,. ,9; 5 = 1,...,N. Further, Il is the uniform grid of
[0,1] with hy = N1 (see (2.3)), H§\1,35 and Hg’)s are the quasi-uniform grids
Iy, with § =5 in (2.1), defined as follows:

2j . N
Hg\lr)‘g:{to,...7t]\f: t]:ﬁjirh]:o,,?,
T-T . N
tivns2 =Ti +2j N ,J:L_“,E},
01—1
T,=—-T, 1=0,1=1.
o1

From Theorem 2.2 for m = 2 we can derive the following convergence

results. In case of v = —1/3 the ratio g( ) ought to be approximately 4(= 2™),

(1)

and the ratio ¢y’ ought to be approximately 2.5(~ 2'="). In case of v = 1/2

the ratio g( ) ought to be approximately 2.8(~ 227"), and the ratio g( ) ought
to be approximately 1.4(~ 2!7%).

From Tables 1, 2 we can see that the numerical results are in good agreement
with the theoretical estimates of Theorem 2.2.
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Table 1.
Numerical examples in case v = f%
w1 Hg\},)s Hg\%,)s
N 553) 953) Eg\([)) 95\?) 553) Qg\?)
4 9.7TE-4 4.2 2.8E-3 44 2.0E-3 44
8 24E-4 4.1 6.6E-4 4.2 4.2E-4 47
16 5.8E-5 4.0 1.6E-4 4.1 9.6E-5 4.4
32 1.5E-5 4.0 4.1E-5 4.0 2.3E-5 4.2
64 3.7TE-6 3.9 1.0E-5 4.0 5.5E-6 4.1
128 9.5E-7 3.9 2.6E-6 3.9 1.4E-6 4.1
256 2.4E-7 3.9 6.6E-7 3.9 3.4E-7 4.0
512 6.1E-8 3.9 1.7E-7 3.9 8.4E-8 4.0
N 55\}) gg\}) 55\}) QS\}) 55\}) gg\})
4 1.6E-2 24 3.0E-2 2.2 1.7E-2 2.8
8 6.5E-3 24 1.3E-2 2.4 5.3E-3 3.2
16 2.6E-3 2.5 5.1E-3 2.5 1.5E-3 3.5
32 1.0E-3 25 2.1E-3 2.5 4.1E-4 3.7
64 4.2E-4 2.5 8.2E-4 2.5 1.1E-4 3.8
128 1.7E-4 2.5 3.3E-4 2.5 3.9E-5 2.8
256 6.6E-5 2.5 1.3E-4 2.5 1.5E-5 2.5
512 2.6E-5 2.5 5.2E-5 2.5 6.1E-6 2.5
Table 2.
Numerical examples in case v = %
w1 Hg\},)s Hg\%,)s
N 553) 958) 55\?) 95\?) 553) 953)
4 3.2E-3 2.5 6.3E-3 2.3 1.8E-3 3.4
8 1.2E-3 2.7 2.4E-3 2.6 4.4E-4 4.1
16 4.2E-4 2.8 9.0E-4 2.7 1.1E-4 4.0
32 1.5E-4 2.8 3.2E-4 238 3.1E-5 3.5
64 5.4E-5 28 1.2E-4 2.8 1.1E-5 3.0
128 1.9E-5 238 4.1E-5 2.8 3.9E-6 2.8
256 7.0E-6 2.8 1.5E-5 2.8 1.4E-6 2.8
512 2.5E-6 2.8 5.3E-6 2.8 5.0E-7 2.8
N ES\}) gg\}) 65\}) 95\}) EE\}) QS\})
4 5.0E-2 1.2 5.8E-2 1.1 3.1E-2 1.4
8 3.7TE-2 1.3 4.6E-2 1.3 22E-2 14
16 2.7E-2 1.4 3.4E-2 1.3 1.6E-2 14
32 19E-2 14 2.5E-2 1.4 1.1E-2 14
64 1.4E-2 14 1.8E-2 1.4 8.0E-3 1.4
128 98E-3 14 1.3E-2 14 5.7TE-3 1.4
256 69E-3 14 8.9E-3 1.4 4.0E-3 14

512 49E-3 1.4 6.3E-3 1.4 28E-3 1.4
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Silpnai singuliariy Voltero integraliniy-diferencialiniy lyg¢iy aprok-
simavimas kolokacijy metodu

I. Parts, A. Pedas

Darbe nagrinéjamas silpnai singuliariy Voltero integraliniy-diferencialiniy lygéiy skaitinio
artinio radimo algoritmas. Integralai priklauso ne tik nuo sprendinio, bet ir nuo jo pirmosios
i§vestinés. IStirtas kolokacijy metodo tikslumas, kai naudojami netolygis ir artimi tolygiems
tinklai. Teoriniai jver¢iai patvirtinti skai¢iavimo eksperimento rezultatais.



