MATHEMATICAL MODELLING AND ANALYSIS
VoLuME 8 NuUMBER 4, 2003, pAGES 329-335
© 2003 Technika ISSN 1392-6292

GENERALIZED LINEAR METHODS AND
CONVERGENCE ACCELERATION

I. TAMMERAID

Department of Mathematics, Tallinn Technical University
Tallinn, 19086, Estonia

E-mail: itammeraid@edu.ttu.ee

Received September 21 2003; revised November 19 2003

ABSTRACT
Several A-boundedness propositions for generalized linear methods A = (A,), while A,

are specially fixed linear bounded operators from Banach space X into X, are presented.
These results are proved using necessary and sufficient conditions for inclusion Amﬁ‘( C m‘)‘(
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1. INTRODUCTION

Let X, Y be Banach spaces and £(X,Y) be a space of linear bounded op-
erators from X into Y. A sequence x = (&) (& € X) is called A\-bounded

(A-convergent) if g, = O(1) (El klim ﬂk> , whereas A = (\g) with 0 < X\, A&
—00
and By = A\ (& — &) with & = klim &k Let m% (cX) be a set of all \-bounded
—00
(A-convergent) sequences. If Ay = O(1), then
my = ¢y = cx,

while cx is a set of all convergent sequences (&) (&x € X). A sequence x =
(&) is called (see [4] or [13]) summable by a generalized method A = (4ng),
Apr € L(X,Y) if y = (n,) with

N = i% Ank& (1.1)

k=0

is convergent.
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o0
Unless indicated otherwise a sum Y, will always be understood as > and a

k k=0
limit lim as lim . The transformation A is called accelerating A-boundedness
n n—oo
(A-convergence) if Amy C m¥, (Ack Ccf) with 0 < pg /* and
lilIcnuk/)\k = 00. (1.2)

In applied mathematics we often study cases with weaker condition than (1.2).
In the sequel Ay, 7 0o and pi * 0o. A method A = (4,,) is called triangular
if Ay =60 (k> n), whereas 6 is the zero-operator. A method A4 = (A,x)
with A, € L(X,X) is called regular if Acx C c¢x and lim, 7, = limy &.
Let I € L£(X,X) be the identity operator. In the case of number sequences
and matrices Kangro [5] proved that a regular triangular method can not
accelerate the convergence. Kornfeld [7] generalized Kangro’s result for any
regular number-matrix method.
To prove our propositions we use two Lemmas (see [11] and [12]).

Lemma 1.1. Let A, € L(X,Y), A = (Ank) and ex (s) := (s,5,5,...) with
seX. If

in norm, then the conditions

Aex(¢) emls (¢ € X), (1.4)
%AZI | Ax|| < o0, (1.5)
/"nzk:)\;1 ”Ank - Ak” = 0(1) (1'6)

are necessary and sufficient for the inclusion
Amy C mh. (1.7)
Lemma 1.2. Let Apy, € L(X,Y), A= (An) and
er (s) == (0,...,0,6,0,...), ex(s) == (A", A "6, A5 70s,...)
with ¢ € X. The conditions

Aek (§) € Cl;’a Ae (C) € Cl;’: -Ae/\ (C) € Cﬁa

Y4
sup > [[Aukskll = O(1) (s € X, n,p € No),
lsw <1 £=0
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p
sup ZHHA;1 ||(Ank - Ak) (k” = 0(1) (§k € XJ n,p € NO) )
Il lI<1 k=0

are necessary and sufficient for the inclusion Ack C ck.

In this article using Lemma 1.1 several partial cases of Am% C m are
studied. Using Lemma 1.2 analogical results for Ack C ¢4 can be derived.

2. CONVERGENCE ACCELERATION USING GENERALIZED
RIESZ METHOD

Let us denote by (R, P,,), or shortly by R, the generalized Riesz method with
R, € L(X, X), defined in [8] by

[ R.P. (k=0,1,...,n),

where Py, R, € £(X, X), while R, is determined by
RuY.Pi(=( (CEX, neNy). (22)
k=0
Lemma 2.1. [8]. If
lim [|R,|[=0 (2.3)
and
1Bnll 22 [1Px]l = O(1), (2.4)
£=0
then the method (R, P,) is regular.

Proposition 2.1. If X is a Banach space, then the conditions (2.3), (2.4)
and

fon || R | kZ:O/\I;I I1P: ]l = O(1) (2.5)
are sufficient for the inclusion
Rmy C mh. (2.6)

Proof. Let us use Lemma 1.1 by fixing A = R. By Lemma 2.1 the conditions
(2.3) and (2.4) are sufficient for the regularity of the method . As A =R is
regular, then (see [8] or [9]) Ax =6 (k € Np) . Using (1.1), (2.1) and (2.2) we
get

m= Y FEPC=C ((€X, neNo).
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So we have
n=1lm Y R,P,(=¢(,
k=0

P (Mn — 1) = pn (€ —¢) =0.

That means
Aex (¢) € mk

and the condition (1.4) is satisfied. As Ay =0 (k € Np), then the condition
(1.5) is satisfied. The condition (1.3) follows from

Ak = Akll = [|Ra Py — 6] < || Rall [|P&]| "= 0.
The condition (1.6) follows from the condition (2.5). That means the con-
ditions of Lemma 1.1 are satisfied and from (1.7) we get the assertion (2.6).

This completes the proof. B

Using [12] we get the following result.

Remark 2.1. If the conditions of the Proposition 2.1 are satisfied, then
tn/An = O(1), that means a generalized Riesz method R, satisfying the con-
ditions of Proposition 2.1, can not accelerate the convergence.

Remark 2.2. If we want to use a method R for acceleration of the conver-

gence we have to use nonregular methods. A regular method R is used to
accelerate the convergence in some subsets of m% (see [10]).

3. CONVERGENCE ACCELERATION USING GENERALIZED
EULER-KNOPP METHOD

Let us denote by (€, A), or shortly by £, the generalized Euler-Knopp method
with Enp, € £L(X, X), defined in [8] by

(PRI B
where A € £L(X,X), A #6 and A° =1.
Lemma 3.1. [8]. Method (£, A) is regular if and only if

A+ - Al <1 (32)

and
11 — Al <1. (3.3)
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Proposition 3.1. If X is a Banach space, then the conditions (3.2), (3.3)
and

oo _4(n
i S5 () 1A =000 (3.4)
k=0 k
are sufficient for the inclusion
Emi C mk. (3.5)

Proof. Let us verify the conditions of Lemma 1.1 by fixing A = £. By Lemma
3.1 the conditions (3.2) and (3.3) are sufficient for the regularity of the method
E. As & is regular, then (see [8]) Ax, = 6 (k € Ny) . The condition (1.5) follows
from A, =6 (k € Ng). Using (1.1) and (3.1) we get for ( € X that

Nn = i (Z)A’“ T-N""¢=A+T-A)"¢

k=0
:I§:C (nENo).

So we have
n=Ilimny,=lim{=(,
n n
P (M —m) = pn (¢ —¢) =0,

and
Aex () emh (CeX).

That means the condition (1.4) is satisfied. As Ay = 6 (k € Np), by condition
(3.3) we get

n n—
i = Al = el = | () (7 = 4

n n—k n—00
< (1) I = M o

So the condition (1.3) is satisfied. The condition (1.6) follows from condition
(3.4). So the conditions of Lemma 1.1 are satisfied and from (1.7) we get
(3.5). This completes the proof. B

Using [12] we get the following result.

Remark 3.1. If the conditions of the Proposition 3.1 are satisfied, then

l;—" = 0(1), that means a generalized Euler-Knopp method &, satisfying the

n
conditions of Proposition 3.1 can not accelerate the convergence.
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Remark 3.2. If we want to use a method & for acceleration of the conver-
gence we have to use nonregular methods. A regular method &£ is used to
accelerate the convergence in some subsets of m%.

4. CONVERGENCE ACCELERATION USING PROJECTIONS

Let {T%x} (k€ Np) be a sequence of operators, while T}, € £(X,X). For
example we can use mutually orthogonal continuous projections T} on Banach
space X as it was done in [1]. Let us define generalized method K = (K,)
by

Kok = cnie T (an ER V ¢y € C) . (41)

Proposition 4.1. The conditions

liTILn cnk =0, (4.2)
Mn (%C"kaC — liTIln %C"kaC) = 0(1) (C S X) (4.3)

and
unEk:)\;?l lenk| 1 T%[l = O(1) (4.4)

are necessary and sufficient for the inclusion
Kmy C mk. (4.5)

Proof. Let us use Lemma 1.1 taking A = K. As T}, are bounded operators
we get using (4.1) and (4.2) that A = 0 and likewise that the conditions
(1.3) and (1.5) are satisfied. The condition (1.4) follows from (4.3) and (1.6)
follows from (4.4). So all the conditions of the Lemma 1.1 are satisfied and
(4.5) follows from (1.7). W

Remark 4.1. Using Proposition 4.1 and the results proved in [1] several
convergence acceleration theorems for the method of Riesz (see [2]), for the
method of Jackson-de La Vallée Poussin (see [2]), for the method of Bohman-
Korovkin (see [3]), for the method of Zhuk (see [14]) and for the method of
Favard (see [6]) can be derived.
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Apibendrinti tiesiniai metodai ir konvergavimo greitinimas
I. Tammeraid

Straipsnyje pateiktos kelios A — apréZtumo teoremos apibendrintiems tiesiniams metodams

= (Ank), kur A, yra tam tikri fiksuoti tiesiniai apréZti operatoriai, apibrézti Bana-
cho erdvéje X X. Teoremos jrodytos naudojantis butinomis ir pakankamomis salygomis
Am} C ml;.





