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ABSTRACT

We describe a numerical procedure for solving the stationary two-dimensional Stokes prob-
lem based on piecewise linear finite element approximations for both velocity and pressure,
a regularization technique for stability, and a defect-correction technique for improving ac-
curacy. Eliminating the velocity unknowns from the algebraic system yields a symmetric
positive semidefinite system for pressure which is solved by an inner-outer iteration. The
outer iterations consist of the unpreconditioned conjugate gradient method. The inner it-
erations, each of which corresponds to solving an elliptic boundary value problem for each
velocity component, are solved by the conjugate gradient method with a preconditioning
based on the algebraic multi-level iteration (AMLI) technique. The velocity is found from
the computed pressure. The method is optimal in the sense that the computational work
is proportional to the number of unknowns. Further, it is designed to exploit a massively
parallel computer with distributed memory architecture. Numerical experiments on a Cray
T3E computer illustrate the parallel performance of the method.

1. INTRODUCTION

The Stokes equations model the flow of a slow viscous incompressible fluid as
well as that of an isotropic incompressible elastic material. They are the linear
part of the Navier-Stokes equations, and since many of the problems of solving
the full Navier-Stokes equations are present when solving the Stokes equations,
the latter have been an intensive topic of research. For problems in fluid
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dynamics it is not at all exceptional to solve two or three-dimensional problems
with perhaps millions of unknowns. Thus, large scale scientific computations
are involved, and it is natural to try to exploit massively parallel computers.

This study concerns a parallelizable method for solving the stationary case
of the two-dimensional Stokes equations. This is the problem of finding a
vector function u(z,y) = [ui(z,y), us(z,y)] and a scalar function p(z,y) that
satisfy the system

—Au+Vp = f inQ,
dive = 0 inQ, (1.1)
u = g ondf,

where Q0 C R? is a bounded domain with boundary 9. The function w is the
velocity of the fluid and p is the kinematic pressure.

The finite element treatment of the Stokes problem (1.1) leads to a linear
algebraic system which can be ordered so as to assume the form

o o] bl = le) 12

The vectors Uy, and p,, are the discrete velocity and pressure, respectively.
The coefficient matrix is symmetric and indefinite. Further, because of the
Dirichlet boundary conditions for u, the matrix block A is positive definite.

A standard approach to discretize the Stokes problem is to apply mixed
finite element methods. It is well known, however, that the spaces used for
u and p cannot be chosen independently. More precisely, they must satisfy
the inf-sup, or LadyZenskaya-Babuska-Brezzi (LBB), condition (Section 2).
Typically, stable element pairs consist of piecewise polynomials of different
degrees for velocity and pressure. Pairs of finite elements that satisfy the
LBB condition are referred to as LBB-stable or compatible. There are a num-
ber of mixed elements that are known to satisfy the LBB condition (cf. [1],
[9], [15], [21], for example). One of the simplest is the so-called Mini-element
(P1-bubble/P1), where the velocity is approximated by the standard piece-
wise linear basis functions, enriched by a ‘bubble’ function on each triangle,
and the pressure is approximated by piecewise linear basis functions with no
enrichment. Generally it is the pressure variable that is most sensitive to
instability. In particular, unstable element pairs can give rise to unwanted
‘spurious’ pressure modes, illustrated for example in [1], [15], [13].

The restraint imposed by the LBB condition is unfortunate in so far as
there are significant practical benefits in choosing the same finite element
space for both velocity and pressure, an approach hereafter referred to as
‘equal-order approximation’. The advantage of equal-order approximation is
especially strong in the context of parallel computation. Accumulated experi-
ence with massively parallel machines indicates that efficient solution methods
on typical parallel architectures favor simplicity and homogeneous treatment
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of all components involved in the solution process because this unifies the
data structures and access to them. Fortunately, it was discovered that the
LBB condition can be ‘evaded’ by regularization techniques. These allow
equal-order approximation at the expense of introducing a mesh—dependent
perturbation in (1.2). More specifically, (1.2) is replaced by a system of the

form
{Pj} —EC] [gﬂ - {G faé} (13)

where ¢ is a regularization parameter and C and G are a properly chosen
matrix and vector, respectively. Actually, systems of this type arise from
certain mixed element methods via the process of static condensation, an
example being the Mini-element. However, the generality of (1.3) opens the
door to new discretization methods. For a discussion of the regularization
approach see, for example, [2], [6], [8], [10], [14], [17], [18].

This paper describes a solution procedure for the Stokes problem based on
standard piecewise linear approximation for both variables combined with a
consistent regularization technique for stability and a defect-correction pro-
cess for improving the accuracy of the solution (especially the pressure). The
velocity unknowns are eliminated from (1.3) to obtain a system for pressure
alone. This system is then solved by inner-outer iterations, each based on the
conjugate gradient method. At the heart of this process is an inner-iteration
preconditioner consisting of an algebraic multilevel iteration (AMLI) solver
which can be very effectively implemented on parallel architectures. The
remainder of the paper is organized as follows: Section 2 reviews some of
the basic theory of the Stokes problem and its classical finite element treat-
ment. Section 3 describes our finite element method, gives an analysis of
the discretization errors associated with it, and presents a defect-correction
technique for improving accuracy. Section 4 discusses the algebraic aspects of
the problem, including the inner-outer iterations technique referred to above.
Section 5 presents the results of some numerical experiments on a Cray T3E
MPP computer, and Section 6 states our conclusions.

2. BACKGROUND

In this section we review some of the basic theory of the Stokes problem and
its solution by mixed finite element methods. Standard notations are used
throughout the paper, for details see [3].

Let 2 be a bounded and connected domain of R? with a Lipschitz continuous
boundary 0. Let the Stokes data f and g in (1.1) be functions in (LZ(Q))2

and (HY/ 2(89))2, respectively, where g satisfies the compatibility condition

/ g -ndS =0. (2.1)
o0
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The following weak formulation of the Stokes problem (1.1) can be derived:

Find u € (Hl(ﬂ))2 and p € L*(Q2) such that

(Vu, Vo) — (p,dive) = (f,0)  Yoe V(Q), (22)
u=g on 01,

where ](}(Q) = {v € (H&(Q))2 rdive = 0} and where the inhomogeneous

boundary condition is to be understood in the sense of traces. Problem (2.2)
has a unique solution. (See [9], for example).

We will now derive an alternative variational formulation of the Stokes
problem which includes pressure. To do this we need the following theorem:

Theorem 2.1. Let L be a continuous linear functional on V(). Then L(v)
=0 for all v € V(Q) if and only if there evists p € L*(Q) such that L(v) =

(p,divw) for all v € V(Q). Further, if p exists then it is unique within an

additive constant.

(See [9]). Hereafter, p will denote the unique pressure function in L3(f2).
Taking as L the linear functional

L(v) = (Vu, Vo) = (f,v), veV(Q)

where u is the solution of problem (2.2) we can deduce from the preceding
theorem that there exists a function p € L3(f2), such that

(Vu, Vo) — (p,dive) = (f,v) Yo € V(Q).

This establishes that u and p are a solution of the following variational prob-
lem:

Find u € (HI(Q))2 and p € LZ(Q) such that

a(u,v) = b(p,v) = (f,v) Vo e V(Q), (23)
b(g,u) =0 Vg € H'(Q) NL(Q), (2.
u=g on 0F), (2.5)

where a(u,v) = (Vu,Vv), b(g,v) = (g,divo).

Theorem 2.2. The solution of problem (2.3)-(2.5) is unique.
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(See [9], for example).

When u and p are sufficiently smooth then they are the solution of the
original formulation of the Stokes problem (1.1). It will be noted that problem
(2.3)-(2.5), in contrast to problem (2.2), is not expressed in terms of the

o
divergence-free space V(£2). This is a great advantage for discretizations based
on the mixed finite element method, because the construction of finite element

subspaces of 102(9) is far from straightforward.

The existence and uniqueness of the solution of problem (2.3)-(2.5) are
intimately connected with two basic properties of the Stokes problem, namely:

(i) The bilinear form a(-,-) is V-elliptic on V(2); i.e., there exists a positive
constant a such that

a(v,v) > a||v||%, Yo € V(Q). (2.6)

(ii) The bilinear form b(-,-) satisfies the inf-sup condition; i.e., there exists a
positive constant 8 such that

(¢,divo)

sup > Bllgllo Vg € LE(Q). (2.7)

veV(Q) llvlly

We consider now the discretization of the Stokes problem by the mixed finite
element method, assuming for simplicity that Q is a polygon and g = 0 on
0Q. Let T, = {Tx}he, be a triangulation of Q, where h is the maximum
element edge length. Let V" and P" be finite element subspaces of V() and
L3(12) based on T}, and containing the complete polynomials of degree k and
[, respectively. Then the corresponding discrete analog of problem (2.3)-(2.5)
is the following:

Find uj, € V" and p € P" such that

a(wn,vn) — b(pr,vr) = (f,vn) Yo, € VI, (2.8)
b(gn,un) =0 Vg, € P".

This leads to an algebraic system having the form of (1.2).

We would like conditions (i) and (ii) for the well-posedness of problem
(2.3)-(2.5) to be satisfied also in the discrete case. As regards V-ellipticity,
the situation is simple and satisfactory. Since V" C V(Q), (2.6) implies

a(vn,vs) > allvallj, Vo, € V",
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where «a is independent of h. In contrast, the situation regarding the discrete
LBB condition is more complicated. For any fixed mesh let

B(h) = inf  sup (g1, div vn)

(g divon) (2.9)
wePt oy llanllo lonlly

and consider a regular sequence of mesh refinements with A — 0. The follow-
ing cases can arise:

1. B(h) > Bo >0 Vh (for some fp).
2. B(h)>0 Vh and g(h) -0, h—0.
3. B(h)=0 Vh.

Mixed elements satisfying Case 1 are said to be LBB-stable, or compatible.

We give the following discretization error estimates to illustrate the ac-
curacy of LBB-stable finite elements (see [9]). They are derived under the
assumption that 7p is regular. The second estimate requires, in addition,
that Q is convex.

(A) First-order approzimations on triangular elements. The velocity is ap-
proximated by special quadratic polynomials and the pressure by piecewise
constants.

llw —wnlls + llp = pallo < Cr A(llullz + pll1)-

lu —urllo < Cah?(llullz + llpll).-

The same estimate holds for the Mini-element, see [1].

(B) Higher-order approzimations. The velocity components are approxima-
ted by polynomials of degree k + 1,k > 2. Polynomials of degree k — 1 are
used for the pressure.

If we (HF1(Q) N HL(D))” and pe HY(Q)NL2(Q) then
llw = wnlls + llp = pallo < Cy B (llwllrrr + llpllx),
lw = unllo < Co B* ' (|ullpr1 + |Ipllk)-

3. AN EQUAL-ORDER APPROXIMATION METHOD

As stated earlier, our aim is the efficient iterative solution of the discrete
Stokes equations on massively parallel (distributed memory) computers and
a way to reach this goal is to use equal-order approximation with suitable
regularization. Here we will focus on piecewise linear polynomials for the
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approximation of both velocity and pressure. Here and in the remainder of
the paper we assume that P* C H'(Q) N L2(1).

Our regularization technique is based on a perturbed form of the weak

formulation of the Stokes problem given by (2.3)-(2.5). To derive it, we note
that the first equation in (1.1) implies the identity

—Au-Vq+Vp-Vg=f-Vq
and integrating over {2 we obtain, for any q € H(1),
c(p,a) = (£, Va) + (Au, Vq)

where we have defined ¢(p,q) = (Vp - Vq). Thus the problem of finding
€ (H2(2))” and p € H'(Q) N L2(R) such that

a(u,v) —b(p,v) = (f,v) Yo e V(Q), (3.1
b(q, u) + o c(p, ) o (f,Vq) +od(q,u) Vg€ H'(Q) N L), 2)
=g on 00, (3.3)

where

Z/T (Au-Vq) d (3.4)

is consistent with (2.3)-(2.5) for any o. For the purpose of stabilization we
take o positive.

Suppose now for simplicity that g = 0 and consider the following discrete
analog of (3.1)-(3.3):

Find u;, € V" and pn € P" such that
a(up,vp) —b(pn,vn) = (f,vn) Yo, € V!, (3.5)
b(qn, un) + o c(ph,qn) = o (f,Van) + o d(qn,u}) Van € P", (3.6)

where wj, is an approximation of w. Two special cases are
up = u, (3.7)
which is of theoretical interest only, and

up = Up, (3.8)
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which makes d(gn,uj) = 0 for all g (because uj, is piecewise linear). The
case of (3.8) is well known. (See, for example, [14] and [10]). It is shown in
[14] that the following error estimates hold for this case when o = O(h?):

lu = upll + 2 lp = pull < C (Rllullz + pll2) - (3.9)

llu —unllo + 7 llp = prllo < C (h* [lull2 + B*|lpll2) - (3.10)

Our goal now is to investigate the errors that arise from (3.5)-(3.6) in the
case of a more general function uj . We begin by putting v = v, and ¢ =gqp
in (3.1)-(3.6), obtaining

a(uavh) - b(pyvh) = (f)vh) V'Ul’z € Vh>

b(an,u) +oclp,an) = o (f,Van) +odlgn,u) Yan € P". (3.11)

Subtracting (3.5)-(3.6) from (3.11) and using the bilinear property of the
various terms, we find that

a(u —up,vp) —b(p —pn,vn) = 0 Yoy, € V",
b(qh,u—Uh)+UC(p—ph,qh) = O-d(qhau_u;;) VQhEPh

Let u; denote the interpolant of w in V", and let p; denote the interpolant
of p in P"*. We add a(uy,vy) and b(pr,vy) to both sides of the first equation
above and b(qp,ur) and ¢(pr, q) to both sides of the second and obtain, after
suitable rearrangement,

a(ur —up,vp) — b(pr — pr,vn) = alur — w,vy) — b(pr — p,v)

Yvy, € Vh,
b(qn, wr — up) + o c(pr — p", qn) = blgn, ur — w) + o c(pr — p,qn)
+od(gn,u —uj) Yqp, € P".

Putting v, = uy — up, and g, = p;r — pr and adding the two equations we
have then
a(ur — up,ur — un) + oc(pr — ph,pr — pn)
= a(ur —w,ur —up) — b(pr — p,ur — up) + b(pr — pa, ur — u)

+oc(pr —p,pr — pu) + od(pr — pr,u — uj).
(3.12)

Now a(uyr —up,ur —up) = |uy — 'Ufh|% and c(pr — pn,pr —pn) = |p1 _phﬁ-
Further, applying Cauchy-Schwarz and Young inequality:

1
abgaa2+4—b2, a,bac R, a>0
a
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to each of the terms on the right-hand side of (3.12) we obtain

alur —w,up —up) < arlup —ulf + g |lur —uli,
—b(pr —pyur —up) < aolpr —pl§ + gaplur —unli,
b(pr — pr,ur —w) < azlpr — pal? + oz lur — ulg,
c(pr —p,pr —pn) < aalpr —plt + = Ipr — pali,
dlpr —pn,w —up) < aslpr —palf + 1a0 g [Au — Augff g

In deriving the third inequality we have used the identity

/(;DI —pp) div(ur —u)dQ = — / V(pr —pn) - (ur —u) dQ.
a &

Incorporating these results in (3.12) yields

1
lur —unli + olpr —puli <o lur —ulf + oas|pr —plf + — |lur —ulj

- 4oz
+ L, 1 | 2+ (s + — + | ki
—+— | |lur—u az + — + o« —
do; | Aoy I hl1 3 Log 5| |P1 — Phrl1
ag
+azlpr =B+ Y 1Au— Al (3.13)
5
The a parameters are arbitrary positive numbers. With
ag=ay=1, ag=0/6, a4y =3/2, a5 =1/6
we can rewrite (3.13) as
1 o 3o
lur—wali+ Sl —pull < Jur—uli+ 5 - pli (3.14)

3 30 "
+ % lur —uly + |pI—P|3+7 ;MU—A’M%,H-
ke

Now applying standard interpolation theory we see that
1
5 lur = uplf + g lpr —puli < O(h?) +0O0(h?) + 0 *O(h*) + O(h*)

3o .
+ 5 > Au - Aujld g (3.15)
Ty

Thus if we put o = O(h?) and assume only that

S [Au — Au 5, = O(R) = O(1) (3.16)

Ty
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then we obtain the estimates
|u1 — uh|1 = O(h) and |p1 —ph|1 = 0(1)

Finally, we can invoke triangle inequalities to bound the discretization errors
as follows:

|lu —uply < |u—wurls + |ur —upls = O(h) + O(h) = O(h),

Ip —puli <Ip—prli + pr —prli = O(h) + O(1) = O(1).

Estimates in the L?-norm

Following a similar derivation in [14] and applying the classical Aubin-Nitsche
trick, we obtain the following estimates

llw = unllo + Rllp = prllo < hllw —wnlls + A%llp = prlls + K[| fllo. (3.17)

A detailed derivation can be found in [3].

Our real interest, however, is not the orders-of-magnitude of these errors,
which are those expected, but the role of Awuj as revealed by the bound
in (3.15). The bound decreases as Auj — Awu, and this is the motivation
for the following defect-correction scheme: Initially we put uj; = up, making

d(gn,u;) =0 in (3.5)-(3.6) and

3o . 30
> Z |Au — Auh|(2),Tk =3 Z |Au|g,Tk
Tk Tk

in (3.15). We solve (3.5)-(3.6) for up and pp, and then use u; to compute
a piecewise linear function wy, that approximates Au. (We do not compute
a function w; with the property Au; = wj since all that is needed is an
approximation to Awu). Then we solve (3.5)-(3.6) again, this time with

d(gn,ul) = Z/ (wh - Vau) d2 (3.18)
7, 7Tk
with the expectation that

30 30
5 Z |Au — wh|g,Tk <5 Z |AU|(2),T,c
Ty Ty

decreasing the bound in (3.15). This process can naturally be repeated.
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Regarding the computation of w" in our numerical experiments (Section
5), we have worked with a uniform mesh on a rectangle. This has allowed
us to define values of w”(z,y) at the mesh nodes by applying the standard
five-point difference approximation for A to any given approximation wuj to
u. Then we have extended the definition of w"(z,y) to the entire domain by
the usual piecewise linear interpolation.

One might hope that defect-correction, if allowed to continue indefinitely,
would produce a sequence of solutions that converged to the solution of (3.5)-
(3.6) for the case u* = u, which would make

3o .
> Z |Au — Auh|(2)7Tk =0
Ty

in (3.15). This cannot happen, however, because the pointwise error in
w"(z,y) at the nodes is only O(h®). Nevertheless, in our experiments two
to four iterations of defect-correction improved the solution noticeably (par-
ticularly the pressure), see Figures 1 and 2. After that the solution is more
or less stable .

Finally, we mention a computationally attractive variant of the above pro-
cedure. It arises from the identity

/Q(A'U-Vq)dQ:/ ¢ (Av - n) ds

(291

(m is the unit outer normal on 012), which holds for any divergence-free func-
tion v (i.e., dive = 0). Thus if we redefine the bilinear form in (3.4) as

d(q,u) = %: /Tmaﬂ q(Au-n)ds (3.19)

then problem (3.1)-(3.3) is still consistent with (2.3)-(2.5).

Consider now the discrete formulation (3.5)-(3.6) with d defined by (3.19).
The new solution is in general different from the old one because u; may
not be divergence-free. However, if u} is a good approximation to u then it
will be nearly divergence-free and the new solution to (3.5)-(3.6) will be close
to the old one. The advantage of the new formulation is that the boundary
integrals can be computed much more quickly than the corresponding interior
integrals. In most of our computations we have used this faster variant, and
the numerical results were in all cases indistinguishable.

4. THE ALGEBRAIC PROBLEM

The discrete variational problem (3.5)-(3.6) leads to an algebraic system in
the form of (1.3). One can choose, however, between singular and nonsingular
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versions. The singular version arises when the requirement

/Qph dQY=0 (4.1)

is dropped, the consequence being that both the function p, and the vector
p;, are unique only within an additive constant. (Our scheme has no spurious
modes that would further increase the nonuniqueness). This simplifies the
construction of (1.3) and is natural also from a theoretical point of view, since
the restraint (4.1) is usually nonphysical. A way to impose (4.1) is to require
that all basis functions in the expansion for p,, satisfy the same restraint. In
practice, however, nonsingularity is often achieved simply by first constructing
the singular system and then requiring that the pressure has a given value at
a given node. A drawback of this procedure is that it can adversely affect
the rate of convergence of iterative methods. Thus to avoid both the use of
modified basis functions and a possible loss of rate of convergence, we work
directly with the singular system. A consequence of this is that our computed
pressure depends on the choice of the initial vector for the iterations. For the
sake of uniqueness we remove the constant pressure mode at the end of the
computation, thereby imposing (4.1).
Eliminating Uy, from (1.3) leads to the Schur complement system

BTA'B +¢C)p, =BTAT'F - G - ¢G. (4.2)

After the pressure has been computed, the velocity can be recovered via the
relation

U,=A"'(F-Bp,). (4.3)

We solve (4.2) by the conjugate gradient method. (Hereby we will not use
any preconditioner. For problems with an irregular mesh it would, however,
be advisable to use a diagonal scaling matrix as a preconditioner.) The rate
of convergence depends on the effective condition number, (S), of the sym-
metric positive semidefinite matrix

S=BTA"'B+¢C. (4.4)

The effective condition number is defined here as the ratio of the largest
eigenvalue to the smallest positive eigenvalue. Let N denote the order of S
(this is the number of nodes in the mesh) and let e = [1,1,...,1]T € RV. Let
P" be the orthogonal complement of span{e} in RY , and suppose we have an
equality of the form

— "= <1? VYpePh (4.5)
p
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where M, is the pressure mass matrix. Then it is easy to show that

Now it is well known that x(M,) = O(h°), so the dependency of (S) on h is
a function of the ratio I'? /2.

Inequalities of type (4.5) play an important role in the analysis of the LBB
condition. More precisely, in the case of mixed elements without regularization
(o = 0) (4.5) is satisfied for v = S(h), where B(h) is given by (2.9), and for
a constant I' independent of h. Thus mixed elements that are LBB—stable
have the property that x(S) = O(1). A major goal of regularization (o # 0)
is to make k(S) = O(1) also for element pairs that do not satisfy the LBB
condition. Considering now our own S, an analysis based on [12] (Result 5.1)
leads to the bound

(2+36:%)

< h

~(S) S —— 500
min | 1, 7z

where 7 is fy (the positive lower bound of 3(h)) for the LBB-stable Mini-
element.

772Kk(M,), (4.6)

Corollary 4.1. Our regularized equal-approximation method makes x(S) =
O(1) if we put o = C'h?, where C is a constant. Further, the number of
conjugate gradient iterations required to solve (4.2) to given accuracy is then
bounded independently of h.

Analogous results for reduced systems based on compatible pairs are presented
in [5], [11], [15] and [20].

We turn our attention now to a single step of of the conjugate gradient
method applied to (4.2). Almost all of the work is required for an operation
of the type

q=Sp=B"(A"'(Bp)) +oCp

for given p. The work here is dominated, in turn, by the need to solve a
symmetric positive definite system of the type

Aw =W (4.7)

for given w. To solve (4.7) we apply the preconditioned conjugate gradient
method, thus creating an inner-outer iteration type of algorithm. We have
applied here a short-length version of the AMLI preconditioner described ex-
tensively in [4]. It turns out that (4.7) can be solved to given accuracy in a
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a) The rhs term b) The rhs term
>, Jp, (Auy - Vg) dQ com- >, Jr, (Auy - Vg) dQ ne-
puted from exact u glected

c) After four defect-correction d) After four defect-correction
steps steps
Figure 1. Contour lines for the pressure: h = 0.03226 (exact pressure: - - -; computed
pressure: )

number of iterations that is bounded independently of h. Consequently, the
entire algorithm for solving (4.2) is optimal in the sense that the total work
is proportional to the number of unknowns.

Remark 4.1. We stress that aiming at the efficient solution of the Stokes
problem on massively parallel computer architectures and using an equal-order
approximation method, combined with a proper regularization, go hand-in-
hand. As discussed in [4], an iterative solution method can be efficient on a
parallel machine if it is optimal on a serial computer. The latter condition
restricts the choice of a solution method to the class of multilevel methods.
However, the efficient implementation of LBB-stable finite element pairs is
far from trivial, and multigrid methods, for instance, are not even always ap-
plicable for compatible pairs (see [7]). Further, although the Mini-element is
compatible, it yields a pressure solution that it is often polluted by oscilla-
tions. This is demonstrated in [13], see also Figure 5.1 in [3]. The explanation
of this phenomenon is that in general stabilization via bubble functions is
equivalent to a regularized formulation with a particular value of the regular-
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a) The rhs term

ZTk ka (Auy - Vg) dQ com-
puted from exact u

-5
40 60 80 100 120 140

c) After four defect-correction
steps

b) The rhs term

>, Jr, (Auy - Vg) dQ ne-
glected

140

d) After four defect-correction
steps

Figure 2. Contour lines for the pressure: h = 0.007874 (exact pressure: - - -; computed

pressure:

)

ization parameter o (see also [13] and [12]), and the presence of oscillations
depends on the size of . In the case of the Mini-element, it turns out that
the value of ¢ is too small such that significant oscillations are produced.

5. NUMERICAL RESULTS

The Stokes equations (1.1) in R? read as follows:

—A’LL +pz
—Av +py

Uy + Uy
u(z,y)|on
v(z,y)|on

Let Q = (0,1)? be the unit square.
lems:

= fl(x>y) in Q:

fz(l',y) in Q:

0 inQ, (5.1)
gl(xvy)a

= 92('757:[/)'

We consider the following two test prob-
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Problem 5.1. The exact solution of (5.1) is chosen to be u(z,y) = 23 + 2 —
2zy +x, v(z,y) = =32y +y?> — 22y — y and p(z,y) = 2 +y>. The functions
f1 and f>, and the boundary conditions are computed correspondingly.

Problem 5.2. [The driven cavity flow problem] In this case f1, fa, g1 and g2
are zero, except g (z,1) = 1.

The stopping criteria for the outer (unpreconditioned) CG method and for
the inner (AMLI preconditioned) CG method are, respectively,

T Tar—1
;T _1a TiM Ty 12
—— <1077, 71— < 1072,
T T ri M 7y

where r; and r; are the initial and current computed residuals, respectively.
A short-length version of the AMLI preconditioner is used, and the systems
on the coarsest level are solved by a diagonally preconditioned CG method
with a stopping criterion

Tp-1
r; D 7y <103
-1 ’
1 D T1

Figure 1 shows the behavior of the computed pressure for h = 0.03226 in the
following cases: (a) computing the right-hand side term (3.4) using the exact
solution u, (b) neglecting this term in the right-hand side, (c) after one defect-
correction step using (3.18) to approximate (3.4), and (d) after four defect-
correction steps. Figure 2 shows the corresponding results for h = 0.007874.
Table 1 shows the accuracy of the computed velocity components and pressure
for Problem 5.1. In Table 2, the iteration counts for different sizes of the
Schur complement system S are shown. Table 3 shows the performance of the
method on a Cray T3E-600 computer with 64 processors (DEC Alpha 21164,
300 Mhz, 3D—torus). We present iteration counts and elapsed time in seconds.
There are four different times shown in Table 3:

e total is the total execution time which includes generation of the system
matrix and the construction of the preconditioner;

e outer is the total solution time;

e coars. is the time spent to solve systems on the coarsest level during each
preconditioning step;

e comm. is the total time spent on communications during the solution
process.

The code is written in High Performance Fortran (HPF) using BLAS system
subroutines for the vector operations and the shmem communication library
available for the Cray T3E computer.

The major observations regarding Tables 3 are the following:
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(1) The solution method shows very good scalability. The factor two in de-
creasing the total execution time is clearly present in all experiments.

(2) The experiments confirm the theory how to choose the coarsest level for
the short-AMLI preconditioner. There is a clearly seen minimum in the
total solution time for a properly chosen coarsest level in the multilevel
recursion, corresponding to the formula L%KJ, where ¢ is the total number
of levels (for two-dimensional problems). The derivation of the formula how
to determine the coarsest level number in the AMLI recursion can be found,
for instance, in [4]. Earlier numerical experiments with the same method
implemented on a CM-200 and CM-5 computer showed as a best choice the
coarsest level determined from the formula [2¢]. The difference reflects
the fact that the communication network for the Cray T3E computer is
significantly better than that of the CM-200/5 computers. On the Cray
the communications are almost negligible, so although the communication
differences are larger, the coarsest level has to be lower in order to balance

the overall computational work.

(3) When the problem size is increased (in our case four times each time)
the total computational time grows with a factor five. The factor is fairly
constant for the best choice of the coarsest level in the multilevel recursive
preconditioner. It is not the ideal factor four, however, due to the fact that
we have a V-cycle preconditioner of nearly optimal order.

The superlinear speedup observed for some experiments presented in Table 3
is due to subproblem sizes better matching the cache size of the processors.

The numerical results show that the chosen solution method parallelizes
very well on distributed memory machines and confirms that the short AMLI
preconditioner can be recommended when preconditioned iterative methods
are to be implemented for large parallel computations.

6. CONCLUSIONS

In this study we have solved the Stokes problem by combining an equal-order
approximation for velocity and pressure (piecewise-linear approximation in
both cases) with a consistent regularization procedure. The method allows
the use of a bigger stabilization constant than in the mini-element. To improve
the accuracy of the computed pressure and remove unwanted oscillations we
have carried out a few steps of a defect-correction technique. In this way
the approximation order, which is better than for the element pair piecewise
linear—piecewise constants, is close to that for the mini-element but without
the associated oscillations in the pressure occurring for the latter and with
simpler elements. The expected improvement in the computed pressure is
confirmed by numerical experiments.

The elimination of the velocity unknowns yields a symmetric positive semi-
definite system for pressure which we have solved by an inner-outer iteration
procedure. For the outer iterations we have used the unpreconditioned con-
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The boundary term containing Aw is neglected

Grid h It —ulloo [0 —-vllc [P=pllc [P —pllL,

642 1.58710~2 1.9111073 1.25010~3 0.201 2.24610~2
1282  7.87410~3 4.70910~* 3.15410~% 9.97010~2  7.80810~3
2562  3.92210~3 1.17110~% 7.940107° 5.04110-2 2.57210°3
5122 1.9571073 2.92410-5 1.98810~° 2.58710"2 8.66210~%
10242 9.77510~% 8.03510~% 5.15410°% 1.3581072 2.97610*

After one defect-correction step:

Grid h le-ullo [[0-2lloc [P=-pllc IP—pllL,

642 1.58710-2 1.20610~2  1.008 103 0.108 1.57910—2
1282  7.87410~3 3.0011073 2.55710~% 5.33510"2 5.21010~3
2562 3.92210~3 7.49710°° 6.46810°° 2.63810~2 1.74410°3
5122 19571073 1.86310~° 1.64610~° 1.30010~2 5.93110~*
10242 9.77510~% 5.50410~% 4.56010-¢ 8.24010°3 2.05410*

After two defect-correction steps:

Grid h e —ullo [[0-2lec [P=pllc [IP—Pll,

642  1.58710~2 6.96810~% 9.46410~% 8.25910~2 1.112102
1282  7.8741073 1.76910—% 2.40810~% 4.24010—2 3.7051073
2562 3.9221073  4.46110~% 6.1031075 2.15110"2 1.24810° 2
5122 1.9571073  1.09710~% 15821075 1.07810~2 4.26210~*

Table 1.
Problem 5.1: Accuracy of the computed solution (o = h2).

Table 2.
Iteration counts (o = h?).
Coarsest ~ Problem 5.1  Problem 5.2 Problem 5.1
level No. outer inner outer inner outer inner
Grid (totalno. CG PCG CG PCG CG CG iter.
of levels)  iter. iter. iter. iter. iter. min/max
642 8(12) 28 8 29 8 28 160,/169
1282 10(14) 26 8 30 8 27 319/329
2562 12(16) 26 8 30 8 27 625/672
5122 12(18) 26 10 30 10 28 1233/1363
10242 14(18) 26 11 30 11 29 2361/2558
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Levels: Number of PEs

Grid coarse Time
size (fine) 2 4 8 16 32 64 (sec)
161.76 79.77 41.96 total

1282 10(14) 160.76  79.09  41.66 outer
89.18 45.61 24.00 coars.
2.46 2.67 3.29 comm.

406.62 190.54  94.61 49.55 28.90 total

10(16) 403.49  189.06 93.86 49.18 28.71 outer

159.75  80.09 41.63 21.97 13.20 coars.
5.31 5.93 5.58 4.62 3.89 comm.

440.90 213.34 107.87 56.79 34.21 total

2562 12(16) 438.01 211.96 107.16 56.43 34.04 outer
283.38  142.39 74.42 39.19 24.25 coars.
5.75 7.32 7.41 5.90 4.49 comm.

632.60 304.24 154.65 total

5122 12(18) 629.44  302.71  153.81  outer
363.38 183.18 96.15 coars.

14.28 12.14 10.14 comm

1662.73  829.71 total

10242 12(20) 1655.73  826.22  outer
810.11 422.25 coars.
29.89 22.26 comm.

Table 3.
Problem 5.1: Performance results on the Cray T3E-600 computer (o = h?).

jugate gradient method and for the inner iterations the conjugate gradient
method with a preconditioning based on the short-recursion AMLI technique.
Our presentation has emphasized the parallel aspects of this approach. The
numerical results obtained using the MPP Cray T3E-600 computer demon-
strate that this method for the Stokes problem is (nearly) optimal, efficient
and scalable.
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STOKSO UZDAVINIO SPRENDIMAS GALINGAIS
LYGIAGRECIAISIAIS KOMPIUTERIAIS

O. Axelsson, V.A. Barker, M. Neytcheva, B. Polman

ApraSomas skaitinis metodas stacionariajam dvimaciam Stokso uzdaviniui. Metodas pagris-
tas baigtiniy elementy aproksimacija grei€iui ir slégiui, stabilumo reguliarizacija ir defekty
taisymo metodu, kuris pagerina tiksluma. Eliminuojant nezinomus greicius i§ algebrinés
lygCiy sistemos slégiui surasti gaunama simetriné teigiamai pusapibréztiné sistema, kuri
sprendziama vidinémis-iSorinémis iteracijomis. ISoriné iteracija naudoja besalyginj jungti-
niy gradienty metoda. Vidinés iteracijos, kuriy kiekviena atitinka kraStinio elipsinio uz-
davinio sprendima kiekvienai grei¢io komponentei, naudoja salyginj jungtiniy gradienty
metodg. Zinant slégj surandamas greitis. Metodas yra ekonomigkas, nes kompiuterio skaici-
avimai proporcingi nezinomyjy skaic¢iui. Metodas pritaikytas iSnaudoti galingy lygiagreciyjuy
kompiuteriy su paskirstyta atmintimi architektura. Skaitiniai eksperimentai kompiuteriu
Cray T3E iliustruoja metodo iSlygiagretinima.



