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ABSTRACT

In the paper, a filtration model for immiscible — compressible and incompressible — two-
phase liquids is considered. The 1D case of the model is analyzed in detail and it is shown
that approximation of the Buckley-Leverett function by a step-wise linear function leads to
new fictitious jumps of the solution.

1. INTRODUCTION

Filtration of immiscible multiphase — especially two-phase — liquid has been
much studied in the 2"? half of our century (see, e.g. monographs [1], [3], [5],
[7]). The reason is that by means of the models of two-phase liquid filtration
a wide field of application can be described. At the same time solving of these
models presents a real challenge - both in theory and calculation.

The two-phase filtration is described by partial differential equations of the
hyperbolic type of the first order (or by a system of such equations). In the
corresponding solutions jumps may arise even if the input data are highly
smooth and consistent (there are initial and boundary conditions) [5,6]. As
input data the so-called phase permeability curves should be considered, which
are characterized by mobility of a phase depending on its permeability. The
phase permeability curves determine the form of a function — the so-called
Buckley-Leverett function — describing nonlinearity of the partial differential
equation. In turn, the shape of the mentioned curves is determined by the
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properties of a porous medium and liquid. This was the reason for many au-
thors to investigate how the solution of the Buckley-Leverett function behaves
in a stochastic porous medium. A. N. Konovalov [5] has shown that minor
variations in the phase permeability curves can essentially change the solution
(the so-called instability of coefficients).

The main goal of the present work is to show that, if we refuse the smooth-
ness of the Buckley-Leverett function (approximating it by a piecewise-linear
function) we can create many new imaginary jumps of solution. Here we con-
sider filtration of two-phase immiscible — compressible and incompressible —
liquid, with the model of incompressible liquid serving as the limiting case for
that of compressible liquid.

2. THE BASE RELATIONSHIPS DESCRIBING THE FILTRA-
TION PROCESS OF TWO-PHASE IMMISCIBLE LIQUID

Filtration of two-phase immiscible liquid in a porous medium is described by
saturation function for each phase, s;, i« = 1,2. The conservation law for
every phase can be written as [3], [5]-[7]

W +div(p;v;) =0, i=1,2 (2.1)
while the Darcy law for the i-th phase is described as

0; = —k;(s;) gradp, i=1,2. (2.2)
Here m is the medium porosity, p is the pressure (common (equal) for both

phases), p;, v; are the density of the i-th phase and velocity of filtration
through it, respectively. The values

oy = g Ji(s)
ki(si) =k "

are called the phase mobility functions, where & is the medium permeability
and f;(s;), pi are the relative permeability of the i-th phase and its viscosity,
respectively.

The equation system (2.1), (2.2) has to be supplemented by equations of
state for the liquid and porous medium. These can be taken in the form [7]:

1 dp; .
=By i=1.2 2.3
p; dp 6017 ? PR ( )

and, correspondingly,

LR (2.4)
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where Bo1, Bo2, f1 denote compressibility. Then the model of incompressible
liquid is obtained taking £y; = 0, and, correspondingly, 51 = 0.

The phase saturation functions describing the process of two-phase filtration
meet the following obvious relationship:

s1+ so = 1. (25)

Therefore, further we will only use the saturation of one phase — namely that
of the second phase, s = s,.

Finally, to describe the process it is useful (and convenient) to define the
total velocity @ of filtration:

U = v + 03,
which by means of equation (2.2) can be expressed in the form
U= —n(s) gradp, (2.6)
where

n(s) = ki(s1) + ka(s2).

3. A MATHEMATICAL MODEL OF FILTRATION PROCESS
FOR INCOMPRESSIBLE TWO-PHASE LIQUID

Having computed both equations of system (2.1) for incompressible liquid
filtration (p; = poi) in an incompressible porous medium (m # m(¢)), we
immediately arrive at the equation

div (0) =0, (3.1)
which with the help of (2.6) can be rewritten in the form
div (5(s) gradp) = 0. (3.2)

In turn, having expressed through (2.2) the second phase filtration velocity
v3 in a standard form:
L ka(s)

-
Vg = [

and substituting it in the second equation of system (2.1), we obtain:

ds

ot

m— + div (p7) =0, (3.3)

where the function

_ k(s) Ra(s)
PO RGO kG 1 84
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is called the Buckley-Leverett function.

We will analyze only qualitative properties of the solution of equation (3.3)
for the 1D case and therefore transform the system of equations (3.2), (3.3)
and (2.6) for this case. From (3.1) there immediately follows that v = v(t),
which gives for the 1D case the system of equations as below:

0 op,

2 )2 =0, (3.5)
m% +o(t) 8“;? =0, (3.6)

o) = —n(s) 22, (3.7)

We will specify the initial and boundary conditions for finding saturation
s(z,t) in the form:
8 le=0= 8'(t), 8 |t=0= 5°(2). (3.8)

In regard to the other two unknown functions, the simplest situation will
take place if the function v(t) is given, for example, v(t) = v = const (accord-
ing to (3.7), this is equivalent to giving the pressure gradient). Then from
equation (3.6) with conditions (3.8) we find s(z,t). This done, from (3.7) the
pressure p(z,t) can be derived if necessary (for this purpose one should know
the pressure at some fixed point). In the case when the velocity v(t) is not
given, but the values of pressure are known, for example

P lo=0=10"(t), P la=i=p"(t), (3.9)

we can proceed as in [2]. Integration of equation (3.7) yields:

o(t) = : (3.10)

Having found s(z,t) and p(z,t) from equations (3.5) and (3.6) we can em-
ploy expression (3.7) to verify if at various points there is precise fulfillment
of the condition that the total filtration velocity v(t) is independent of x-
coordinate.

4. A MATHEMATICAL MODEL FOR FILTRATION OF COM-
PRESSIBLE TWO-PHASE LIQUID

For compressible liquid using state equations (2.3), (2.4), we will transform
the first term of equation (2.1). This yields:

0si Op  div(piv;
m 2% simpos + b0 L + div (pivi)
ot Pi

= , =1, 2. 4.1
at 07 ¢ ’ ( )
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Next, we will use this equation with index i = 2 (then s; = s) and transform
the second term:

div (p203)

. - /U_' . — -
) = div (v3) + p—2 grad p2 = div (V) + Bo2 V2 grad p.
2 2

It remains now to express v3 from (2.2) so that equation (4.1) can be written
in the form:

0 . . 0
ma—i + div (p0) + s(mPBo2 + 51)8—1; — Boz ka2(grad p)® = 0. (4.2)

To derive the second base equation, we have to solve both equations (4.1)
using the identity (2.5):

Op div(pivi) = div (p293)
= + +
Bls) 5, ” p

=0, (4.3)

where
B(s) = p1+ m(sBo2 + (1 — s)Bo1)
is called the total compressibility [6].

Finally, we transform in this equation the sum of both last terms:

di U1 di 5 s Z
V(pl 1) + V(p2 2) = div (17) + (1 _(,0)_gradp1 _+_(101 gradp2
P1 P2 P1 P2

= —div (pgradp) + [(1 — ¢)Bo1 + ¢ Bo2]V grad p.

This would allow to write equation (4.3) for finding the pressure, in the form:

Op

’BE + [(1 = ¢)Bo1 + ¢Boz]vgrad p = div (n grad p). (4.4)

It is readily seen that the system of equations (4.2) and (4.4) for incompressible
liquids (Bo1 = Bo2 = 0) and an incompressible porous medium (5, = 0)
transforms into equations (3.3) and (3.2), respectively.

For the 1D case we have:

9 N,
B0 +1(1 = 9)Bor + ooz = 5 (n(s)50), (4.5)
m% + (%((Pv) + s(mfo2 + 61)% — Poz kz(%)z =0. (4.6)
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One can see that these equations present a general form of equations (3.5),
(3.6), respectively. Equation (3.7) retains its form, however velocity v may
now be dependent also on coordinate x:

o) = —n(s) 22, (4.7)

Additional conditions remain as above, with the only difference that the ini-
tial condition must be added to the pressure equation (4.5). As an alternative
we can also preset the pressure gradient on one of the boundaries.

5. A NUMERICAL ALGORITHM FOR FILTRATION OF COM-
PRESSIBLE TWO-PHASE LIQUID

As mentioned above, the filtration model for incompressible liquid is obtain-
able from the general model by setting all the elasticity coefficients equal to
zero. Then its numerical algorithm can be worked out directly for the general
model. Since our intention is to analyze the qualitative properties of the so-
lution (or appearance of new jumps of the solution), we can restrict ourselves
to the 1D model.

As a result of numerical experiments, the best choice from various schemes
has proved to be the following system of difference equations (corresponding
to equations (4.5) — (4.7)):

. y
nl P = (A ]y Al )l

. o S hQBJ
= h(Bor(1 = @}) + Boae))v]_, (0} = pl_y) = —"pl, (5.1)

j=0,J-1,i=T,n—1,

with additional conditions (3.9) (assuming that the initial time moment is
given as p |i—o= p3(z)):

p{)-H — O(tj+1) pi;H pl(xn)a p? = pg(xl)ﬂ .] = 07 J - 17 Z = 07”7 (511)
. - 7_ . .
sTT =6l 4 — (=57 (B1 + m502)p57 -
m T

+602k§,z( Y (5.2)
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with additional conditions

shtl = st (tj1), 82 = (i), j=0,J —1,i=1,n (5.21)

and

i1 i1
i+1 i+1 PZ —Pi
i =yt

- 1
i-3 i—3 h ’

j=0,J—1,i=T1,n. (5.3)

Here for equations (5.1) and (5.3) we have

(] +mix1)-

N | =

The standard notations are used in representation of the difference scheme.
For example, 7 is a step along the time axis with index j, h is a step along
x-axis with index i, and so on.

The algorithm for solving the difference scheme is simple: first, by the fac-
torization method for a three-diagonal system of equations, system (5.1) is
solved in regard to p!™"; then from equations (5.2) and (5.3) we find s
and Ufji in an open form. Here the following details should only be men-
tioned: i) at the initial time moment the total filtration velocity is found from
equation (3.10); that is, it is assumed that to derive the filtration velocity at
the initial moment one can use the model of incompressible liquid. 2) at the
point of saturation jump the differential equation (5.1) yields for the pressure
distribution one small peak (1-2%) on its either side, with a total width of
2-3 grid points. Such a defect can be remedied with the help of difference
schemes of a higher order of precision, for example, those of ENO type [6] (it
is easy to see that the scheme proposed by us possesses only the first order
of approximation, with respect both to h and 7). Yet, since we analyze here
only qualitative properties of the solution in places where saturation field is
smooth, we will reconcile ourselves to this defect of the difference scheme as
well as to the well-known numerical diffusion in the explicit up-wind scheme
for saturation. To control this diffusion, we have chosen time step 7 maxi-
mally close to the upper limit of the scheme stability, that is CFL~1, and
compared our numerical results with the exact solution, which for the given
Buckley-Leverett function (3.4) is found by the characteristic method.

6. RESULTS AND DISCUSSION

The Buckley-Leverett function can be given, with the help of the phase mo-
bility function, in the form

ki(s) = %(1 —8)%, ka(s) = £s2, (6.1)
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Figure 1. Saturation field at the time ¢ = 1.5. The solid line corresponds to the solution
by function ¢(s) and the broken line - to that by function $(s). (m =4, h = 0.06122, 7 =
0.01515).

Figure 2. The same as in figure 1, but with a greater number of interpolation points
(m = 8) for function ¢(s).

where K = 1, uy = 1, ps = 0.1. In turn, a perturbed Buckley-Leverett
function @(s) is constructed as follows: we set the points s;, i = 0,m, (sg =
0, sm = 1), then according to (6.1) and (3.4) find ¢; = ¢(s;) and based on
this latter we construct a new piecewise-linear Buckley-Leverett function:

~ Yi+1 — Pi
P(s) = ;i + L (
Si+1 — Si

s —5i), S € [si,8i+1], i =0,m — 1. (6.2)

Figure 1 shows the distribution of saturation for smooth function ¢(s) (a
solid line) and for piecewise-linear function ¢(s) (a broken line). This cal-
culation has been performed for incompressible liquid (8 = 0) with ()
const = m and uniform distribution of interpolation points s;: s;41 — §; =
As = 0.25 (m = 4). The second figure gives the same comparison, only for
smaller interpolation steps As = 0.125 (m = 8).

It is readily seen that in place of a smooth saturation distribution we ob-
tain a stepwise solution. In turn, in place of (6.2) one should employ function
©(s), which interpolates at the same points by parabolic spline (this ensures
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smoothness of the Buckley-Leverett function: ®(s) € C'[0,1]), then in the
saturation field the stepwise zones disappears. It means that, when specify-
ing the phase mobility function k;(s) based on experimental data, we must
ensure the smoothness of function ¢(s). This however is not always observed,
that is why even in well-known programs when a 1D solution is sought for
a homogeneous layer with phase permeability curves constructed on separate
points, a solution of step-wise structure is obtained as is seen in figures 1 and
2.
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SKYSCIO TEKEJIMO MODELIO SPRENDINIO PRIKLAUSO-
MYBE NUO PRADINIU DUOMENU

A. Buikis, S. Solovyov

Darbe nagrinéjamas dvisluoksnis filtracijos modelis spudziyir nespudziyskysciyatvejais. De-
taliai iSnagrinétas vienmatis modelis ir parodyta, kad Buckley-Leverett funkcijaaproksimuo-
jant dalimis tiesine funkcija, sprendinyje atsiranda fiktyvus Suolis.



