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ABSTRACT
This work discusses issues on the design of finite difference schemes for modeling the mois-
ture movement process in the wood. A new finite difference scheme is proposed. The

stability and convergence in the maximum norm are proved for different types of boundary
conditions.

1. INTRODUCTION

We consider a system of linear differential equations
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with the boundary conditions

400) 20 4 (s, 0) = (1), (1)
a2 e 1) = 9 0), (14

and initial conditions
c(0,z) =cp, s(0,2)=s9, 0<z<1. (1.5)

It describes the moisture movement process in the wood. Here ¢(z, ) is the
moisture content in the wood cells and s(z,t) is the moisture content in the
walls of the wood cells. In the model it is assumed that there is a moisture
exchange between two environments and diffusion and convection processes
are determining the moisture movement in the wood cells.

Now we state main assumptions about the coefficients in equations (1.1)-
(1.2). The diffusion coefficient d(z) satisfies

0 < do S d(l‘) S dl,
for many problems d also depends on ¢, the porosity coefficient m satisfies
0<m<1,

the convection coefficient v and exchange rate p are nonnegative numbers.
The parameter [ is also nonnegative and depends on vapor’s pressure, relative
humidity and chemical potential. The parameter u is positive for the third
type boundary condition, and g = 0 for the Neumann boundary condition.

Finally, assuming that side surfaces are isolated and wood sample is very
long in comparison with the other dimensions, we get an one dimensional
model.

Such mathematical model for the moisture movement in the wood is pro-
posed and used in [1; 6]. We note that in many applications the model is
restricted to a simple diffusion equation ( see, [2; 3] ).

The mathematical model of this paper, i.e. the system of differential equa-
tions (1.1)-(1.2), describes a broad class of real world problems. For example
the transport of soluble substances in rivers is described by the same processes
and a very similarly looking system of differential equations [4].

The rest of the paper is organized as follows. In Section 2 we formulate a
finite difference scheme. In Section 3 we prove the stability and convergence
of this scheme in the maximum norm. Different types of boundary conditions
are investigated. Some concluding remarks are made in Section 4.
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2. FINITE DIFFERENCE SCHEME
We define a family of discrete grids
Qrsn ={{",z;): t" =nr,z; =ih,i=0,... ,N,n=0,... ,K},

where Nh =1 and K7 =T. Common notation is used in our paper (see [5])

St P e
t — T 9 T h )

n Y1 Y o d(x;) +d(xi 1)
Yo = h , @ = 2 .

The finite difference approximation of (1.1)-(1.5) is defined as follows:

(1 —m)uy +vul™ = (au2t), —p(lu"tt —o™), i=1,... , N -1, (2.1)
h h v
5(1 - m)Ut 0 5@(#“3“ gn+1)
h
=l — gt Sput - ), (22)
5(1 —m)uy,N + §Vu;‘+j\} = —aNu;”A}
h
— il g = Cplut - o), (2.3)
v = p(lu™™! — "), t=0,...,N, (2.4)
u? = ¢, v? =5sp, ¢=0,...,N.

Approximating boundary conditions we assume that equation (1.1) is also
satisfied on the boundary of the computational region.

Next we describe the algorithm for finding a solution of this finite difference
scheme. First from system of equations (2.1), (2.2), (2.3) we find u"**. The
matrix of this system is three-diagonal, hence the factorization method can
be used to solve it efficiently. Then we can compute v™! explicitly from
equation (2.4).

Let’s denote truncation errors of equations (2.1)~(2.4) by W7 T, Wit witl
and \Ifgjl, respectively.

Lemma 2.1. If solutions c(z,t) and s(z,t) of system (1.1)-(1.5) have bounded

. . 2
derivatives gtzc, gt2 , 8904, d'"(z), then

ot < CO(r+h), i=1,...,N—1,
WP < C(rh+ h?),

|jor il < (rh+h2)

w5t < Cr, i=0,...,N.
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The proof of lemma follows from [5].

3. ANALYSIS OF STABILITY

In this section we investigate the stability of the finite difference scheme in
the maximum norm.
Let

ap =c(t™,x;) —u}, OF = s(t", x;) — o

be the errors of the discrete solutions. These functions satisfy the following
finite difference scheme:

(1 —m)ag +vast™ = (aa2*), — p(la"*tt — ™) + \I!?jl, (3.1)
i=1,... ,N —1,

g(l ~ ik + i (2d(}8) " 1> =iy
~Pagt o g, 2)
_ %(lu"ﬂ S+, (33)
o =p(a™tt — "t + it i=0,... N, (3.4)

@) =0, 9 =0, i=0,...,N.

Our goal is to prove unconditional stability and convergence of scheme (2.1)-
(2.5) for the Neumann and third type boundary conditions.

3.1. Third type boundary conditions

In this section we assume that p > 0. Let define the following norms

k k
1¥5lle = max, |¥5,

1<k<K \0<i<N 1<k

~ T
191 = = (s, (g 19 + ||¢f’“||c)
L0 WEe + max (95 + max T
W 21<k<K ¢ r<r}€ax 1,0 r<nax LN

Then we have
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Theorem 3.1. The finite difference scheme (2.1)-(2.5) with p > 0 is uncon-
ditionally stable, and the errors of discrete solutions satisfy the estimations

@™ e < 1P|y, (3.6)
6"l < 11+ ma ¥l
Proof. Let assume that
mas._[[]c = [}

1<k<K

We consider three different cases.
Case 1: i = 0. From equation (3.2) we obtain

Vh hpl ~n—+1 hp n+1
< — \Il .
(u(Qd(0)+) )| < PP+

Similarly we consider

max [|5*]lc = |5]].
1<k<n

From equation (3.4) we get
5| < 1)l + 11w
|Uj| > |“j| +5| 2,j|
. 1
< @™ e + EII‘I’gllc- (3.7)

Therefore we have proved the inequality

n 1 n
@ +1|<;( 198l + ! “).

Case 2: i = N. Applying the same argument for equation (3.3) and using
(3.7) we prove that

< hpl) |~n+1
1

B o< o (—nw o+ |\r"+1|)

hp~

IN

AN

Case 3: 0 < i < N. From equation (3.1) using (3.7) we obtain
plT R o pT n+1
1 . < A —_—
(1+ 2l < fape it + e

JUPT - T 1
< IIU”||c+m<Or<nig>§vl‘I’?I|+||‘I’3||o>-
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Proceeding by induction we repeat the same procedure for

~k
max la"||c

until we get the boundary point or reach the initial time layer. B

Corollary 3.1. The global error of the difference solution can be estimated
as

la"lc < C(r+h), [[0"]lc <C(r+h).
The proof of the corollary follows from Lemma 2.1 and Theorem 3.1.

Remark 3.1. For the Dirichlet boundary conditions we can obtain similar
results using the same investigation technique. But this approach doesn’t
work for the Neumann boundary conditions, when p = 0.

3.2. The Neumann boundary conditions

In this section we prove unconditional stability and convergence of scheme
(2.1)-(2.5) for the Neumann boundary conditions. In the scheme (3.1)-(3.5)
now we have the following boundary conditions

h h
51— m)i = il é’(zag“ — o)+ U (3.8)
S (L=m)in,y = —ayigly - {(lu’;ﬁ —Tx) + OTR, (3.9)
Let define the following norms
~n ~n L +pr ~n
ol = a"lle + T |"llc,
n+1 _ n+1 2 n+1 2 n+1
Il = max{ ma [UEE, OISR
19"s = [1%7lls + [[¥5]lc-

Theorem 3.2. Finite difference schema (2.1)-(2.5) with p = 0 is uncondi-
tionally stable, and the global error satisfies the following stability inequality:

T

10"l < 1™ |2 + 7= (12"l (3.10)

—m

Proof. First we multiply equation (3.1) by 7/(1 —m). Using the maximum
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principle we get

T Vo Qi1 T a; . .
(1+ l_m(_+ i+1 i +pl))|u?+1| < |l@"|lc

h h2

T a;+1 + a; n+1 pT -
o (B ) e + e
+—— max |97 i=1,... N -1 (3.11)

1 —m o<i<N

Analogously from boundary conditions (3.8)-(3.9) we get

T 2a . .
(1+ 7= (55 +2) 11 < llalle

T 2ay .

Tz (h;” e +p||v”||c+—|\If”+1|> . (3.12)
T 2an 1 .

(1+ 1— ( 2 +pl))| N o< la"lle

T 2aN - n
+ ( M@ e + pll e + = |x1/"+1>. (3.13)

T e 1

Using inequalities (3.11)-(3.13) we get

Ir \ 7
~n+1 < 1 p ( ~n n
e < (14 225) (latlle + T2 e
Tt ) 3.14
el hia " (3.14)
Then making use of (3.4) with (3.14) gives

I\~ plT
1 i e < (14 -2 ( 5" 3.15
e < (14 20 (7 + 22 (3.15)

+ (@ =m)lla"lle + (L +p)le"lc + 7127+l ))

+ 72 e
Adding inequalities (3.14) and (3.15) we get the statement of the theorem. W

Corollary 3.2. The global error of the difference solution can be estimated
as

[a"lc < C(r+h), [[0"lc < C(r+h). (3.16)



The finite difference scheme for wood drying process 55

3.3. Pure diffusion problem
If the convection term is not presented in equation (1.1), i.e. v = 0, then we
have the following truncation errors

N —1.

i <C(r+hn?), i=1,...,
In the case of the Dirichlet boundary conditions it follows from Theorem 3.1,
Corollary 3.1 and Remark 3.1 that the global error of the difference solution
can be estimated as

|@"lc < C(r+ k), |[o"|c < C(r+ h?).

Hence the difference solution has the second order accuracy with respect the
space grid step.

However for the Neumann boundary conditions we still have error estima-
tions (3.16).

Let consider the problem with the third type boundary condition on one
boundary and with the Neumann condition on the remaining boundary. Then
we again can improve the main error estimation (3.16). We will use a modified
approach of error analysis.

Let’s look for the solution of the finite difference scheme (3.1), (3.2), (3.9),
(3.4), (3.5) given in a form

@, o"" = 0"’ +(=",0".

We define the function z}* as a solution of the auxiliary finite difference scheme

(1—m)z = (az;‘“)z —plz?'H, (3.17)
h hpl
5(1 —m)zo + ,uzg”l = alz;igl — TPZSLJrl + \I!’ffgl,

hypl
(1—m)zgn = —aNzgjvl — TPZX,H + \If?fvl,

)

22=0, i=0,...,N.

h
2

Let’s define constants

Lo = max, |¥i(t",z0)| = O(r + 1),

Inx = max |¥(t",2n)| = O(T + h?).
1<n<K

It follows from the maximum principle that (see, [5])

|Zzn|SZun:0)7K>
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where Z; is the solution of the finite difference scheme
—(aZz), =0, i=1,... ,N—1, (3.18)
—1Zz0 + (,u + %) Zy =T,

hpl
GNZE,N + TPZN =TI'y.

Next we multiply equations (3.18) by Z;h and add the obtained equalities.
After simple transformations we get

hpl hpl
(aZz, Zz] + TPZIQV + <u + 71)) Z§ =ToZo +TNZN,

where
N
(ya ’U] = Z yzvth -
i=1

Using the embedding theorem [5]
12112 < 2 (1Z:01° + Z5%,)
we prove that
|Z||c < Cmax{To,Tn} = O(T + h?).

The vector (U”,5)7 is the solution of finite difference scheme (3.1), (3.4),

iV
with » = 0, homogeneous boundary conditions (3.2), (3.9), and the truncation

error
Ty (t", ;) = Ua(t™, ;) + plzi™t, i=0,...,N.
It follows from Theorem 3.2 that

1U"le < C(r +12),  [[6"lc < C( + h?).

So we have proved that for v = 0 and mixed boundary conditions the
following estimations of the global error

|@"lc < C(r+ k), |[8"|c < C(r+ h?).

are valid.
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4. CONCLUSIONS

For the system of two differential equations we have examined the 3-point
finite difference scheme. It is proved that this scheme is monotone. Stability
analysis is done in the maximum norm. Unconditional stability is proved
for all basic cases of boundary conditions, i.e. the Dirichlet, Neumann and
third type boundary conditions. The modified approach is used in the case of
Neumann and mixed type boundary conditions.

A father step would be to analyze in detail the nonlinear problem.
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MEDIENOS DZIOVINIMO UZDAVINIO SPRENDIMAS
BAIGTINIU SKIRTUMU METODU

R. Ciegis, V. Starikovicius

Siame darbe sprendziama dviejy diferencialiniy lygciy sistema, kuri apraSo jvairius proce-
sus, svarbius pramonéje, ekologijoje, technikoje. Tokiy uzdaviniy pavyzdZziai yra medienos
dziovinimo procesas, upiy tarSos koncentracijos modeliavimas ir kiti.

Darbe sudaryta baigtiniy skirtumy schema, kurios sprendinys yra monotoniska funkcija, o
realizacijos algoritmas — ekonomiSkas. IStirtas tokios baigtiniy skirtumy schemos stabilumas
maksimumo normoje ir jrodyta, kad schema yra nesalygiSkai stabili pirmojo, antrojo ir
treCiojo tipo krastiniy salygy atvejais. Pateikta konvergavimo jrodymo metodikos modi-
fikacija, leidzianti pagristi didesnj diskreciojo sprendinio tiksluma, kai matematiniame mo-
delyje néra konvekcijos nario.



