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ABSTRACT

We have discussed the problems of uniqueness of the physical solution of the nonlinear
diffusion equation. Here are considered two different ways to express the solutions in the
power series. In the first case we will use the power-series expansion about the zero point.
The accuracy of the obtained physical solution is evaluated. However, in this case we get an
infinity of different solutions and the problem of the choice of the unique physical solution is
considered using the expansion about the point of maximum penetration of the impurities.
Then we get only two solutions which differ one from other only in the directions of the
diffusion.

1. INTRODUCTION

The classical linear diffusion equation is derived from the Fokker-Planck equa-
tion. This linear diffusion equation is obtained by assuming that process is
slow. We see that fitting an experimental profile tail region of impurities to
classical erfc(x/2v/Dt) tail region, where linear diffusion must occur with
large velocity, is physicaly non acceptable. From the Braunian movement or
random walkers theory the mean-square displacement v 2Dt must be approxi-
mately equal to the maximum penetration depth obtained from the nonlinear
equation solution. The theoretically obtained profiles and maximum penetra-
tion depths of the impurities can be used for planar transistor formation only
when the solutions of nonlinear diffusion equation are found uniquely.
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In paper [1] the nonlinear diffusion equation

0 0 ON

where the diffusion coefficient and the current density were directly propor-
tional to the concentration of impurities

D(t,N) = D,N(z,1), (1.2)

was solved introducing the similarity variable

£= L; D; =D,Ns;, N;=const. (13)
Dyt

The obtained solution [1] was fitted with the experiment and it was compared
the complementary error function. But in this paper we got more solutions
with different depths of penetration. Therefore it founds the conditions and
a method for the selection of the unique solution. The presented method can
be useful for solving of the similar nonlinear diffusion equations [2], [3]. It
can be used for describing of clouds and diffusion in dynamical systems where
interactions between the particles are included.

2. THE EXPANSION OF THE SOLUTIONS IN THE POWER
SERIES AT THE ORIGIN

Now we will consider the solutions of nonlinear diffusion equation (1.1) with
the following boundary

N(0,t) = N,, N(co,t) =0 (2.1)

and initial
N(z,0)=0, >0 (2.2)

conditions. Solution of equation (1.1) with conditions (2.1), (2.2) we must
divide in two parts. It is possible to solve this problem by dividing it in to
two parts. For the first part of problem (1.1)

ON 0 ON
o Pros (N%

> =0, t>0, ze€(0,zo(t)), (2.3)
we must find the solutions which satisfies the conditions

N(0,¢) = N,, N(zo(t),t) =0, >0, z0(0)=0. (2.4)
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For the second part of problem

ON 0 (N(?N

' _ %> =0, t>0, z0(0), (2.5)

ot "ox
we must get the solutions which satisfies the following conditions
N(oo,t) =0, N(xo(t),t)=0, t>0, N(z,00=0, z>0. (2.6)
For the second part of problem (2.5), (2.6) we have only trivial solution and
we will consider only solution of first part of problem (2.3), (2.4).

Introducing the similarity variable (1.3) into the equation (2.3) we obtain
the following nonlinear equation

d d d
2 (fd—€f>+€d—£f=0, N, t) = Nof(€); €€ (0.6).  (27)

We can expand the solution of the last equation in the power series
FO) = ang™, (2.8)
n=0

with the following boundary conditions

f0)=1, f(&)=0. (2.9)

The solution (2.8) we present like the family of one-parametrical solutions.
Substituting (2.8) into (2.3) we obtained the system of equations

[ee] [ee]
Qanm+2chm+nan:0,
m=0 m=0

bam = (n+1=m)(m + 1)ant1-m@m+1, (2.10)
Cnm = (n+2_m)(n+1_m)an+27mamy n=0,1,2,..
As an example we can write the first six equations

2(&1)2 + 4asag = 0,

12aia5 + 12agaz + a1 = 0,

24aia;3 + 24apay + 12(as)? + 2a2 = 0,
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40aya4 + 40aza3 + 40agas + 3az = 0, (2.11)
60ayas + 60asas + 30(asz)? + 60agag + 4as = 0,

84aia¢ + 84asas + 84asay + 84apar + Sas = 0.

Solving the system of six equations (2.11), we can find the six unknown
coefficients of truncated expansion (2.8) only taking ar = 0. From the bound-
ary condition at the zero point f(0) = 1 we get ap = 1. On the frontier
of diffusion we must require f({os) = 0. The less exact solutions [1] of
equation (2.3) were obtained in the form of polynomials [1] after trunca-
tion of expansion (2.8). The accuracy of these solutions can be evaluated
by the size of the last terms a,(&on)™ of the polynomials. From [1] we get
as(€04)* = 0,0024, a5(&s)° = 0,00024. The maximum value of function
f(&) at the origin f(0) = 1 is much larger and terms a,&" for n > 4 in
the power series (2.8) can be truncated. The polynomials where terms with
n > 4 are included practically coincide. For n equations (2.10) we have n + 1
unknown coefficients a,. It is a consequence of the fact that the boundary
condition f(&) = 0 is not included in the series (2.8). In this case by increas-
ing the number of equations in the truncation of the original system (2.10) we
get more solutions. Then we have a group of solutions which satisfies the con-
dition f(&) = 0 and nonphysical solutions which do not satisfy this boundary
condition. The obtained solutions of truncated system (2.10) are presented
in the Table 1 [4]. We have not only one physical solution expressed in the
polynomials of power n. Taking into account random walking theory [5] and
(1.3), we got & = v/2. Then in [1] we choose &5 = 1,617 and the explanation
of this difference has been presented. If we use (2.4), the following symmetry
of the function can be obtained

oo

F=6) = 3 (-1 anen (2.12)

n=0

If coefficients a, in the system (2.11) are changed by (—1)"a,, we get co-
efficients (—1)"a, which also satisfy this system. Then from the last result
we find out that for the zeros &, ; of function f(§) we have the zeros —&op, ;
of function f(—¢) which is also the solution of the equation (2.3). The in-
dex On,i for & signifies i-th zero of i-th solution for n-th order polynomial.
For n = 8 we got two more solutions with following meanings of the zeros
€os,2 = 3,27, &os,3 = 4,27. The coefficients of the obtained solutions are
presented in Table 1 [4]. The two last solutions are not exact and represent
the nonrealistical penetrations depths. Solving the system (2.10) for seven
and eight equations we got the following set of the zeros

Sor1 = 1,6167, &s,1 = 1,6161, o720 = 3,65,
08,2 = 3,27, &or3 = 4,46, Los,3 = 4,27. (2.13)



Uniqueness and convergence of the analytical solution 81
The accuracy of those approximate solutions can be evaluated by the terms
as,1(€08,1)% =7,9-1077, ag2(&os2)® = 0,37, as3(&os;3)® =1,08.
We see that only the first solution

f(&) = 1-0,44375¢ — 0,098456¢% — 0,006711¢3 (2.14)
+3,801-10"4¢* +1,127-107°¢° —5,430-10 "¢~ ¢
+5,799-1077¢7 + 1,698 - 1078¢8,
£ <&g,1, &s1=1,6161, z03;1 = 1;6161\/D—st

is defined with very high accuracy ag(&os,1)® = 7,9 - 1077 in the region
0 <& < &os,1- Including the above presented symmetry we have seven solu-
tions. Two last solutions presented in Table 1 [4] do not satisfy the boundary
condition f(&) = 0. Increasing the number of equations we can obtain more
solutions. We chose the physical solution (2.14) comparing the maximum pen-
etration with mean-square displacement /2Dt for the Braunian movement.

3. THE EXPANSION AT THE MAXIMUM PENETRATION
POINT

The more successful solution of the nonlinear equation (1.1) can be obtained
by expanding at the maximum penetration point of impurities. In this case
the solution of the nonlinear equation (2.7) can be expressed in the following
form

FO =) b6 -&)", 0<E<&. (3.1)
n=1
Substituting the last expression in the modified equation (2.7)
d d d d
Qd_f (fd_§f> +(§—§0)d—£f+§0d—€f:0- (3.2)

we get the following relations between coefficients b,

2n Z (n+1—m)bpt1-mbm + (n — 1)bp—1 + n&oby, = 0. (3.3)

m=1
From the last expression we can easy get the recurrent relations

n—1
1 2 n+1—m n—1
by = _560; bp = — Z Tbn+1*mbm + bp1] - (34)

2
€o Pt 2n
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From the boundary conditions (2.9) and (3.1), (3.4) we obtain the equation
for definition of maximum penetration point &

S (=1)™(&) b — 1 =0, 50,n=<2(—1>m0m> , Con = by(€0)™ 2

m=1

(3.5)

Restricting expansion (3.1) by the six members and using (3.3) and (3.4) we
obtain the following system of equations

n=1

2b; + & =0,
12b1by + by + 26pbe = 0,
24b1bs + 12(b2)? + 2by + 3&bz = 0,
40babs + 40b1by + 3bz + 4&by = 0,
60b1bs + 60boby + 30(b3)? + 4by + 5&bs = 0, (3.6)
84b1bg + 84bybs + 84bsby + 5bs + 6&bg = 0,
—&obr + (£)%b2 — (&)°bs + (50)454 — (&)°bs + (&)°bs — (50)757 =1L

This system of seven equations has six unknown coefficients b; and &,. The
first six equations can be easily solved step by step beginning from the first.
The accuracy of finding &, from the last equation depends on the number
n of the equations and terms in expansion (3.1) We obtained the following
exact results

1 1

blz—%fo,bzz—g,bsz—m; (3.7)

AR D | S S
1152(60)% 172800(&0)% 230400(£o)*

f1=VE Ga= 2 ts= 2 =22 69
1204/12 1016912

o5 = 66161’ o6 = N

Using (3.4) and (3.5) we can get the infinite set of coefficients for infinite
series (3.1) and &. In this case the analytical solution (3.1) can be obtained
with desirable accuracy. We can get another set of the approximate solutions
by taking the negative meanings of & ; and by multiplying all coefficients b,
on (—1)". These solutions represent diffusion in the opposite direction of x
axis. If b, in (2.11) we replace by ¢, = (Eo)% the obtained series converge
for 0 < £ < & according the D’Alembert’s rule when & > 1. Because (3.7)
b; < ¢; and f(0) = 1 series (3.1) also converge in the region 0 < & < &.

The obtained results we can present in the form of theorem.
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Theorem 3.1. The asymptotical solution of nonlinear equation (2.7) is de-
fined at the mazimum penetration point &g.

We obtained that asimptotical solution of equation (2.7) with conditions (2.9)
exist in the point &, f(&) = 0 and has main asymptotical term is —1 &y (£ —&o)
abound point &j.

4. CONCLUSIONS

The more illustrative expressions of the similarity variables on the frontier of
diffusion (3.7) can be presented approximately

o1 =1,4142, &5 = 1,6330, &4 = 1,6162, &5 = 1,61611, &6 = 1,61612.
(4.1)
From these results, Table 1 [4] and (2.14) we see that &5 = £os,1. 08,1 —
is obtained for physical solution (2.8) where terms till ag€® are included. We
can conclude that physical solutions coincide and converge independently on
the different manners (2.8), (3.1) of expansion. Using the expansion (3.1), we
got unique physical solution (3.4), (3.5). The maximum values (3.8) of the
similarity variable in expansion (3.1) tend to the constant value faster than in
the expansion about zero (2.8). The physical solution for the expansion (2.8)
tend to exact solution faster than nonphysical solutions presented in Table 1.
It gives the same depth of the impurities penetration like in expansion (3.1)
where we got the unique solution. When we restrict the expansion (3.1) by
five terms we get then from (3.7), (3.8)

f(€) =1-0,443826—0,09832£%—6,839-10 363 4+4, 54210 4¢* —1,508-10 °¢7,

0<E<é, & =1,6161. (4.2)

After comparing the presented solution with the expansion at zero in [1]
we found out that the obtained solutions practically coincide in the region
0 < & < &. The problem of uniqueness of the solutions (2.8) of the diffusion
equation (1.1) can not be solved including only one from the two boundary
conditions (2.9). We obtained the unique analytical solution (3.1), (3.4), (3.5)
including two boundary (2.9) conditions in one parametrical case.

From solutions (2.8), (2.10) which take into account only one boundary
condition the correct physical solution can be separated from others by com-
paring the theoretical maximum penetration depths of the impurities with
V2Dt.

The presented expansion (3.1) can be used successfully in the expression of
the solutions for nonisothermical diffusion [6], [7].



84 A.J. Janavicius, P. Norgéla, D. Jurgaitis

REFERENCES

[1] A.J. Janavicius. Method for solving the nonlinear diffusion equation. Physics Letters, A
224, 1997, 159 — 162.

[2] Simone Artz, Michael Schulz, Steffen Trimper. Diffusion with restrictions. Physics Let-
ters, A 244 , 1998, 172 — 276.

[3] B.F. Apostol. On a non-linear diffusion equation deseveling clouds and wreaths of smoke.
Physics Letters, A 235 , 1997, 363 — 366.

[4] A.J. Janavitius, P. Norgéla. Problem of uniqueness of the physical solution of nonlinear
diffusion equation. SU Fizikos ir matematikos fakulteto seminaro darbai, 1 , 1998, 5 —
9.

[5] C. Kittel. Elementary statistical physics. Wiley, New York, 278, 1958.

[6] A.J. Janavi¢ius. The nonlinear diffusion in the nonisotermical case. Acta Physica
Polonica, A 93 , 1998, 505 — 512.

[7] A.J. Janavi¢ius. Nonlinear diffusion in exited systems. Lithuanian Journal of Physics,
37 (6), 1997, 508.

NETIESINES DIFUZIJOS LYGTIES ANALIZINIO
SPRENDINIO VIENATINUMAS IR KONVERGAVIMAS

A.J. JANAVICIUS, P. NORGELA, D. JURGAITIS

Klasikiné tiesiné difuzijos lygtis yra iSvesta i§ Fokerio-Planko lygties darant prielaida, kad di-
fuzijos procesas yra létas. Taliau tai negali buti taikoma klasikinés tiesinés difuzijos lygties
sprendinio er fc (z/2v/Dt) asimptotikai, aprasanciai difunduojaniy priemaisy jsiskverbima
medz|iagoje neribotai dideliuose atstumuose z. IS Brauno judéjimo teorijos seka, kad per
baigtinj laika ¢ difunduojancios dalelés gali jsiskverbti medZ|iagoje tik iki baigtinio ats-
tumo nuo difunduojanciy daleliy Saltinio, kuris apytikriai lygus vidutiniam kvadratiniam
difunduojanciy daleliy poslinkiui vV2Dt). Netiesiné difuzijos lygtis pakankamai tiksliai ap-
raSanti difunduojanciy priemaisy pasiskirstyma puslaidininkiuose gauta padarius prielaida,
kad difunduojanc¢iy daleliy srauto tankis yra apibréziamas difuzijos koeficientu D pro-
porcingu priemai8y koncentracijai N. Tuomet srityje, kur priemaiSy koncentracija lygi
nuliui, difuzijos koeficientas lygus nuliui taip pat. Taip uztikrinama fizikiné salyga, kad
per baigtinj laika priemaiSos medziagoje turi jsiskverbti j baigtinj gylj.

Darbe iSdéstytas netiesinés difuzijos lygties sprendimas, nagrinéjant vienmate difuzija is
begalinio 8altinio (kai kieto kuno pavirsiuje priemaisy koncentracija Ng yra pastovi), laip-
sninémis eilutémis dviem skirtingais budais.



