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ABSTRACT

The approximations of some heat transport problem in a thin plate are based on the finite
volume and conservative averaging methods [1,2]. These procedures allow one to reduce
the two dimensional heat transport problem described by a partial differential equation to
an initial-value problem for a system of two ordinary differential equations (ODEs) of the
first order or to an initial-value problem for one ordinary differential equations of the first

order with one algebraic equation. Solution of the corresponding problems is obtained by

using MAPLE routines "gear","mgear" and "lsode".

1. THE MATHEMATICAL MODEL

A plate of small thickness [ is heated in the furnace chamber. We assume that
the plate occupies the region Q@ = {0 < z < lN,—oo <y < 4o00,—00 < z <
400} in a furnace. The heat is provided at the top (z > [) and on the bottom
(x <0).

We shall consider the dimensionless initial-boundary value problem for tem-
perature T'(t, ) distributions on the plate in the following form:

oT  0°T
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0T (t,0)/0z = f; (T(t,o)),
OT(t,1)/0z = fo(T'(t,1)), (1.3)
T(O,Cl?) = To(fl?),

where f1(T(t,0)) = Biy (T*(t,0)—6;) +By (T(t,0)—61), f2(T(t,1)) = Bi (6} —
T(t,1)) + Ba2(6> — T(t,1)), B; = a;l/k (j = 1,2) are Bio numbers, Bi; =
€;ol T3,/ k (j = 1,2) are Bio radiation numbers, Ty(z) is the dimensionless
initial temperature in the plate, a1,as are convective heat transfer coeffi-
cients, #1,6> are the dimensionless temperatures of air in the furnace, 64, 6;
denote, respectively, the dimensionless temperature of the heater at the fur-
nace top and on the furnace bottom, €1, €5 are coefficients of emissivity (0 <
€1,€2 < 1), kis thermal conductivity of the plate, o = 5.6703-10"8W/(m?K*)
is the Stefan-Boltzmann constant, Ty,ax is the maximum of dimensional tem-
perature in the furnace. The dimensionless time ¢ > 0 and coordinate z € (0,1)
have the following multipliers: l~2gcp /k, [, where o, cp, are, respectively, the
density and the specific heat of the plate. Generally the parameter [ = 1, but
in the special symmetrical case (Bi; = Bis = Bi,B; = B2 =B, 0, = 6,6, = 05)
we have [ = 0.5 and the boundary condition (1.3) in the form

aT(t,0.5)/dz = 0. (1.5)

Boundary conditions (1.2) — (1.3) describe the radiation from heaters and
the convection. We assume that all parameters in expressions (1.1) — (1.4)
are constant. The temperature distribution Tp(x) in initial condition (1.4) is
consistent with boundary conditions (1.2), (1.3) in the form

7500) = f1(To(0)),  Tg() = f2(To (D)), (1.6)

where T} = dTy/dx.
For boundary conditions (1.2), (1.5) we have
T5(0) = f1 (To(0)),  T4(0.5) = 0.

In the symmetrical case we can consider also boundary conditions (1.2), (1.3)
by l=1,fs=—f1,T(t,1) = T(¢,0). In this case in the initial condition (1.4)
we can consider

To(z) = T. = (2* — 2) fi(T%), (1.7)

where T, = Tp(0) is constant temperature.

2. TWO POINT FINITE-DIFFERENCE SCHEME(TWO ODES)

The approximation of differential problem (1.1) — (1.5) is based on the appli-
cation of the method of finite volumes [2]. We consider only two grid points
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in the z-direction: z; = 0,22 = [. To derive a finite-difference equation asso-
ciated with the first grid point 1 = 0 we integrate the differential equation
(1.1) from z; to = 1/2. Thus we obtain

1/2
W[).s - W[) = G(t,l‘)dl‘, (21)
0

where W (t, ) = 0T /0x is the flux-function, Wy 5 = W (t,1/2), Wo = W (¢,0) =
f1(T(t,0)),G(t,z) = 0T /ot = T. Expression (2.1) presents the integral form
of the conservation law within the interval = € (0,1/2). In the classical formu-
lation of the finite volumes method it is assumed that the flux terms Wy 5
in (2.1) are approximated by the finite difference expressions. Then the
corresponding difference scheme is not exact for a given function G. Here
we have the possibility to make the exact difference scheme. Having de-
noted T'(t,0) = T1,T'(t,1) = T, we integrate equation (1.1) from x =1/2 to
x € (0,1), and then from z; to z3. This yields

l T

To — T, =IWys+ Dy, D= /dm/G(t,f)df (2.2)
0 12

Next, from the integral form of the conservation law (2.1) there follows a
2-point difference equation associated with the grid point z; in the form

l

(TQ(t) — Tl(t))/l — f1 (Tl(t)) = R1, R1 = /(1 — a:/l)G(t,a:)da: (23)

0

Similarly as before by integrating equation (1.1) from z = [/2 to z» we obtain
the integral form of the conservation law within the interval € (1/2,1) in the

form
l

Wy —Wps = G(t,x)de, Wy =WI(t1l) = fa (T(t,l)). (2.4)
1/2
We determine Wy 5 and obtain a difference equation associated with the grid
point x5 as

l
(T1(t) = To(t)) /1 + f2(To(t)) = R2, Ry = %/0 2G(t, z)dz. (2.5)

When the function G(¢,x) is given and the functions Ry, Ry are known, then
the difference equations (2.3), (2.5) are exact approximations for unknown
functions Ty (t), T2(t). To approximate the right-side integrals R;, Ry we con-
sider different quadrature formulae.
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2.1. The quadrature rule of interpolating type

For the approximation of the dimensionless integral I; = Ry/l = fol(l -
&)G(€)d€ with the weight function 1 — & we consider the two point integration
formula

L = AiGi + AyGe +1r(m), (2.6)

where ¢ = x/1,G(§) = G(t,£), r(m) = 0.5E.0°G(1m1)/0€? is the error term
m € (0,1), Ay, As, Ey are the undetermined coefficients, Gy = G(0) =
Ti, Gy = G(1) = T,. By using the powers functions G)=¢, j=0,1,2 we
find the linear system of three algebraic equations in the following form

1/2= A1 + Ay
1/6 = A, (2.7)
1/12 = Ay + Ep.

Therefore Ay = 1/3, A2 =1/6,Ey = —(1/12), and the quadrature formula in
dimensional form

_ (L 1, P, 2
Ry =1 3G1+6G2 248 G(t,m)/am (28)

is precise for the linear functions (n; € (0,1),G1 = G(t,0),G2 = G(t,1)).
Similarly,

1 1 2
Ro = z(ga1 +5G2 - ﬂaQG(t,m)/ax?), 1 € (0,1). (2.9)

The degree of precision from quadrature rules (2.8), (2.9) is only 1. For the
approximate solutions T}(t), T>(t), deleting the error terms r, we have from
(2.3), (2.5) a system of two ODEs of the first order in the following form:

{ Ty = 6(T — T0) /12 — 4f1(T0) /1 — 2f2(T2) /1, (2.10)

Ty = —6(Ty — T0) /1> + 4f2(To) /1 + 21 (Th) /1,

where f1 (Tl) = Bll(T14—02)+Bl(T1—01), fz(TQ) = —Big(Tf—t‘)f)—Bz (T2—92).
The system (2.10) of ODEs should be solved with initial conditions

T:1(0) = To(0), T5(0) = To(1). (2.11)

In the symmetrical case (I = 1, fo = —f1,T1 = T5) we have from (1.7),
(2.10), (2.11) the following initial-value problem:

Ty = —2f(Ty), Ti(0)=T.. (2.12)
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In the other symmetrical case (I = 0.5, fo = 0,75 = T'(¢,0.5)) from (2.10) it
follows

{ Ty = 24(T> — Th) — 8£1(Th), (2.13)

Ty = 24(Ty — Ty) + 4f1(T1),
with 77(0) = 7%, T5(0) = T, + 0.25f1(T%).

2.2. The quadrature formulae with derivatives

We consider the non classical quadrature formulae with derivatives of the first
order for the approximation of a dimensionless integral I; in the following
form:

I = A G + AxGsy + ClGll + CQGIQ + T‘(’ql), (214)

where r(n;) = $Eo0*G (1) /0¢* is the error term 1y € (0, 1), A1, As, Cy, Cs, Ey
are the undetermined coefficients, G| = 0G(0)/9¢, b = 0G(1)/0¢. The
linear system of 5 algebraic equations (G = ¢/, j = 0,1,2,3,4) is in the form

1/2 = A; + As,
1/6: As +Ch +Cz,
1/12 = Ay + 205, (2.15)

1/20 = Ay + 3C,,
1/30 = As + 4Cs + Eo.

Therefore, A; = 7/20, A> = 3/20,C; = 1/20, Cy = —(1/30), Ey = 1/60, and
the quadrature formula

l4
1440

Ry = 1(2—70G1 + %GQH(Q%G; _ 3—10G'2) 0 G m) 92 ), € (0,0).

(2.16)
has to integrate any polynomial of degree 3 or less precisely. From boundary
conditions (1.2), (1.3) it follows that G = fi(T})T1,Gh = f4(T)Ts, where
fi(T1) = 4Biy T} + By, f3(T2) = —(4Biy T35 + Bs). For the approximation of the

integral R» in a similar way we can obtain a formula

1, 14
3002) + 1440

O'G(t,m) /02" ), m2 € (0,0),
(2.17)
The degree of precision of quadrature rules (2.16) — (2.17) is 3. Therefore,

deleting the error terms r we have for the approximate solutions 77 (t), T»(t)
from (2.3), (2.5) the following system of two ODEs of the first order:

3 7 1
Ry = 1(2—0G1 + 535G+ (5561~ 56

T = (T = T)(10 = 3L/ = (T = L) fi/1 = (3 = 35 /1) /A,

Ty = (70 = To)(W0+ 3/ + (T+ 1) fo/ 1+ B3+ D) A,
(2.18)
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where A = 2+ I(f] — f})/4 — 12f] f3/36. The initial conditions has the form
(2.11).

In the symmetrical case (I = 1, fo = —f1,T1 = T») we have from (2.18) the
following initial-value problem:

Ti= (4 SMAT/A,  TO) =T A=2+ fi/2+ (/6% (2.19)

In the other symmetrical case (I = 0.5, fo = 0,7> = T'(¢,0.5)) from (2.18)
follows ODEs

{ Tl = (40(T> — Ty) — 14/1(T1)) /A, (2.20)

Ty = (T = T2)(40 + 3 f1) + (6 + 3 1) f1(T1)) /A, '

where A = 2 + f{/8. From the estimations of the error terms r in (2.16),
(2.17) it follows that the truncation error of the methods (2.18) — (2.20) is
proportional I*. Hence the local error for method (2.20) is smaller than the
error for method (2.19).

2.3. The system of three ODEs

We add one more point to the grid and consider the following three points
1 = 0,22 =1/2,23 =l in the interval (0,1). To denoted T; = T'(t,z;),(j =
1,2, 3) we have from (2.18) the system of two ODEs in the form

{ Ty = ((Ts = Tu)(10 = §1f5) /1 = (T = Lf3) fu/l = (3 = 31f3) fo /1) /A,

Ty = ((Th — T5)(10 + 3UF) /P + (T + 1D f2/1+ 3+ 31D F1/1) /A,
(2.21)

where fi = fi(T1), f2 = f2(T3). To derive a finite—difference equation asso-

ciated with the grid point z» we integrate the differential equation (1.1) from

/4 to 31/4 and obtain

31/4
Wo.rs — Wo.s = G(t,z)dzx, (2.22)
1/4

where W0.75 = W(t, 3l/4), W0.25 = W(t, l/4)

Determined the values of flux-function W we integrate equation (1.1):
1. from 1/4 to = € (0,1/2), and from z; to xa,
2. from 3l/4 to x € (1/2,1), and from z» to 3.

Thus we derive the 3-point difference equation in the form

2T, — 2T, + T3)/l = R., (2.23)
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where R. = 2(f,/* 2G(t, z)dz + [}, (I — )G(t,x)dz).
For the approx1mat10n of the dimensionless integral

1 2
L=2R)i= [ G@ds+ [ 2-0GEde (€ =20/)
0 1
we consider the quadrature formula in the following form:
I. = A1G1 + AyGy + A3Gs + ClGll + CgGg + 1“(77), (224)

where () = 4 Eo0°G(n)/0¢5 is the error term (n € (0,2)). By repeating
arguments of (2.14), we obtain for the unknown coefficients the following
values:

11 1 1 29
A=A —A Oy = — 03 = —— Fp = ——
E T TSV Kt 40°7° T 420’

and the quadrature formula

l.6 29

[
R, = 30 (2G1+11G2 +2G3+ (G, Gg) (4) 315

22 55G(t,n) /83:6) (2.25)

is precise up to 5-th degree n € (0,1). Therefore, by deleting the error term,
we have from (2.23), (2.25) the following ODE:

2

5 ofé)T3 - (%)Q(Tl — 21, +Ty). (2.26)

(125 fl)T1+ 5T2+(

In the symmetrical case (I = 1, fo = —f1,T1 = T3) we have from (2.21),
(2.25) the following system of ODEs:

{ Ty = —(4+ L f) f1(T1) /A, (2.27)
Ty + (4+ 2 )Ty = 120(Ty — T»), '

where T1(0) = Ty, T>(0) = T + 0.25f1(Ty) are the initial conditions, A =
2+ fi/2+ (f1/6).

3. THE AVERAGING METHODS

The average temperature T is defined by the integral [1] T'(t) = 1 fé T(t,z)dx.
Having integrated heat-conduction equation (1.1), we obtain

T(t) = (9T(t,1)/dz — OT(t,0)/dx)/1, (3.1)

where 7' = dT'/dt. From boundary conditions (1.2), (1.3) it follows into equa-
tion (3.1)

T(t) = (fo(Tz) — fi(T))/l, To=T(t1), Ty =T(t,0).  (3.2)
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3.1. The simple averaging method

A simple averaging method is based on the assumption that the temperature
T(t,z) of the plate is constant in z [1], so that T'(t) = T'(¢,z), = € [0,1]. Then
we find the following initial value problem for ODEs:

. 1
T = (f2(T) = fi(T)) /1,  T(0)=To, To= %/0 To(z)dz.zdd  (3.3)

In the symmetrical case (I = 1, fo = — f1) equations (2.12), (3.3) are equal.

3.2. The quadratic spline and averaging method

For a more accurate approximation of the averaging method we assume that
the temperature distribution in the plate is parabolic in x:

T(t,x) =T(t) + A(t)(x —1/2) + 6(t)(x* — 1?/3), (3.4)
where A, § are unknown functions of ¢. Then from equation (3.2) we have
Ty =T +05IA+261*/3, Ty =T —0.5lA - §1%/3,

IA = 6T — ATy — 21,176 = 3(Ty + T» — 27).

The unknown functions T} (t), T>(t) can be derived from boundary conditions
(1.2), (1.3) and expression (3.4) as a set of two nonlinear algebraic equations:

A(t) = fi(T1(t), A(t) +205(t) = f2(T2(t)). (3.5)

Therefore in this case we have the initial-value problem for a ODEs (3.2) and
two algebraic equations (3.5). At each step of integrating the ODEs we have
to solve two equations (3.5).

In the symmetrical case (I = 0.5) the parabolic profile (3.4) is described as
follows:

0.5
T(t,z) =T(t) +6t)(z*> —x+1/6),i T(t)= 2/ T(t,z)dz, A=-4.
0
Then equation (3.2) is written as

T = —2f,(T}), (3.6)

where Ty = T +§/6,T> = T(t,0.5) =T — §/12,Tp = T + f1(T%)/6. From the
boundary condition (1.2) it follows the algebraic equation

A(T) = 6(T - T1) = 0. (3.7)

We have the initial-value problem for the ODEs (3.6) and one algebraic equa-
tion (3.7).



Simple algorithm’s for heat transport 93

3.3. The averaging value of temperature

From the approximation of the integral T'(t) = %fé T (t,z)dx we obtain the
following 3-point quadrature formula:

! l 6
T= (7T1 + 16T2 + 7T3 + = (Tl T3) 20160 (t 77)/61‘ ),

where n € (O,Z),Tll = f1 (Tl),Té = fz(T3)
In the symmetrical case (I = 1, fo = — f1,T1 = T3) we have formula:

T = 3—10 (14T + 16T + f1(T1)).- (3.8)

In the case of two grid points (x; = 0,22 = [) we can obtain the following
quadrature formula:

Lt -1y + Lo myjoa),

o
T= (T +T
5T+ T+ g 360

where n € (0,1), Ty = f2(T3).
In the symmetrical case (I = 1/2, fo = 0) we have formula:

1 1
T=—(Ty+T + —f1(T})).
2( 1+ 2+12f1( 1))

4. SOME EXAMPLES AND NUMERICAL RESULTS

The numerical solutions of stiff systems of ODEs (2.10) — (2.13), (2.18) —
(2.20), (2.26), (2.27), (3.3), (3.2), (3.5) and (3.6), (3.7) are obtained by using
"MAPLE" routines "gear" (C. W. Gear single step extrapolation method),
"mgear" (C. W. Gear multi step methods) or "lsode" (Livermore stiff ODE
solver)[3]. With other "MAPLE" routines ("rkf 45", "rkf 78", "classical") the
solutions are not obtainable for Bi # 0 (Bi; # 0 or Bis # 0).

The approximate values of 71" are compared with values of T* obtained by
the Fourier series in the linear case (Bi; = Bis = 0) and by the explicit finite
difference method with the space step h = 0.02 and time step 7 = h?/6 in the
nonlinear case (Bi # 0).

In the linear symmetrical case (I = 1,B; = By = f{ =B, 6, = 6, = 1,
Bi; = Biy = 0) we have the solution of initial boundary-value problem (1.1) —
(1.4), (1.7) in the following analytic form of Fourier series:

Ty =T(t,0)=1-0.5B(1 - T) 3 ai(t),
Ty =T(t,0.5) =1 —0.5B2(1—T )

—fo (t,z)dz =1 —0.25B3(1 —
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Table 1.

Linear case, B=0.9
t Ty T T, Ty(2.13)  Te(2.13)  Tuy(2.13)
0.1 0.40324 0.26449 0.31134 0.406 0.268 0.315
0.2 0.48945 0.37069 0.41079 0.495 0.377 0.417
0.3 0.56318 0.46157  0.49589 0.570 0.470 0.504
0.4 0.62626 0.53933 0.56869 0.634 0.549 0.578
0.5 0.68024 0.60586 0.63098 0.689 0.616 0.641
0.6 0.72642 0.66278  0.68427 0.735 0.673 0.694
0.7 0.76593 0.71148 0.72987 0.774 0.722 0.740
0.8 0.79973 0.75315 0.76888 0.808 0.763 0.778
0.9 0.82865 0.78880  0.80226 0.837 0.799 0.811
1.0 0.85340 0.81930 0.83081 0.861 0.829 0.839

where a;(t) = exp(—4y?t)/(v? + 0.5B + 0.25B%)/~?, v; is the solution of
following transcendent equation

vitan(v;) =0.5B (i =1,2,3,...).

The solutions of ODEs (2.12) and (2.19) are in the following form: Tj(t) =
1—(1—T,) exp(—pt), where f = 2B for (2.12) and 3 = B(4+B/3)/(2+B/2+
(B/6)?) for (2.19). Corresponding, 3 = 2B for (3.3) and 3 = 2iB/(1+B/6) for
(3.6), (3.7), where 3 is the parameter in the following solutions of averaging
methods: T'(t) = 1 — (1 —Ty) exp(=pt), T1(t) = 1 — (1 = T,) exp(—pt), §(t) =
0.58(1 — Tp) exp(—/pt). The control values for the temperature (Ty,T5,T =
Tyw) of fo = —f1,T. = 0.3 are computed

L. for the linear case by By = By = 0.9,6; = 6> = 1, T>(0) = 0.1425
To = 0.195 at the moments of dimensionless time t = 0.1x4, ¢=1,10

)

2. for the nonlinear case by Bi; = Biz = Bi =0.3,B; =By =0, 6, = 6; = 1,
T>(0) = 0.22561, Tp = 0.25040 at the moments of time t = 0.2 %4, i=
1, 10.

Table 2.
Linear case, B=0.9

t  Ti(2.20) T(2.20) Tup(220) Ti(3.6) T2(3.6) Tuy(3.6)

0.1  0.40313 0.26436 0.31121 0.4014 0.2667 0.3116
0.2 0.48937 0.37059 0.41070 0.4882 0.3730 0.4114
0.3  0.56313 0.46151 0.49583 0.5623 0.4638 0.4967
0.4 0.62623 0.53929 0.56865 0.6257 0.5415 0.5696
0.5  0.68022 0.60584 0.63096 0.6800 0.6079 0.6319
0.6  0.72641 0.66277 0.68426 0.7263 0.6647 0.6853
0.7 0.76593 0.71148 0.72987 0.7660 0.7133 0.7309
0.8  0.79974 0.75316 0.76889 0.7999 0.7549 0.7699
0.9  0.82867 0.78881 0.80227 0.8289 0.7904 0.8032
1.0 0.85342 0.81932 0.83083 0.8537 0.8208 0.8317
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Comparison of the values of temperature obtained by different numerical
methods can be seen in Tables 1 — 4. The best agreement is observed for
averaging methods (3.2), (3.5), (3.6), (3.7) and for difference methods (2.18)
— (2.20). The averaging values of temperature T' = T, for methods (2.13),
(2.20) are obtained by formula (3.8). Computing the ODEs (2.27) and (3.6),
(3.7), is obtained that the value of T} from (2.27) are equal with 6 decimal
places comparing with (3.6), (3.7), but the values of T» are more precise than
(3.6), (3.7) on one decimal place. Comparing the numerical solutions obtained
from finite-difference method (2.20) and averaging methods (3.3), (3.6), (3.7),
it is visible, that is method (2.20) more precise (accurate to 4 decimal places),
but the correction of averaging method (3.6), (3.7) (accurate to 3 decimal
places) is more precise than simple averaging method (3.3) (accurate only to
one decimal place).

The given methods can be generalized for other nonlinear problems of par-
tial differential equations.

Table 3.

Nonlinear case, Bi=0.3
t Ty Ty Ty, T1(2.13) T(2.13) Tuv(2.13)
0.2 0.41693 0.34396 0.36833 0.4172 0.3442 0.3686

0.4 0.52847 0.45886  0.48214 0.5293 0.4597 0.4830
0.6 0.63076 0.56690  0.58830 0.6324 0.5687 0.5900

0.8 0.71999 0.66420 0.68294 0.7226 0.6671 0.6857
1.0 0.79378 0.74753  0.76309 0.7972 0.7515 0.7669
1.2 0.85181 0.81531 0.82762 0.8557 0.8200 0.8320
1.4 0.89555 0.86793  0.87726 0.8996 0.8728 0.8819
1.6 0.92743 0.90723  0.91406 0.9312 0.9119 0.9184
1.8 0.95011 0.93569  0.94057 0.9534 0.9399 0.9444
2.0 0.96594 0.95585  0.95927 0.9687 0.9594 0.9625
Table 4.

Nonlinear case, Bi=0.9

t Ti(2.20) T(2.20) Tup(220) Ti(3.6) T2(3.6) Tuy(3.6)

0.2  0.41692 0.34395 0.36830 0.4168 0.3441 0.3683
0.4 0.52845 0.45884 0.48211 0.5282 0.4591 0.4821
0.6  0.63073 0.56687 0.58826 0.6304 0.5673 0.5883
0.8  0.71995 0.66417 0.68289 0.7196 0.6647 0.6830
1.0  0.79374 0.74749 0.76305 0.7934 0.7481 0.7632
1.2 0.85178 0.81528 0.82758 0.8516 0.8160 0.8278
1.4 0.89553 0.86791 0.87723 0.8954 0.8686 0.8776
1.6 0.92742 0.90721 0.91404 0.9274 0.9079 0.9144
1.8 0.95010 0.93569 0.94056 0.9501 0.9363 0.9409
2.0 0.96594 0.95585 0.95926 0.9660 0.9563 0.9596
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PAPRASTAS ALGORITMAS SILUMOS LAIDUMO
UZDAVINIUI PLOKSTELEJE SPRESTI

H. Kalis, I. Kangro

Silumos laidumo uzdavinio plonoje ploksteleje aproksimacija pagrista baigtiniy turiy ir kon-
servatyviuoju vidurkinimo metodu. Sie metodai leidzia dvimatj §ilumos laidumo uzdavinj,
apraSoma dalinémis i§vestinémis, suvesti j dviejy pirmos eilés paprastyjuy diferencialiniy
lygciy sistema arba j viena pirmos eilés paprastaja diferencialing lygti su papildoma alge-
brine lygtimi. Atitinkami parastyjy diferencialiniy lyg¢iy sprendiniai randami naudojant
MAPLE paketa.



