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ABSTRACT

Some conjugation problems of hyperbolic and parabolic equations with different consistency
conditions on the interface are considered. Issues concerning one-valued solvability of these
problems are considered. Difference schemes for numerical solution of mentioned conjuga-
tion problems are proposed. Estimates of accuracy of algorithms suggested are obtained.

INTRODUCTION

The conjugation problems of two or more differential equations, which are
given in different space domains and connected by some consistency condi-
tions on the interface, arise when we are studying the effects in the media with
different physical properties. For example, we have the conjugation problems
of second-order equations of the same type in the study of a stationary and
time-dependent temperature distributions of a body that consists of hetero-
geneous pieces and in the study of many diffraction problems, etc.

The investigation of the hydrodynamical pressure of weakly compressible
fluid in the channel surrounded by porous medium, the study of the electro-
magnetic field and magnetic fluid dynamics effects lead to the conjugation
problems of polytypic equations [12; 13]. Motion of the viscoelastic and vis-
cous fluids in the plane horizontal split leaving out of account the surface phe-
nomena describes by one-dimensional hyperbolic equation and heat equation
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supplemented with integro-differential conditions on the interface of moving
fluids [1]. In this case the equation type is defined by the medium properties
and character of the process. The consistency conditions on the interface of
subdomains attract particular attention.

Along with numerical solution it is also actual to examine the validity state-
ment of mathematical problem, i.e., the proof of its solvability and solution
uniqueness.

We shall consider some conjugation problems of hyperbolic and parabolic
equations with different consistency conditions on the interface, and present
some results regarding one-valued solvability of such problems. We also study
questions of numerical solving such problems.

1. CONJUGATION PROBLEM IN DOMAINS WITH MOVING
BOUNDARIES

1.1. Statement of the problem

Let Q@ ={(t,x) : cot <z <ly +cot, 0 <x2 <lo, 0<t<T} beabounded
domain in the three-dimensional Euclidean space R® of variables (t,z) =
(t,z1,22). Suppose @ is separated by the surface I' = {(t,:c) om =
E+cot, 0< &<y, 0<zz <ly, 0<t<T} into two subdomains, @; and
Q2: Q1= {(t,:l:) Tt <xp <E4copt, 0<xy <l2,0<t< T}, Q2 = {(t,:l:) :
E+eot < <y +cot, 0 <y <1y,0 <t < T} The boundary 0Q of Q
consists of a lower base, Q° = {(t,z) € 0Q : t = 0}, an upper base, Q7 =
{(t,z) €0Q : t =T}, and a side surface, S = {(t,x) €9Q: 0 <t < T}
The lower base 01 consists of two parts: ﬁ(l) —0°N8Q; and ﬁg -0"Nd0,
( Q° and ﬁ? are closures of QY and Y, i = 1,2, respectively).

In @, we shall consider equation of hyperbolic type with respect to desired
function u( (¢, x)

u) G 9 du)
S =S (W@ ) + e, we@n

i=1

and in (2 we shall consider parabolic equation with respect to function
@) (t, x)
U , T

u® N [,  Ou®
= § — (k! - (2)
ot P &rl (kz (ili) &rl ) + f (t7 x)v (t7 x) € QQa (12)

where k"™ (x) € C1(Q,,) d 0<c; k™ (x) <o, i=1,2, m=1,2.
In addition, assume that the coefficients of the equation (1.1) satisfy the
following condition

V() -2 >6>0. (1.3)
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The equations (1.1) and (1.2) are supplemented with the following boundary
and initial conditions:

ulg =0, (tx)es, (1.4)
ou
u|90:u0(m)7 ot :ul(l)(m), (15)
Qf
where

u(l)(tv m): (t> iL‘) € @1; U(()l) (115), (0, iL‘) S ﬁlo,

u(t, ) = @) _ up(x) = , o

u?(t,x), (t,z) € Qs, uP (@), (0,2) €.

At the interface I' the following consistency conditions are valid

(2)
_ (.. 0u
- (k () (%1)

1.2. Existence and uniqueness of a strong solution

. (1.6)
r

oum) oum)
| _ .2 (1)
ufp = u]p <W+k @) B )

In [9] the existence of a unique strong solution of the problem (1.1)—(1.6) are
proven using the method of energy inequalities and mollifiers with variable
step [2; 5]. In addition, the issues regarding numerical solution of this problem
are considered. Below we shall adduce these results.

Let B be a Banach space that is a closure of a set {u : u(™ € C%(Q,,) (m =
1,2), u satisfies the conditions (1.4) and (1.6)} with respect to the norm

(H ou®
+ sup

L2(Q) OSIST

2 2
+ ;
2215, )

i=1
where QU™ (t) is a section of the subdomain Q,, (m = 1,2) by the plane
{(t,®) € R®: t = const}, || - ||z, is a norm in a space, Ly, of Lebesgue

ou)
ot

lulls = H
La(Q)(¢))

63:,

integrable functions whose squares are also Lebesgue integrable. Let Jid (09

be a Hilbert space that consists of functions u € Ly(Q°) (u = 0 on QO N S)
whose the first order weak derivatives are also elements of L (0°). The norm

in H'(Q°) is || - 1oy = I ooy + Z [
Denote by £ the differential operator Lu = (LOu®), LPy?), where

Lo(Q0)-

83—117,

2
L. = S 21 B?ci (k:l(m)a—m), m = 1,2. We can consider the prob-
1=
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lem (1.1), (1.2), (1.4)—(1.6) as the following operator equation

HuM
Lu=F, Lu=(Lulou,liuV), lou= Lu® =
(] 5 (] ( U, loU, l1U ) 3 ou U|Qoa 1u 3t an

f(l)(t)m)) (tv m) € Ql:

_ U, ’U,(l) =
F—(f(t,fﬂ), o(x),uy (a:)), ft,x) {f(Q)(t,x), (t,x) € Qa,

acting from B onto H = Ly(Q) X I;TI(QO) x L3(Q9) and which domain of
definition is D(L) = {u(t,z) : u™(t,z) € C*Q,,), m = 1,2, u(t,z)
satisfies the conditions (1.4) and (1.6)}.

For the differential problem (1.1), (1.2), (1.4)—(1.6) the following statement
is valid.
Theorem 1.1 [9]. Suppose that kl(m) (x) € CYHQ,,) 0 0< e < kl(m) (x) <
co, 1=1,2, m =1,2 and assume that the condition (1.3) holds; then for the
conjugation problem (1.1), (1.2) (1.4) — (1.6) the following estimate is valid

, ¢>0.
LZ(Q?)>
(1.7)

) )
mm%+%“‘

HMMSdMWHZCOMWM@rH%U

Operator L : B — H admits a closure L [5]. The solution of the operator
equation Lu = F'is a strong solution of the problem (1.1), (1.2), (1.4)—(1.6).

Theorem 1.2 [9]. Under the conditions of Theorem 1.1 for arbitrary F € H
there ezists a unique strong solution u € B of the problem (1.1), (1.2), (1.4)
- (1.6). In addition,

lulls < c||F[la,  ¢>0. (1.8)

1.3. Difference scheme

Let wp,r = wp X w, be a uniform moving mesh in the domain (). Here

= _ Jjo J ) N .. o
Wp = {miliz = (a:lil,:rglz) Dxy, = irhy + cotj;  Ta4, = i2ho,

0<ik <N, mNe=1h, k=12},

wr={tj=j7: 0<j<No—1, TNy=T}.

The set wy, = {az:zli2 : 0<ip <N, k= 1,2} is a set of interior mesh-
points of @y, and Owy, = Wi \wp, = {a:’f : 41 =0,N;, 0<is < Nyand 0 <

lliz
i1 < Ni, i = O,Ng} is a set of boundary mesh-points of @j,.
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We assume that the interface I’ contains the mesh-points of wy,-, and denote
this set by v, = {mi)liz = (a:{,l,mgz) xy,, = pihy + coty, prhy =6,
0 < iy < Ny}, where 2 < p; < N; —2. In addition, in the domains @)1 and Q-
we shall consider the following meshes w; = wy, X Wy, Ws = wap X w,. Here

wlh:{mgm: 0<i1 <p, 0<i2<N2};

th:{wzliZ: p1 <i1 < Ny, 0<i2<N2_1}-

On the moving mesh wy,, we approximate the differential problem (1.1), (1.2),
(1.4) - (1.6) by a three-layered scheme

yir = (01927 + (a22) 77 + 200y, 0, (@) €wr,  (L9)

v = (@) 4 (a2e) 77 + ooy +o, () €wn,  (110)
Yo, =0, (t,2) € dup, (1.11)

y(0,2) = ug(x), y:(0,2) = ugl)(w), x € wfh, wfrh = wip Uvp, (1.12)
y(0,2) = uo(x), u:(0,2) =u'? (@), @€ wo, (1.13)

with constant weights o, &k = 1,2. Here u?) () = Lug(x) + coMgT(lm) +
1

FM0, ), € wap, Lu = 8%1 (k%l)g—;)-%a%z (ké )83—;‘2). We use the standard
notation of the theory of difference schemes [8]:

Stencil functionals ¢ and an,(x) (m = 1,2) are defined by formulas

(p(m) = 075 (f(t)xl - 0,5h1,1‘2) + f(t>x1 - 0,5h1,1‘2)),

al(a:) — k%l) (1‘1 - 0,5h1,1’2) — 0(2)’ x € w;‘h’
K2 (21 — 05h1,22), @ € wap,

as () = kY (21,22 — 0,5h2), @ € wiy,
ké2) (1’1,1’2 - 0>5h2), T € wap,

respectively.

Similarly to [8], we approximate the second consistency conditions (1.6)
with the second order of accuracy with respect to spatial variables and write
its approximation in the following form

C o1,0 g1,0
h_[iyt +0,5(yt +ym) = (alyil);ll’ 2 (azyiz);;’ 2 4 coYtz, + 0,5¢Coyz, + ©.
(1.14)
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Note that the second initial condition y.(0,z) = u§2)(w) for the hyperbolic
equation is obtained from the condition of the second order of accuracy of
value y(1,x) [8].

The following statement holds.

Theorem 1.3 [9]. Suppose that the conditions (1.3) and kl(m) € C3(Qm) N
C2(T) (i = 1,2), u™ € CH(Qm)NC3(T), m = 1,2, k) (z) = kP (z) for x €
I are valid. Then under conditions o1 > 02+0,5, o2 > 0, the solution of the
difference scheme (1.9) — (1.14) converges to the solution of the differential
problem (1.1), (1.2), (1.4) - (1.6), and for the error z(t) = y(t) — u(t) the
following estimate holds

max [|z()]]a, < My (7 + hi* + 13),

where My > 0 and Aoy = — > (ar(T)yz,),, for © € wn, Aoy = 0 for

k=1
T € Qwy,.

2. CONJUGATION
PROBLEM WITH INTEGRO-DIFFERENTIAL CONDITIONS
ON THE SUB-DOMAINS INTERFACE

We have noted above that the problem on conjugation of equations of hy-
perbolic and parabolic types with integro-differential conditions on the sub-
domains interface arise in description of some physical phenomena. In [6; 7]
the questions concerning one-valued solvability and numerical solution of the
problem mentioned are considered.

The motion of the viscoelastic and viscous fluids in the plane horizontal
split leaving out of account the surface phenomena describes by the following
one-dimensional problem

2u®  HuD 524D
_+_ — —

(1,1 = — () (1)

10u®  182u®
(2),2 = 2 1 _ @ .
Lo Tp 0t  p 02 [, (te) e (2.2)

lu = u(0,2) = uo(x), =z € (0,1), (2.3)

_ou(0,2) (1
1u = T = (:L’), S (076)) (24)
u(t,0) =u(t,l) =0, te€(0,7), (2.5)
u® |w = u® i (2.6)



112 V.I. Korzyuk, S.V. Lemeshevsky

¢

1/ (e > (t’ —t) au(1)>‘ gt 1 ou®
z « -

90 0 ox . i Ox

2.1. Difference scheme

2.7)

~

Further we shall assume that the following conditions hold
FOt,zyeC (QU)) , ud(t,z)eCt (Q(i)) i =1,2, ug(x)€C2(0,1). (2.8)

On the interval [0, T] let us introduce the uniform grid w, = {t; = j7, j =
1,2,...N; — 1, Ny = T'}. In the domains Q") and Q® we shall consider
the uniform grids w; = wip, X wr and ws = wap, X wr, respectively. Here
Wih, ={xi =ihy, i =0,1,2,... N1, Nihy =&}, Wany, = {@ppi = E+ihy, i =
0,1,2,... N3, Naohy =1—¢&}. Let Wy, = wip, UWap,, @ = W X Wr.

We approximate the problem (2.1) — (2.7) on the grid w by the following
implicit difference scheme

0 T I
Oyiz + - (exp (5) - 1) Yit = Yize + 01, (1,2) € wi, (2.9)
1 1.
—Yot = —Y2zz + P2, (t,l’) € wa, (210)
P H
yi1(t,0) =y2(t,1) =0, t€wr, (2.11)
y(0>x) = Uo(l”), yt(O,ﬂf) = H1(1’)7 T € wh, (212)

y1(t, &) = y2(t,€), tew,

1~ T
gJym + 0,5 (yu —exp (—5) y1(0) — <P1) = (2.13)
1.

= ;y2z - 0;5h2 (y2t - @2) y T = E: te Wr,
where

Y W) 4 L (El@) )

} (1-35) @ + 55 (Tpi + 10 0.0)), wewn (e,
u () =
1 8%ug(x) N
p <; 522 + £t )(t,m)> , T € Wap,,

Jv = (Jv)(t,z) = Z T exp <#> o', x), Juv=(Ju)t+T,2),
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(1)
p1(t,x) = { (Jff(l)(;,(f)é) (tatwe) ETWI, pa(t,z) = fa(t,z), (t,2)€EwrUE,

yl(tam)a T € wr,
= t,g[j =
Y y( ) { y2(t,1’), T € wo,

Here we also use non-indexed notation of the difference scheme theory [8].
Note that consistency condition (2.7) is approximated taking into account
requirement of the second order of approximation with respect to spatial vari-
able.
For the scheme (2.9) — (2.13) the following statement regarding conver-
gence is fulfilled.

Theorem 2.1 [65 7]. Under the conditions (2.8) solution of the difference
scheme (2.9) — (2.13) converges to the solution of the differential problem
(2.1) — (2.7) with rate O(1 + h3/?), i.e. for the error z = y — u the following
estimate holds

2|l < co(r + B*?), co = const > 0.

Here the grid Ly-norm || - || is defined by the following relation

h1 for x € wip,,
lzll= " 2%, h={ 05(hi+hy) for x=¢
TEWH hz for xr € Wahy -

3. DIFFERENCE SCHEMES WITH VARIABLE WEIGHTING
FACTORS FOR HYPERBOLIC-PARABOLIC EQUATIONS

Let R? be two-dimensional Euclidean space of points & = (z1,22), 0 = {z =
(1,72) : 0 < 24 < lo, @ = 1,2} be bounded domain in R?. Suppose that
is separated by the straight line S = {& = (z1,22) : #1 = const, 0 < z2 < Iz}
into two non-intersecting subdomains 7 and 5.

Consider the equations

Ou _ 9 (1 y0uY, 9 () 0w
ot om (kl ("”)am) * o (’% (z) + fi(z,t), (x,t) € Qu,

u 0 (2) du 0 2) du
o =5 (@5 ) + 5, (W5 ) + s wneas
(3.2)

where @, = Qm x (0,7), Q = 2 x (0,T) (m = 1,2). Suppose that the first

equation is parabolic in @, and the second one is hyperbolic in @, that is,
there exist constants ¢; > 0 and ¢z > 0 such that for any vector £ = (&1, &2)

K™ (@) + b™ (@) > e (8 +€3), m=1,2.
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For equations (3.1), (1.1) we formulate the following initial-boundary prob-
lem: it is required to find the function u such that it is defined on @ and
satisfies the equation (3.1) in @, the equation (1.1) in @, as well as the
following initial and boundary conditions:

w(®,0) = up(z), z€Q, % —w(z), €,  (33)
u|8Q =0, (3.4)

and consistency conditions on the interface:

ou ou
oo =ursn (W3] = (W55)
r-o

Here 0Q) is the side surface of the cylinder @, I' = S x [0,T] is the interface.
The symbols I' — 0, ' + 0 denote that the function limit values on T' are taken
from the subdomains ()1 and ()2, respectively.

Suppose that the coefficients k%m) (z) and the right side f,,(x,t) have the
first kind discontinuity on the surface I' and that these functions are smooth
outside of the interface. Then there exists a unique weak solution of problem
(3.1)—(3.5) (see [3; 4]).

Further let the solution u(z, t) of problem (3.1)—(3.5) be piece-wise smooth.
In other words, the solution wu(x,t) has all the necessary continuous and
bounded derivatives outside the surface I' and satisfies the consistency condi-
tions (3.5) on I.

(3.5)

I'+-0

3.1. Difference scheme with variable weights on non-uniform grid

In Q there exists a non-uniform grid &y, = {x;,;, = (a:i1 , :L“;z) : ple =gla—l 4
his in=1,2,...,No—1, 2% =0, 2N = lo, a = 1,2}, such as the interface
S contains its nodes v, ={zp, s, = (2}, 25) : 2P =pi b}, 2R =27 + R,
in =1,2,...,Ny — 1}, where 2 < p1 < Ny — 2. Denote by @, the set of
internal nodes of the grid “n, and by 0w, the set of boundary points of
this grid. Let @, = {t; =j7, 1 =0,1,2,..., N} be a uniform grid in time,
O =W X W, grid in parallelepiped (). In addition, in the subdomains @1,
Q> we consider we consider the grids w; = &1 X wr, W2 = Wop X wr, Where
Oin = T, = (2, 2) ¢ ale =gl P+ his, a=1,2,i; =1,2,...,p —
1, iy =1,2,..., Ny — 1}, Bop = {®iys, = (2,28) : zlo =2l +hle, a =
1,2, ’il =DP1 +1,p1 +2,...,N1 - 1, 7:2 = 1,2,...,N2 —1}

Note that for approximation of parabolic equation two-level schemes are
usually used, and for approximation of hyperbolic equation three-level sche-
mes. Therefore similarly to [10; 11] we approximate the differential problem
(3.1) — (3.5) by the following three-level finite-difference scheme

Yi = (mygl(m)m(m)))@l - (“w%(m)’“(m)))h + ¢, (3.6)
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((L‘, t) € w1,
= (@) (gl @), 1)
1 x2
(LB, t) € Wi,
1 - o
= (e + o) = (aagf7 @ o= @) (3.8)
2h1 T1
+ (a2y§?(m)’”2(m)))A +o, (@) € xwr,
x2
mn =0 3.9
=0, (39)
y(m) 0) = UO(m)v yt(mv 0) =u (iL‘), T c al’n (310)
with variable weighting factors
O'f, T € &\tha % ~
* 09, T € W1h,
o) = PO ra) wem oL 0ses, meom,
7, T €Wy, 0 T E@Qhuaah.
0, x € 0w, , ’

Here 0,07, 03 are positive constants, 0, = 0wy \ {z1 =11, 0 < x2 < I1},
@;rhl = (op U {z1 =11, 0 < 2y <l2}. Note that the second initial condition
are determined by analogy with the previous sections.

For the scheme with variable weighting factors (3.6) — (3.10) the following
statement is valid.

Theorem 3.1. Let k™ (z) € C3(Qn), & € CH (), f(z,t) € C3(Qn), a =
1,2, m =1,2. Then under the conditions

o1(z) > oz(x), o1(x) +o2(x) > 0,5(1 +¢),
mefu;[l:@hu{ml:ll, 0<£L’2<12},

solution of the difference scheme (3.6) — (3.10) converges to the exact solution
of differential problem (3.2) — (3.5) and the following estimate holds

?Elgi(”y_uHA sM(T+h%max+h%max)) hamax:1<rlna&XN hf)?) a=1,2
2
Here M = const > 0 and Ay = — >_ (ax(®)yz,);, for € bn, Ay =0 for
k=1

x € Owp,.
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SKIRTINGO TIPO LYGCIU JUNGIMO PROBLEMA
V.I. Korzyuk, S.V. Lemeshevsky

Darbe nagrinéjama lygciy sistema, kuriag sudaro paraboliné ir hiperboliné lygtys. Patei-
kiamos kelios 8iy lygc¢iy jungimo salygos bei surastos atitinkamy uzdaviniy sprendimo vie-
naties salygos. Duotasis uzdavinys aproksimuojamas baigtiniy skirtumy schema. Irodyti
energetiniai diskreCiojo sprendinio tikslumo jverciai. Gautieji rezultatai gali buti pritaikyti
silpnai suspaudziamy skysc¢iy tekéjimo modeliavimui, kai kanalo sienelés yra sudarytos i§
poringos medziagos. Kitas taikomasis pavyzdys atsiranda nagrinéjant elektromagnetiniy
lauky saveika su magnetiniais skysciais.



