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ABSTRACT

A method of averaging is developed for constructing a uniformly valid asymptotic solution
for weakly nonlinear one dimensional gas dynamics systems. Using this method we give the
averaged system, which disintegrates into independent equations for the non-resonance sys-
tems. Conditions of the resonance for periodic and almost periodic solutions are presented.
In the resonance case the averaged system is solved numerically. Some results of numerical
experiments are given.

1. INTRODUCTION

In this paper we consider the system of one dimensional Euler equations of
gas dynamics [8]:
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where p is the density, u the velocity, E the total energy, 6 the temperature,
and p the pressure of the gas. The total energy E is decomposed as

1
E = §pu2—|—cv€,
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here ¢, is the specific heat at constant volume. The equation of state for a
polytrophic ideal gas is given by

p=TRpb.

Equations (1.1) also include small viscosity and heat conduction terms. The
simple one-dimensional case is studied in order to gain insight in the various
physical and numerical problems encountered in modeling gas flows for long
time intervals.

We assume that the solutions are smooth functions. Then the conservation
laws (1.1) can be transformed into equivalent differential form [1]:
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Note, that during this derivation the term wu,, was substituted by —(u,)?,
these terms are equivalent with respect to total energy.
Let consider a constant state solution

P = pPo, U = Up, 9:90
We are interested in a small amplitude wave solution

p(t,z) = po +epi(t, ), (1.3)
u(t, z) = ug + euq (¢, ),
0(t,xz) = 0y +eb1(t, ).

Let denote the constant state solution

Po
UO = Uo
Bo

Linearizing the problem (1.2) about a constant state we obtain the system

Uy + AU, = eF(U, Uy, Usy) + O(£2) (1.4)
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with the Jacobian matrix frozen at Upy:

Uo Po 0
RO
A= p_o () R
0
RO
0 0 Ug
Cy

and the nonlinear interaction term:
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Usually, the term Uy, which defines the propagation of small disturbances,
is determined from a simplified constant coefficient linear system [8]

U+ AU, =0. (1.5)
Higher order corrections for nonlinear problems can be obtained by retaining
more terms in the expansions. Similar expansions can be used to study the

propagation of discontinuities (see [10]).
The problem (1.5) is solved explicitly. First we decompose matrix A

A=RAR™,

where A = diag(ug + Mo, ug, uo — o) is a diagonal matrix of eigenvalues, Ao
is the local speed of sound

Ao = (| Rbop (E +1>

v

and R is the matrix of right eigenvectors

Po
1 —— 1
bo
Ao Ao
— — 0 -
R= Po Po
RO 1 RO

Cv Po Cv Po
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Next we introduce the characteristic variables
V=R1'U.
Multiplying (1.5) by R~! gives three independent scalar equations

%_‘_)\ 61)]'

Each of these equations has a solution
vj(z,t) = vj(z = Ajt, 0),

which describes an independently advected wave. Then the solution of prob-
lem (1.5) is the superposition of these three waves:

p1=v1—%v2+v3a
o

_>\0

ur = % (v1 —w3), (1.7)
RO

0, = 0(U1+’U3)+’02.
pOcv

The obtained solution does not approximate the exact solution of Euler
problem (1.2) if t ~ =1, We propose to retain in the decomposed system of
equations (1.6) the terms of order ¢ :

Ov; Ov; > ’ v v ,
k=1

i=1

We present explicit expressions for coefficients required in the following sec-
tions

#R +ve,R + vel

f11:f33: 2(R+Cv)pocv
3NEEE + N2R% + 2X\3¢, R + R36p — Rboc?
fiir = —fazz = — )
2pocyAo(R + cy) (1.9)
Fus = —fars = R(R — ¢y)
132 — 312 — 2>\OCU

A%R - A(%CU - 2R290 - QRCUQU

fiazs = —fa01 = .

290)\0 (R + Cv)
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Our goal is to construct the asymptotic solution of system (1.8)

Vi(m,y;) = vj(t,z) + o(1),
T=¢ct, y;=x—M\t, j=1,2,3,

which is uniformly valid for ¢ € [0,0 (¢7!)].

Systematic analysis of the proposed averaging method is given in [6; 7]. A
survey of general mathematical results on asymptotical expansion methods is
presented by Bhatnagar [2], Kaliakin [3], Mitropolskii [9]. This perturbation
method was also used in [5] for solving the shallow water equations.

The rest of the paper is organized as follows. In section 2 we use the
averaging technique and obtain the system of three equations for functions
Vj. The resonance conditions are investigated in section 3. The section 4
gives numerical results for one test case when the resonance conditions are
satisfied. Finally, some concluding remarks are given in section 5.

2. ASYMPTOTIC SOLUTION

Let consider the system (1.2)-(1.3) with initial conditions given in the form
v;(0,2) = vo;(z), j=1,2,3. (2.1)

Then we assume that the asymptotic solution V;(7,y;) satisfies the same initial
conditions

Vj(o’y]') = 'UOj(yj), J=12,3. (2'2)

In order to define the differential problem for functions V; we use the fol-
lowing operator of averaging along the jth characteristic of the non-perturbed
(i.e., e = 0) system (1.8):

Mj[g(T) Yiy Yj, yk)]
1 T
= i b Lm0 =M+ O s
0

(2.3)

Applying it to problem (1.8) we get that functions V; must satisfy the following
equations [5]

av; .
5 = Mlgj], j =123, (2.4)

where £g; denotes the right side of (1.8).
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It is easy to prove the following properties of the averaging operators:

3V
M[]a]]_ ]6

Mj[Vja—y:] = Vij[a—yZ] =0, i#].

Without a loss of generality we can assume, that

T
. 1
TEIJIrloo oT / voj(z)dz = 0. (2.5)
=T

Then we get that the averaging functions V; satisfy the following conditions

M;[V; 8”1—M[i12—2=o, i 4] (2.6)

Now we will derive the explicit expressions of equations in system (2.4).
After simple computations we have that

T

8V3 8V3 (7', Y2 + )\08)

Mol Vi = lim T (T = os)ds
0

and

8V1 6‘/1 7' Y2 — /\08)
[—V3 T_>+oo T / o Va(T,y2 + Aos)ds

V1 (Tyy2 = M T)Va(T,y2 + XoT') — Vi(T,y2) Va(T, y2)

= — lim

T—~+oco A()T
' Vi Xos)
. 3\T, Y2 — A0S
+oim T /VI(T’ 2= Aos)a—yzds
0
oVs
= My[—V]
2[8y 1] -
Thus we proved the following equality
Vs ovy Vs ovy
=2V — L) = M V1] — My[—V3] = 0. 2.7
[6y ay 3] 2[6y3 ] 2[8 3] ( )
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Direct computations give coefficients fo13 and fa31 in system (1.8)

Rboo (R — Cv)

f213 = _f231 = m .

Hence we obtain the following linear parabolic equation for the function V5:

8V2 _ 1 82V2

i 2.
or  pacy (R +¢y) Oy (2:8)

and it can be solved independently.
The other two functions V; and V3 are determined from the following system
of equations

oV, oy 9%V, oVs oVa
! = finVis— +f11 1 +M1 fr2sVo— + fiz2Va—| ,
or oy O0ys Oy
(2.9)
oV- oVs 9%V oVi oV:
a—f f333V§ay + f33 8y23 + M3 {f321V2 o + f312V1 ayﬂ .

3. THE RESONANCE CONDITIONS

Let assume that in system (2.9) the averages satisfy the following conditions

T
TETOO % / Va(r,yn + A08)8V3 , glyj 2hos) ds =0,
0T
TETOO % / Va(r,y1 + 2)\03)st =0,
° (3.1)
0T
TETOO % / Vi(r,ys — 2)\03)st =0

0

Then the averaged system (2.9) disintegrates into two independent Burgers
equations:

ov; ov; 0V,
E fJJJ 18 +f,],]82).7_13 (32)
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If conditions (3.1) are not satisfied, then system (2.9) describes the resonance
interaction of waves.

Let assume that in (2.1) functions vo;(z) are almost periodical with periods
i > 0:

voj(z) =Y vojeit”, (3.3)
[#0
Hj(—1) = —HKji, .] = 17273'

It is easy to prove that conditions (3.1) are satisfied if for any I;,[s,1l3 € Z,
such that |I1| + |l2] + |I3] # 0, we have

Moty F 2pt31, & pot, # 2par, - (3.4)

Therefore we obtained the non-resonance conditions (3.4) for almost peri-
odical solutions.

In the resonance case all equations in the averaged system (2.9) are con-

nected and it describes the interaction of waves. Asymptotical analysis step

is finished at this stage, but some numerical analysis is still needed in order
to get the solution.

4. NUMERICAL EXPERIMENTS

In this section we present results of some numerical experiments. For all tests
the system (1.2) is solved with the following coefficients

=1 R=1 v=1, »x=1.
Initial conditions are selected as
vo1(z) = cosz, wvpa(z) =sin2z, wvos3(z) = cosz. (4.1)
Thus in equation (3.3) we have periods
1 =1, ps1 =2, pgr =1

and conditions (3.4) are not satisfied. Therefore we deal with the resonance
case of system (2.9).
4.1. Finite difference scheme

We define the space wy, and time w; meshes and assume that the space mesh
size h and time mesh size T are uniform. We denote by v} = v(t",z;) a discrete
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function defined on wy, X w,. The velocity function u will be approximated at
the cell faces by u?_, 5 = u(t",z;-0.5).
The following common notation of difference derivatives is used in our paper

,Un—i-l — "

_ _ YY1
'U'r—fa 'UE—Ta
Vj41 — U4 Vjt+1 —Uj-1
’Uzzij J, ’Uo:ij J .
h I 2h

Similar difference operators are defined for uj_g 5.
The finite difference approximation of the Euler system (1.2) is defined as
follows (see also [4; 8]):

(pw)itos — (pu)i-os

i —0, 4.2
pr + 3 (4.2)
n 1
(pu)itos = uitos (Pi + 5 ®(ritos)(pi — Pi—l)) ;
Firos = Pi+1 — Pi
405 = ————,
’ pi — pi-1

cop <9T N Ui+0.5 -;—uz'fo.s Oit0.5 ; 9i0.5> sl (uz)z —pus, (4.3)

1
Oiro5 = 0; + §¢(ki+0.5)(9i —0i_1),

Oir1 —0;
ki+0.5 = 9—579,1 )

n+1 n+1 2 2
el o 1U? , — U
Pt 2P (e ) ) = e (44)

n 1 n n
Ui2+1 = (Uz’+0.5)2 + 5@(1;) ((Ui+0.5)2 - (Ui—0.5)2) )

2
(“?+1.5)2 - (u?+0.5)2
(“?+0.5)2 = (uig5)?

l; =

Here we use the well-known limited x = % upwind flux approximation scheme
with the special limiter [4]

®(r) = max <O,min <27“, min (% + %r, 2))) .

The averaged system (2.9) is approximated by the following finite difference
scheme:
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= fuVy" ) '+ f1 1 (vt ) + fizz S1(Va, V3) + fiz2 S1(V3,V2), (4.5)

2T=ﬁﬂaz, (46)
Var = fasVi'l, + f333 (V! ) + fo12 S52(Vi,V2) + faor S2(V2, V1), (4.7)

where the integrals are approximated as follows:

N

1

Si(Vis Vi) = 2= 2 (Ve (i + (i = M)l + 1))
=1

—Wuw+«M—Mﬂ—DMﬁﬂw+«M—Mﬂ—DM-

4.2. Simulation results

Figures 1 and 2 show the solution of system (1.2) and the asymptotic solution
at t = 1/e for four different values of the small parameter e. We present
graphics of the density and velocity functions.

Note that the averaged system must be solved numerically only once and
then the solution can be computed for any € by using a simple interpolation
procedure.

§ S / \/\

N L 1 2N

N7 S AT N T
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e=20.1 e = 0.05

Figure 1. Asymptotical solutions of the Euler problem (1.2) for ¢ = 0.1 and ¢ = 0.05.

5. CONCLUSIONS

The method for constructing asymptotical solutions of weakly nonlinear gas
dynamics equations have been presented. The solution is obtained as a su-
perposition of three waves, which satisfy a system of nonlinear differential
equations. The differential part of the system reduces to the viscous Burgers
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) 1

=002 1

Figure 2. Asymptotical solutions of the Euler problem (1.2) for ¢ = 0.025 and & = 0.01.

equation, the interaction of waves is described by nonlinear integral terms. It
is proved that this approximation is uniformly valid for time intervals of order
1/e.

Numerical experiments demonstrate that the proposed method can be used
to solve gas dynamics problems for a broad spectrum of small parameters.
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VIENMACIU DUJU DINAMIKOS LYGCIU ASIMPTOTINIS
SPRENDIMO METODAS

A. Krylovas, R. éiegis

Darbe sukonstruotas asimptotinis skleidinys, kuris tolygiai aproksimuoja vienmaciy dujy
sprendinj visame intervale ¢ < O(1/e). Metodika remiasi anksc¢iau pasiulytu lygéiy vidurkin-
immo metodu. Surastos salygos, kada gautoji suvidurkinta diferencialiniy lyg¢iy sistema
atsiskiria j tris nepriklausomas klampias Burgerso lygtis. Kai iSpildytos rezonanso salygos,
netiesiniy bangy saveika yra apraSoma integraliniais nariais. Pateiktos baigtiniy skirtumy
schemos, aproksimuojancios tiek pradineg diferencialiniy lyg¢iy sistema, tiek ir suvidurkintas
lygtis. Atliktas skai¢iavimo eksperimentas, patvirtinantis teorines igvadas.



