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ABSTRACT

The Dirichlet type problem for the weakly related elliptic systems of the second order
degenerating at an inner point is discussed. Existence and uniqueness of the solution in the
Holder class of the vector-functions is proved.

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Let D C R be bounded domain with a boundary S € C*%(0 < a < 1) and
let the origin x = 0 be an inner point of domain D. We consider in D the
system of equations

Lu := Z Aij(T)uge; + Z Bi(@)us; — C(z)u = f(z), (L.1)
i,j=1 i=1
(1)

where A;; = diag(a a(m)),Bi = diag(bgl),...,bgm)) and C = (cu)

P
are real continuous square matrices of order m, f = (fi,..., fm) and u =
(u1,...,um) are given and unknown vector-columns, respectively.

Henceforth, we shall use the following notations: R = max |z|, Do = D\{z =
€D
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0},50 = {z: 0 < |z] < 6}, Ds = D\ X5, S5 = {x : |z| = 0}(5 < dist(0, S)).
We shall denote by r the length of vector z = (ml, e ,:rn) and by | o |1,a:D
and |o|;.p norms in the corresponding spaces C"»*(D) and C!(D), where [ > 0
is an integer.

We assume that the following conditions are fulfilled:

a) there exist continuous functions p; and ps, and a number v; > 0 such that
0 < p1(r) < pa(r) for r € (0, R], u2(r) = O(r>*7) as r — 0, and

mER < al (@) < ma(r)lel?, k=Tm, (1.2)

i,j=1

for each z € D and for each £ = (&1,...,&,) € R?;
b) the relations

b¥)(z) = 0t ), i=T,n, k=1,m, (1.3)

(3

as r — 0 with any v, > 0 hold;

c) there exist a number v > 0 such that

ckr () — Z leki(z)| > v, k=1,m, (1.4)
I#k

for each z € D.

Observe, that in accordance with (1.2) system (1.1) is elliptic in Dy in the
sense of Petrovskii and is strongly (nonregularly) degenerate at the origin
z=0.

We introduce the class of vector-functions

CI(D) ={u:ueC>(Ds) V5>0, [ul < oo in Dp}.

Due to degeneracy of system (1.1) it has the solutions both bounded and
unbounded at the point z = 0 (see, e.g. [2], [3], [7]). Therefore, one can
discuss the Dirichlet type problem for (1.1) in the class of functions bounded
in Dy. Such a problem for scalar equation (1.1) with A;;(z) = §;;|z|*T (65
is the Kroenecker symbol) and B;(z) = 0 (4,5 = 1,n) is solved in [7]. This
problem in the case the main part of system (1.1) is like in [7] is considered
in [4]. The case of system (1.1) where coefficients B;(x) are not vanishing
at the point = 0 is investigated in [5]. Sufficient conditions are indicated
there under which Dirichlet type problem has the unique solution in the class
C?*(D) defined above. In this article we shall solve this problem for system
(1.1) in the case of coefficients B;(z) are vanishing fastly enough as r — 0
(see (1.3)).
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Thus, we consider the following problem:

Lu = f in Dy, (1.5)
u=gonS,
u€ Oy (D),

where g = (g1, ..., 9n) is given continuous vector-function.
As the main result we shall prove the following statement.

Theorem 1.1. Let the imbeddings A;; and B;(i,j = 1,n),C and f € C%*(D),
and g € C*2(S), hold. If conditions (1.2) — (1.4) are fulfilled, then there exists
the unique solution of problem (1.5) — (1.7).

2. AUXILIARIES

Lemma 2.1. Let Aj, Bi(i,j = 1,n),C and f be continuous in closed domain
D and let u = (u1,...,uy) be a solution of (1.1) from C*(Ds) N C°(Ds). If
condition (1.4) is fulfilled, the estimate

-1
[ujlops < max {maxfuil, v filop} (2.1)

holds for every j =1, m.

Proof. It is easily seen that every component u; of vector-function u satisfies
either inequality

[ujlo;ps > Igg;dujl (2.2)
or equality
|ujlops = %1%;(|'Uzj|- (2.3)

If (2.3) for every j = 1,m holds, then estimate (2.1) is true, obviously. Let
some components u; do not satisfy (2.3). Assume without a loss of gen-
erality that these are wi,...,um,, where mo < m. In such a case each of
functions |u;|,j = 1,myg, attain its positive absolute maximum at an inner
point &/ € Ds, correspondingly. Choose the largest one from the number set
{luj(27)|}, = T, mo. Let this number be u* := |ug(z*)|. If

k L
< ; = 1 2.4
u® < %1%§(|ul|, i=mo+ 1,m, (2.4)

then we get that

[ujlops < max {maxful}, j=T,m,
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i.e. in this case estimate (2.1) holds.
Let us assume that u* does not satisfy (2.4). In this case the proof of lemma
will be complete, indeed, if we shall show that the condition

uf > max ug, i=mg + 1, m, (2.5)
oDs
implies the estimate
k -1
< 2.
ut < v max {|filoo): (26)

Let ug(z*) be greater than zero. Observe, that then z* is the maximum
point of function uy. Therefore,

(uF),, =0, i=1,n, (2.7)

z=xk

and according to ellipticity of system (1.1) the inequality

E a uk ;T |x:xk S 0

3,j=1

holds. Due to it and (2.7) we obtain from (1.1) that

ur(z®)epr (%) + ) en (@) u(ak) < —fi(a"). (2.8)
I+k

Since u* > |u;(x*)| for I = T,mg (in accordance with the choice of u*) and
(2.5) holds, we get in view of (1.4) the estimate

(75 Ckk + Z Ckl ul > vu®.
1#k

Hence, taking into account (2.8) we obtain that

u <~ it /v < v max (| filoo),

i.e. estimate (2.6) holds.

Letting ug(z*) be less than zero one can show in quite a similar way that
under assumption (2.5) and in view of (1.4) estimate (2.6) holds, too. Lemma
is proved. W

Remark 2.1. If m = 1 and f = 0, estimate (2.1) represents the well known
maximum principle for scalar elliptic equations.
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Now we shall prove one property of the operator
Z al®) ()0 |00z, + Zb(k )8/0z; — e (),
3,j=1 i=1

where k is arbitrarily fixed, 1 < k& < m.

Lemma 2.2. Let a(f) bk )(z j =1,n) and cx, € C°(D). Let conditions (1.2),

7

(1.3) be fulfilled and let a number [ be such that § € (0,7') with v =
min{vyi,v2}. Then there exists a positive constant Ny, such that

Lir™ < —cpp(z)r™ + Nyr?' =8 (2.9)
for each x € Dy.
Proof.  Observe that condition (1.2) yields the relations

Zagf) (z) = O(r*t) Z a;; (x)x;x; = O(r*tm) (2.10)
i=1

3,j=1

asr — 0.
By the direct calculation we obtain that

Lir? = —rF (ckk(a:) n wk(a:)), (2.11)

where

Yi(@) = BB —2r™ Y alPwia; +Br‘22( M () + 20 (& ))

i,j=1 i=1

It is easily seen that in view of (1.3) and (2.10) and due to the smoothness of
al®) and b® there exists
ij i

Ny = sup(|¢k(55)|/7ﬂl)’
Do

obviously. This jointly with (2.11) imply (2.9). Lemma is proved. B

Theorem 2.1. Let imbeddings A;j, Bi(i,j) = 1,n and C € C°(D) hold and
conditions (1.2) — (1.4) be fulfilled. If u = (u1,...,up) € C*(Dy)NC°(DyUS)
is a solution of system Lu = 0 bounded in Dy and satisfying condition u|S =0,
then u = 0 everywhere in domain Dy.
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Proof. Introduce the function
w(r) =M +r7P

with the constant M such that

M > N.R" P Jvfor k=T,m, (2.12)

where 3,+' and N}, are from lemma 2.2.
Let ¢ > 0 be arbitrarily fixed number. Since w(r) > 0 for » > 0 and
w(r) — +oo as r — 0, we obtain that

lug(z)] < ew(r) for k=1,m (2.13)

in Eg* USg* with 0* = (E/|I<L — 8M|)1/B’ where Kk = sgp |u|

0
We shall show that inequality (2.13) holds everywhere in Ds«, too. This
will imply that (2.13) holds everywhere in Dy. Thus, due to arbitrariness of €
we will get u = 0 in Dy, i.e. theorem will be proved.
With that and in view let us introduce the vector-function v = (v1, ..., m)
by formula

u(z) = w(r)v(z). (2.14)
Putting (2.14) into system Lu = 0 we obtain that v is the solution from
C?(Dy) NCO(Dy U S) of the system

Lv:= " Aj(@)vee; + Y Bi(@)ve, — C(z)v =0 (2.15)
i,j=1 i

with the matrix-coefficients

~z = dlag (551)) ) Bgm)))
C = (Crt), kandl=1m,

where
il (0) = (1+ Mr)al) (),
b0 (@) = (1+ Moo (@),
() = (14 MrP)eg (), if k#1,
Cri\T) = MrPegy(z) —rPLyr=P, if k=1
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Obviously, the elements dg-c) of matrices AE;C) (i,j = 1,n) satisfy condition
(1.2) with functions ji;(r) = (14+Mr5)u;(r) instead of functions u;(r),i = 1,2.

Moreover, since
n

> agf)mj =0(r*™)as r— 0,
ij=1
we get due to (1.3) the relation

0¥ (x) = O(r') asr — 0.
Hence, the elements IN)Ek),k = T, m, of every matrix B;,i = 1, n, satisfy the
condition similar to (1.3).

Observe, that the limit values of Ezz(»f) (z) and ég(xz) as r — 0 coincide

with the corresponding limits of functions Fzg) (z) and é(z). Besides that,

ng) (x) ~ bgk) (z) as r — 0, evidently. Therefore, matrices A;;, B;(i,j = T,n)
and C' are continuous at the point z = 0.
Now we shall show that

k() = Y _lem (@) > v, k=Tm, (2.16)
I+k

for each z € D, i.e. matrix C satisfies condition (1.4).
According to (2.9) we get the inequality

G () > (1 + MrP)epp(z) — N, z €D,
which jointly with (1.4) implies the estimate

Gri(x) = Y |ew (@) > v(1 + Mr%) — Nir”', € D. (2.17)
I#£k

Due to (2.12) we have
yM1? = N > Nr?' ((r/R)B’”' - 1) >0

for each r € [0, R], i.e. (2.17) yields (2.16).

Thus, the coefficients of system (2.15) satisfy the conditions of lemma 2.1.
According to it and in view of property U|S = (u/w)|S =0 we get from (2.1)
the estimate

[oslo:m; < max {max |vi|}, =T, m,

i.e. the estimate [vj|o;p; < €, because |v; = |u;|/w < € on Ss-. Therefore,
lug ()] < ew(r),k = 1,m, in Ds« and the proof of the theorem is complete.
|
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3. PROOF OF THEOREM 1.1

Denote by g = (g;,---,9,) a smooth continuation of vector-function g into D
such that g € C*%(D).

Let {Ds, },k = 1,2,..., be the set of the domains such that Ds, C Ds, .,
and lim 0 = 0 and let us consider the following Dirichlet problem:

k—o0

Lu = f(z) in Dy, u(z)=7g(x) on Dy,. (3.1)

Observe, that according to (1.2) system (1.1) is uniformly elliptic in D;. Since
its coefficients and the right-hand side are from C%%(Ds,) C C%%(D), and
g € C*%(Ds,) C C**(D), due to lemma 2.1 there exists the unique solution
u® = @W{®, . ul)) e 022(Dy,) of problem (3.1) [1], [6]. Moreover, in view
of (2.1) the following estimate holds:

(k) = -1 .
|U]- |0;D5k S 1rgniaé)§n{|gi|0;'D7V |fi|0;'D}a J = lam' (32)
Let us build the set {u(®},k = 1,2,..., whose members are the solutions

of Dirichlet problem (3.1) in Dy, ,k = 1,2,..., respectively. Now let us fix
a domain D; with arbitrary ¢. Evidently, all the members of the set {u(*)}
with & such that 6 < §/2, are defined both in D/, and in Ds. Using the well

known a priori estimates [1], [6] we obtain for these u(¥) the estimate

k — k .
|u§. )|2,a;’D5 < NZ (|gi|2,a;D + |u£ )|0;D5/2 + |fi|[),a;’D); J= ]"m’ (33)
i=1

with a positive constant N independent of k. Since |uz(»k)|0;1)6/2 < |ng)|0;’D5k
for & < 4/2, it follows from (3.3) due to (3.2) the compactness of the set
{u®} in the space C?(Ds). Therefore, using the diagonalization method one
cane choose a subset {u*)} C {u(*)} which strongly converges (in the sense
of convergence of each component of vector-function (¥ ) in C?(D;) to some
limiting vector-function u = (u1,...,u,,) uniformly bounded in domain Dj
with respect to 6. Besides that, the completeness of the space C>%(D;) implies
the imbedding u = C>%(Djs), because ulk) € C%%(D;) for each k; < §/2.
Hence, u € C*(D) and due to arbitrality of § vector-function u satisfies
system (1.1) everywhere in Dy.

Observe, that the validity of (1.6) follows from uniform convergence of sub-
set {u*)} in D; due to condition u*) |S =gforeachi=1,2,...

Thus, the existence of the solution of problem (1.5) — (1.7) is proved.

The uniqueness of the solution follows from lemma 2.1. Indeed, if both u!
and u? are the solutions of problem (1.5) — (1.7), then u = u! — u? satisfies
in Dy the equation Lu = 0 and boundary value condition u|S =0,ie. u=0
in Dy according to theorem 2.1. Thus the proof of theorem 1.1 is complete.
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APIE ISSIGIMSTANCIU VIDINIAME TASKE ELIPSINIU
SISTEMU KLASES PIRMAJI UZDAVIN]
S. Rutkauskas

Nagrinéjamas silpnai susiety antros eilées elipsiniy lyg¢iy, iSsigimstanc¢iy vidiniame srities
taSke, Dirichle tipo uzvdavinys. Irodyta 8io uzdavinio sprendinio egzistencija ir vienatis
Hiolderio vektoriy-funkcijy klaséje.



